
Designing an Analyzable and Resilient

Embedded Operating System

Philip Axer, Rolf Ernst

TU Braunschweig

Institute of Computer and Network Engineering

{axer,ernst}@ida.ing.tu-bs.de

Björn Döbel, Hermann Härtig

TU Dresden

Operating Systems Group

{doebel,haertig}@tudos.org

Abstract: Multi-Processor Systems on Chip (MPSoCs) are gaining traction in the
embedded systems market. Their use will allow consolidation of a variety of applica-
tions into a single computing platform. At the same time the probability of transient
hardware malfunctions manifesting at the software level increases.

These applications integrated into the MPSoC possess a range of different require-
ments in terms of timing, safety and resource demand. Hence, it is impossible to
provide a one-size-fits-all solution that allows reliable execution in future MPSoC sys-
tems. In this paper, we present ASTEROID, a set of hardware and operating system
mechanisms that aim to provide reliable execution in such a diverse environment.

1 Introduction

The self-fulfilling prophecy of Moore’s law and the accompanied transistor-shrinking are

the major driver of the silicon industry as we know it today. While this development

allows for the construction of ever faster processors with larger caches and increasing

feature sets leading to multi-core systems and ultimately to many-core architectures, the

downside of this development is that chips will be much more prone to temporary or

constant malfunction due to a variety of physical effects.

Variability caused by future lithographic process (22nm feature size vs. 193nm wave-

length) increases the standard deviation of gate properties such as its delay [Nas10]. The

increased likelihood of manufacturing errors may lead to chips with functional units that

don’t work right from the beginning [Bor05], or to transient effects that only appear under

environmental stress. Heat flux and wear-off (e.g. electro-migration) can cause functional

units to stop working after some time either for the duration of certain environmental con-

ditions, such as temperature being above a certain threshold, or forever [Sch07]. Overeager

undervolting or frequency scaling may lead to another group of errors where signals take

too long to reach their destination within the setup and hold-time bounds or where cross-

talk between unrelated wires induces voltage changes that become visible at the software

level [ZMM04]. Also, radiation originating from space or the packaging of the chip may

506

� �
� �

� �

�� ��

������	�����

�� A		B�ACD�	EFA��

������	����� ������	�����

�

Figure 1: a) non-fault tolerant multi-processor. b) static lockstep processor. c) loosely coupled
dynamically coupled processors

lead to single-event upsets (SEU) [Muk08]. A critical charge induced by a charged parti-

cle changes the logic-level, which causes a register to flip. An SEU is a transient effect,

meaning that the hardware remains fully functional. Flipped bits can occur in all units

of modern processors such as memory, register-file or pipeline-control registers. Interest-

ingly, the critical charge required to trigger an SEU, is an inverse proportional function of

the supply voltage and the gate-capacitance.

Our research targets embedded systems running mixed-critical applications with varying

code complexity, and error handling requirements. We aim to come up with a framework

of hardware and software reliability mechanisms from which applications may pick those

that are appropriate under a given fault model, timing requirements, and error detection

and recovery overhead. For the moment, we focus on transient SEUs in functional units

of the CPU. We ignore SEUs at the memory level, as we expect solutions, such as error-

correcting codes (ECC) [Muk08] implemented in hardware to be available. However, our

solution covers faults on the path to and from memory, such as writing to a wrong address

or data being corrupted when fetching from memory. Our final vision is to come up with

a design that is able to incorporate different hardware fault models and a multitude of

resilience mechanisms.

In the remainder of this paper, we take a deeper look at the building blocks to construct

ASTEROID, a resilient real-time operating system. We investigate hardware fault models

and argue why there is no single solution to resilience that suits the requirements posed by

different types of workloads in Section 2. In Section 3 we describe an operating system

service that selectively provides transparent redundant multithreading to critical applica-

tions. Section 4 introduces hardware-assisted instruction and data fingerprinting, which

can be used to speed up software mechanisms and also allows hardening the lower soft-

ware layers such as the OS kernel itself. We then go on to describe possible ways of

implementing recovery in the ASTEOROID system in Section 5 and describe ways for

analyzing the real-time behavior of the whole system in Section 6.

2 System, Applications and Fault Models

A wide range of today’s embedded application domains, such as smart phones, in-car

electronics, and industrial automation, look into consolidating their applications into Mul-

ti-Processor Systems on Chip (MPSoC). By using a powerful MPSoC platform, it becomes

507

no timeͲcritical
functions

mostly timeͲcritical
functions

most functions
with safety
requirements

no functions with
safety
requirements

traffic lights with
centralized
control

general purpose
computing

entertainment/
multimedia

automotive –
active safety
control

aircraft Ͳ cabin
management

avionics – flight
management system

time criticality

sa
fe
ty

 c
ri
ti
ca
li
ty

optical wideband
communication

industrial – process
automation

medical Ͳ
pacemaker

mobile
communication

Figure 2: The two dimensions of criticality: safety and time

possible to integrate computationally intensive algorithms (e.g. camera supported pedes-

trian detection) with control oriented applications (e.g. active steering).

The architecture of a MPSoC system is in general very similar to the architecture depicted

in Figure 1 a). A set of processors is connected to an interconnect facility, which can be

a bus, crossbar switch or a sophisticated network-on-chip. Peripheral devices, such as I/O

devices and memory controller, are not depicted.

Consolidation into MPSoC systems will integrate different applications with varying re-

quirements into a single system. This system is supposed to allow reliable execution of

these applications. A traditional approach to achieve reliability is to statically replicate

hardware and software components, for instance by performing static lock stepping as de-

picted in Figure 1 b). However, this static approach requires resource over-provisioning,

because it replicates the whole software stack instead of taking into account the specific

requirements of each application.

Some applications may have hard real-time constraints or are safety-critical whereas others

are non-critical at all (e.g. best-effort entertainment). A system design incorporating such

considerations is said to support mixed-criticality applications. Criticality can be broken

down into two orthogonal dimensions as depicted in Figure 2.

For time-critical applications without safety requirements, the sole focus lies on timeliness

of computation or communication. Typical examples for this domain are embedded mobile

communication applications e.g. UMTS or LTE, as well as video decoding. Here, guar-

anteed data integrity is not safety-relevant because transient or permanent error conditions

do not have catastrophic consequences.

For purely safety-defined systems it is crucial that integrity of computation is preserved,

even in presence of errors, e.g. traffic lights which are controlled by a centralized control

facility. In case of failures, pedestrians and car passengers can be injured or even killed,

508

thus safety demands are high. However, it is not critical if light phases are of accurate

timing, as long as the signals are consistent. The taxonomy of safety is defined by safety

standards and is the focus of dependability research [ALRL04].

Additionally, some application scenarios require both, timing and safety constraints, to be

met. Examples in this area are in-car safety systems, such as airbag controllers. From

a reliability perspective, such applications demand an extremely short fault detection la-

tency. For recovery, a simple scheme, such as restarting the application from an initial

checkpoint, may suffice.

It appears there is no one-size-fits-all solution that can be applied to all of the above scenar-

ios. Therefore, in the ASTEROID system architecture we try to accommodate the needs

of all applications by providing a set of detection and recovery techniques from which

developers can chose the ones that best fit their requirements in terms of latency, energy

consumption, or normal-mode execution overhead. Our approach is to use loosely coupled

cores as depicted in Figure 1 c). These cores can either be used to replicate critical appli-

cations, or they can be used as single cores to execute applications that are not replicated

because they either are not critical enough or they leverage other means of fault tolerant

execution, such as arithmetic encoding [FSS09].

The operating system plays a crucial role in our resilient design. On the one hand it

needs to provide error detection and recovery mechanisms in those cases where hardware

mechanisms don’t suffice. On the other hand, studies show that many kinds of hardware

errors finally also lead to errors that corrupt operating system state [LRS+08, SWK+05].

Our work uses the L4/Fiasco.OC microkernel [LW09] as the OS basis. The inherent design

of the microkernel provides us with fine-grained isolation between OS components. As

we can expect more than 65% of all hardware errors to corrupt OS state [LRS+08] before

they are detected, this isolation allows us to limit the propagation of corrupted data and

therefore promises to reduce error detection and recovery overhead.

3 Redundant Execution as an Operating System Service

In general, fault-tolerant systems deal with potential hardware faults by adding redun-

dancy. Such redundancy can for instance be added by using duplicate hardware execution

units [BBV+05,IBM08], employing redundant virtual machines [BS95], or compiling the

software stack with compilers that add redundant computations [RCV+05] or apply arith-

metic encodings to data and instructions [FSS09].

Compiler-based replication also allows to replicate at an application granularity. However,

it requires the source code of all applications to be available for recompilation, which is

not true for many proprietary applications. For instance, best-effort applications for mobile

devices often come from popular app stores, where the user has no influence at all on how

the applications are compiled.

As a result, for ASTEROID we decided to provide replicated execution as an operating

system service on top of the L4/Fiasco.OC microkernel. The resulting system architecture

is shown in Figure 3. The base system is split into an operating system kernel running

in privileged mode and additional runtime services running as user-level components. To

509

Replicated AppsUnreplicated Apps

L4 Runtime Environment Romain

L4/Fiasco.OC Kernel

Hardware

User

Kernel

Figure 3: ASTEROID system architecture

this system we add a new component, Romain, which provides software-implemented

redundant multithreading [RM00].

The Romain framework provides replication for critical user-level applications without

requiring changes to or support from the replicated application. Furthermore, as we are

basing our work on a microkernel, complex OS code, such as device drivers and protocol

implementations, runs in user-level components which can be covered by this replication

scheme as well.

The current implementation of Romain allows replicating single-threaded applications on

top of L4/Fiasco.OC. Romain splits the application into N replicas and a master that man-

ages and controls these replicas as depicted in Figure 4. The master serves as a shim

between the replicas and the rest of the system. It makes sure that all replicas see the same

input (IPC messages, results from certain instructions, such as reading the hardware time

stamp counter) at the same point in time, because only then can we enforce deterministic

behavior in all replicas.

Replicated Application

Replica Replica Replica

Master

=

CPU

Exceptions

Memory

Manager

System Call

Handler

Figure 4: Romain Architecture

510

To prevent undetected faults from propagating into other replicas before the master de-

tects them, each replica is executed within a dedicated address space. The master process

leverages L4/Fiasco.OC vCPUs [LWP10], a mechanism originally designed to implement

virtual machines, to launch the replicas. The benefit of using a vCPU is that whenever

a replica raises a CPU exception, such as a system call or an MMU fault, this exception

automatically gets reflected to the master process.

Once a CPU exception is raised, the master waits for all replicas to raise their next excep-

tion and then compares their states. This comparison includes the replicas’ CPU registers,

as well as kernel-provided control information, such as the type of the raised exception.

Furthermore, the L4/Fiasco.OC User-Level Thread Control Block (UTCB), a memory re-

gion used to pass system call parameters to the kernel, is inspected for each replica. The

state comparison does not include a comparison of the complete replica address spaces as

this would lead to infeasible runtime overheads.

The decision to not incorporate all memory into the state comparison manifests a trade-

off between lower runtime overhead and lower error detection latency. In Section 4 we

present instruction fingerprinting, a small hardware extension that will help us to achieve a

low runtime overhead while incorporating the complete state of a replica into the required

state comparison.

In addition to performing state comparisons, the master process manages the replicas’

memory layout. As explained in Section 1, we assume memory to be protected by ECC.

This means that once data is stored in memory, we can assume it to remain correct. Hence,

any read-only memory can be assumed to never be corrupted. Therefore, such memory

regions only exist as a single copy and are shared among all replicas. In contrast, each

replica works on a private copy of every writable memory region.

The memory management strategy discussed above works for memory that is local to

the replicated application. However, applications in the ASTEROID system may also

use shared memory for transmitting data back and forth. In a setup involving replicated

applications, the master then needs to make sure that whenever replicas access shared

memory, they read/write the same data regardless of timing or order of access. Hence,

in contrast to application-internal memory, the master needs to intercept and emulate all

accesses.

Emulating memory accesses would involve an instruction emulator as part of the master

process, which has drawbacks in terms of runtime overhead, portability, and maintainabil-

ity: the emulator adds a large amount of code to the master process, emulation is slower

than directly executing the instructions on the physical CPU, and for every hardware plat-

form the system is supposed to run on, the emulator needs to be implemented from scratch.

To avoid the complexity of a full instruction emulator, we implement a copy&execute

technique in Romain. As a prerequisite for this, the master makes sure that shared mem-

ory regions are mapped to the same virtual address. However, only the master gets full

read/write access to the region, whereas the replicas raise page faults upon each access.

When encountering a page fault, the master inspects the replica state and copies the fault-

ing instruction into a buffer local to the master. This buffer contains code to a) push the

replica’s CPU state into the master’s physical registers, b) execute the faulting instruction,

511

and c) restore the replica’s and master’s register states. The master then executes the code

within this buffer.

The copy&execute strategy works for most shared memory accesses, but has two main

drawbacks: First, a few instructions are unsupported (e.g., indirect memory jumps, and

instructions with multiple memory operands). Second, the execution of the instruction

within the master is not replicated. Therefore, a transient fault that occurs while executing

this instruction will not be detected. In future work we will explore ways to address these

issues.

It remains to be noted, that while Romain protects a wide range of user-level components

against hardware errors, it does not protect the microkernel itself nor the Romain master

process. Furthermore, it relies on certain hardware mechanisms (exception delivery, ad-

dress space protection, MMU fault handling) to function correctly. We refer to this set of

components as the Reliable Computing Base (RCB) [ED12], which needs to be protected

in a different way. We are aware of the problem and believe that the hardware mechanisms

described in Section 4 can serve as initial building blocks for solving it. However, this is

still an open issue and left for future work.

To evaluate the overhead imposed by replicating applications using Romain, we ran exper-

iments using the MiBench benchmark suite as a single instance, as well as in double- and

triple-modular redundancy mode. We compared their runtimes on a test computer with 12

physical Intel Core2 CPUs running at 2.6 Ghz. Hyperthreading was turned off and every

replica as well as the master were pinned to a dedicated physical CPU.

Figure 5: Romain overhead for MiBench benchmarks in double and triple modular redundancy mode

The results in Figure 5 show that the normalized runtime overheads range between 0.5%

and 30%, but are below 5% in most of the benchmarks. Further investigation showed

that the overheads correlate with the amount of memory faults raised by the benchmark –

more page faults lead to more interaction with the master process and therefore imply a

higher runtime cost. In future work we will therefore also investigate whether the memory

management cost can be optimized.

512

1. April 2010 | Referent | Kurztitel der Präsentation (bitte im Master einfügen) | Seite 11

virtual address space

Registers

heap

stack

Task State

IF

ID

MEM

WB

EXE
RA

X

Processor

Erroneous
write1

2
3

Figure 6: Illustrative example of an error in the processor pipeline (1) which causes an erroneous
write (2) and leads to an error in the heap state (3).

4 Error Detection Using Hardware-Assisted Fingerprinting

A central aspect of fault-tolerance is the employed error detection scheme, as already

discussed in the previous sections. Figure 6 shows how pipeline errors propagate from the

processor into the task’s state. Here the task state consists of the entire virtual memory

space as well as the architecturally visible registers.

For instance an illegal register access causes an erroneous operand fetch (1). When the

content of this register is used later for memory accesses (e.g. writes), the state of the

task is modified illegally. The objective of error-detection is to identify and signal such

alterations. There are several metrics by which we can measure the quality of the error-

detection mechanism:

• Error coverage, which is the fraction of errors which are detectable by the mecha-

nism, should be as high as possible

• Error latency which is the time from error occurrence to error detection, should be

as low as possible.

• Additional overhead (performance penalty, chip area, code size) should be as low as

possible.

The Romain architecture as presented in Section 3 compares state on externalization only

(e.g. on system-calls and exceptions). Thus, the error coverage of Romain is sufficiently

high, because all data is eventually subject to a comparison before it becomes visible.

As already discussed, without further consideration of shared-memory communication the

execution time overhead of the presented approach is reasonably low. But it also comes

with some inherent drawbacks with respect to our requirements: The major issue is that

the error latency is not bounded. An error in the task’s state as depicted in Figure 6 can

stay dormant for long time until the erroneous state is externalized. An arbitrary long

detection latency can potentially render an error recovery mechanism useless if real-time

requirements are involved.

To circumvent this problem we use hardware assisted fingerprinting, which was introduced

in [SGK+04]: A dedicated fingerprint unit which resides in the pipelines of all cores in

513

1. April 2010 | Referent | Kurztitel der Präsentation (bitte im Master einfügen) | Seite 10

IF

ID

MEM

WB

Instruction FP+
EXE
RA

X

Data FP+result

inst

Chunk CNT
exception
retire

Figure 7: Leon 3 pipeline with fingerprinting extensions.

the processor hashes all retired instructions. This generates a fingerprint which represents

an unique hash for a specific instruction/data sequence. Since the same code is executed

on redundant cores we can use the fingerprint as a basis for DMR voting. In the original

work from [SGK+04], voting between redundant cores is performed when cache lines

become visible on the system bus. However, this approach has some inherent drawbacks,

especially in the field of real-time systems and with respect to mixed-critical applications.

Since the mechanism relies on the cache coherency protocol as a synchronization primitive

for comparison, the mechanism implicates a high degree of timing uncertainty (e.g. when

comparisons are performed and how often). Also, no differentiation between task contexts

is made, thus all instructions end up in one single fingerprint and redundancy cannot easily

be performed task-wise.

Thus, we propose to use fingerprinting differently and implemented context-aware fin-

gerprinting, where a fingerprint is generated per context (if required). We extended the

LEON 3 processor [SWSG06] with a fingerprint unit as shown in Figure 7. The unit con-

sists of three building blocks: a chunk counter which counts retired instructions, the data

fingerprint which taps the data path of the pipeline and the instruction fingerprint which is

fed with the retired instruction word. All of these registers are implemented as ancillary

state registers (ASRs) which can be read by software.

The unit works the following way: Both fingerprint registers continuously hash data and

instructions. In case of interrupts or traps, the processor will store a copy of the recent

fingerprint and the operating system may store the fingerprint in the task control block.

In the same way an old fingerprint can be restored on a return-from-interrupt instruction.

Thereby, per-task fingerprints can be implemented by the operating system and we are able

to handle asynchronous events.

Data and instruction fingerprint reflect a hash over the task state and can be used in the

Romain master for voting. However, this approach still exhibits the drawback of an un-

bounded detection latency, because a task first needs to raise a CPU exception to trigger

comparison.

To artificially increase the voting-frequency in a predictable way, we implemented chunk

checking. Chunk Checking is a feature which is controlled by the operating system to

514

control the error detection latency for long-running workloads. Per se, the operating sys-

tem has no method to interrupt two copies at a predictable instant in time (on exactly the

same instruction) in order to compare intermediate results. Here, we use the chunk counter

which is decremented with each executed instruction and causes a trap if it reaches zero.

This enables the operating system to compare intermediate results without using the highly

inefficient single-stepping mode.

A third mode of operation is the signature checking mode. In this mode we leverage from

the fact that we have an individual instruction fingerprint. By construction it is possible to

pre-compute instruction fingerprints for each basic block. This can be done by the com-

piler or by dynamic recompilation during runtime as part of an operating system service.

This enables to implement near zero-overhead signature checking for basic blocks: A ded-

icated match-fingerprint instruction tests the target and the actual fingerprint which may

result in a fingerprint-miss trap.

5 Recovery

The mechanisms described in this paper allow us to detect transient hardware errors. How-

ever, a fully functional system also needs to recover from these errors. In this Section we

present ideas on ways to provide recovery in the ASTEROID system. As explained in

Section 3, our system supports arbitrary n-way modular redundancy. This implies that we

can use voting among the replicas to find the set of correct replicas and then overwrite the

faulting replicas states with correct ones.

Unfortunately, from a practical perspective every additional layer of redundancy will in-

crease the runtime overhead implied by our system and therefore users may opt to use

double-modular redundancy (DMR). This approach allows only error detection, but does

not include recovery. Therefore, DMR needs to be combined with a checkpoint/restart

mechanism. We are currently investigating state if state-of-the-art checkpointing such

as [AAC09] is suitable to fit into ASTEROID.

Restarting from a checkpoint has implications on the rest of the system, because other

applications may depend on the service provided by the restarted application and the

restart may invalidate recent computations or application service state. This problem

has been investigated before [Her10, DCCC08]. Our solution to reintegration is based

on L4ReAnimator [VDL10], an application framework that keeps track of references to

external services.

L4ReAnimator is responsible for a) storing how these references were obtained, and b)

monitoring the references in order to detect service interruption. Once an external service

is restarted, the framework will lazily detect this restart upon the next invocation of the

service. Then, it will re-establish a connection using the stored connection information

and potentially recover a consistent session state. Thereafter, the application may continue

using the service.

In addition to combining ASTEROID’s error detection with L4ReAnimator, we plan to

investigate whether we can use heuristics to figure out the faulty replica in a DMR setup.

The first heuristic could be based on observing CPU exceptions raised by the replicas: as-

suming that transient faults often lead to crashes, we will see a faulty replica raise a CPU

515

�
�

�
�

�
�

�

�

�

Figure 8: Example for task level redundancy on a MPSoC

exception (e.g., an invalid memory access) while the non-faulty replica will simply con-

tinue execution and raise no fault. In such case, we might deduce that the faulting replica

is the broken one. However, we cannot be 100% confident, because the invalid memory

access may well be valid application behavior and the faulty replica may simply be stuck

in an infinite loop raising no exceptions. Initial fault injection experiments indicate that

such infinite loops are rare exceptions, though. Furthermore, the chunk checking mecha-

nism described in Section 4 will force any replica to raise an exception within a bounded

amount of time.

Another useful heuristic may involve programmer interaction. Applications may come

with built-in consistency checks in the form of assertions added to the application’s code.

When encountering a fault, the master process may then check if the fault was raised by a

known assertion from the application code and thereby deduce the faulty replica.

Another option would be to add consistency checker functions. These can be registered

with the master process upon startup. Upon a fault the master can then run the checker

function on the replicas’ states to detect the faulty replica. As the checker function in-

cludes developer knowledge, it may be much faster in figuring out which replica’s state is

inconsistent.

6 Can we Provide Real-Time Guarantees?

The correctness of behavior depends not only on the logical result, but especially in time-

critical systems, also on the instant in time at which the result is produced [Kop97]. So

even if the system is capable of detecting and recovering from errors on the fly, it is still

possible to miss deadlines caused by transient overload effects. Thus for real-time systems

we must differentiate between logical correctness and timing correctness. The system is

working correctly only if the platform satisfies two criteria:

1. the result must be logically correct according to the specification

2. the data must be delivered in time (i.e. deadlines must be met)

Vise versa, a failure is defined as either logical incorrectness or a timing violation.

516

The problem of ensuring logical correctness can be solved by replicating only critical tasks

as shown in Figure 8. This particular example shows two cores which are part of a larger

MPSoC. Some tasks of the task graph execute safety-critical code (τ1, τ2), the other rep-

resent other applications (e.g. uncritical, hard real-time or best-effort) computations. As

annotated, safety critical tasks are executed redundantly in a DMR fashion on both cores.

Given that the operating system performs comparison operations between all external I/O

issued by τ1 and τ2, the platform is capable of detecting logical errors for critical tasks

without massive duplication.

With respect to timing violations, the first question that needs to be raised is “why do

we need novel real-time analysis methods?” Former research in the field of performance

analysis led to a sophisticated set of analysis approaches. Most of them are based on

the well studied busy-window approach initially introduced in [Leh90], which allows us

to analyze component behavior. We can use it to derive the response-time, which is the

largest time from task activation until the data has been processed. If the response-time is

smaller than a specified deadline, then this task is schedulable.

The busy window idea can also be extended to a system-wide analysis which considers

communicating tasks. Both, compositional performance analysis (CPA) [HHJ+05] and

modular performance analysis (MPA) [Wan06], provide such functionality.

Unfortunately, CPA and MPA alone are not capable of analyzing error events and recovery

operations, because their effects are not bounded in time. Although unlikely, it is generally

possible that a lot of errors happen at once which leads to a violation of real-time proper-

ties. Thus, since error occurrences are probabilistic we must transition to a probabilistic

real-time analysis.

Safety regulations dictate a minimal level of dependability for safety critical functions.

Therefore, most standards define a probabilistic metric such as Mean Time To Failure

(MTTF) in order to quantify reliability. As software function is generally implemented

as a task graph which is mapped to computational and communication resources, those

resources inherit the software’s dependability requirements. Thus, the following analysis

must be able to show that the actual MTTF of a task is larger than the required MTTF.

We formulated a timing analysis which accounts for errors and recovery events in [ASE11].

Due to limited space, in this paper we only sketch the idea briefly. For the mathematical

description we refer to [ASE11].

Our analysis focuses on transient errors and soft errors in particular. Soft errors caused by

radiation or variability will manifest as logical bit-flips in architectural registers. We as-

sume that the fault causing bits to flip will vanish immediately and has no temporal extent

(there are no intermittent errors). Since the exact arrival of error-events is highly unpre-

dictable, we use stochastic models to evaluate the behavior on a probabilistic base. The

occurrence of errors on a core is modeled using Poisson processes with a given error-rate

λi per core which accounts for errors affecting core components (e.g. ALU and FPU).

Specifying per-core error rates models heterogeneous multi-core CPUs in which some

cores may inherently be more reliable than others. This can be the case if dedicated hard-

ware error detection and recovery mechanisms are used, such as proposed by [ABMF04]

or by using more reliable but less performant silicon process parameters.

517

Given our model, the following equation gives the probability for unaffected execution of

processor Pi during the time interval ∆t:

P (no error in time ∆t) = e−λi∆t (1)

To derive the reliability for each task, we use a two step algorithm. First, we identify possi-

ble error manifestations (scenario) which lead to feasible schedules. Therefore, we model

the specific timing-effect of the error-scenario and analyze the model using response-time

analysis methods, known from the CPA.

In the second step, after discovering the working scenarios, we can use Equation 1 to

calculate the probability that one working scenario will actually happen. Based on these

probabilities it is possible to calculate the MTTF in order to decide whether the reliability is

sufficiently high. This in turn lets us decide whether tasks under errors met their deadlines

sufficiently often to fulfill all requirements.

7 Conclusion

In this paper we presented building blocks for ASTEROID, an analyzable, resilient, em-

bedded operating system design. ASTEROID accommodates applications with varying

safety, timing, and resource requirements. Unreliable applications are hardened by using

transparent software-implemented redundant multithreading. A fingerprinting mechanism

in hardware decreases error detection latencies and increases error coverage. Additionally,

we sketched ideas on how to perform error recovery and gave a brief overview of how the

ASTEROID system can be analyzed with respect to real-time requirements in the presence

of transient hardware errors.

Acknowledgments

This work was supported in parts by the German Research Foundation (DFG) as part of the

priority program ”Dependable Embedded Systems” (SPP 1500 - http://spp1500.

itec.kit.edu).

References

[AAC09] Jason Ansel, Kapil Arya, and Gene Cooperman. DMTCP: Transparent Checkpointing
for Cluster Computations and the Desktop. In 23rd IEEE International Parallel and
Distributed Processing Symposium, Rome, Italy, May 2009.

[ABMF04] T. Austin, D. Blaauw, T. Mudge, and K. Flautner. Making typical silicon matter with
Razor. IEEE Computer, 37(3):57–65, 2004.

[ALRL04] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxon-
omy of dependable and secure computing. Dependable and Secure Computing, IEEE
Transactions on, 1(1):11 – 33, 2004.

[ASE11] Philip Axer, Maurice Sebastian, and Rolf Ernst. Reliability Analysis for MPSoCs
with Mixed-Critical, Hard Real-Time Constraints. In Proc. Intl. Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS), Taiwan, October 2011.

518

[BBV+05] D. Bernick, B. Bruckert, P.D. Vigna, D. Garcia, R. Jardine, J. Klecka, and J. Smullen.
NonStop: Advanced Architecture. In Dependable Systems and Networks, 2005. DSN
2005. Proceedings. International Conference on, pages 12–21, june-1 july 2005.

[Bor05] S. Borkar. Designing reliable systems from unreliable components: the challenges of
transistor variability and degradation. Micro, IEEE, 25(6):10 – 16, nov.-dec. 2005.

[BS95] T. C. Bressoud and F. B. Schneider. Hypervisor-based fault tolerance. In Proceedings
of the Fifteenth ACM Symposium on Operating Systems Principles, SOSP ’95, pages
1–11, New York, NY, USA, 1995. ACM.

[DCCC08] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H. Campbell. CuriOS:
Improving Reliability through Operating System Structure. In USENIX Symposium on
Operating Systems Design and Implementation, pages 59–72, San Diego, CA, Decem-
ber 2008.

[ED12] Michael Engel and Björn Döbel. The Reliable Computing Base – A Paradigm for
Software-Based Reliability. In Proc. of the 1st Workshop on Software-Based Methods
for Robust Embedded Systems, SOBRES’12, 2012.

[FSS09] Christof Fetzer, Ute Schiffel, and Martin Süsskraut. AN-Encoding Compiler: Building
Safety-Critical Systems with Commodity Hardware. In Proceedings of the 28th Inter-
national Conference on Computer Safety, Reliability, and Security, SAFECOMP ’09,
pages 283–296, Berlin, Heidelberg, 2009. Springer-Verlag.

[Her10] Jorrit N. Herder. Building a dependable operating system: Fault Tolerance in MINIX3.
Dissertation, Vrije Universiteit Amsterdam, 2010.

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System Level
Performance Analysis - The SymTA/S Approach. IEE Proc. Computers and Digital
Techniques, 152(2):148–166, March 2005.

[IBM08] IBM. PowerPC 750GX Lockstep Facility. IBM Application Note, 2008.

[Kop97] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, Norwell, MA, USA, 1997.

[Leh90] J. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines.
Proc. 11th Real-Time Systems Symposium, pages 201–209, Dec 1990.

[LRS+08] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Sarita V. Adve, Vikram S.
Adve, and Yuanyuan Zhou. Understanding the propagation of hard errors to software
and implications for resilient system design. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS XIII, pages 265–276, New York, NY, USA, 2008. ACM.

[LW09] Adam Lackorzynski and Alexander Warg. Taming Subsystems: Capabilities as Univer-
sal Resource Access Control in L4. In IIES ’09: Proceedings of the Second Workshop
on Isolation and Integration in Embedded Systems, pages 25–30, Nuremberg, Germany,
2009. ACM.

[LWP10] Adam Lackorzynski, Alexander Warg, and Michael Peter. Generic Virtualization with
Virtual Processors. In Proceedings of Twelfth Real-Time Linux Workshop, Nairobi,
Kenya, October 2010.

[Muk08] Shubu Mukherjee. Architecture Design for Soft Errors. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2008.

519

[Nas10] Sani R. Nassif. The light at the end of the CMOS tunnel. In Int. Conf. on Application-
specific Systems Architectures and Processors, pages 4 –9, july 2010.

[RCV+05] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I. August.
SWIFT: Software Implemented Fault Tolerance. In Proceedings of the International
Symposium on Code Generation and Optimization, pages 243–254. IEEE Computer
Society, 2005.

[RM00] Steven K. Reinhardt and Shubhendu S. Mukherjee. Transient fault detection via simul-
taneous multithreading. SIGARCH Comput. Archit. News, 28:25–36, May 2000.

[Sch07] Dieter K. Schroder. Negative bias temperature instability: What do we understand?
Microelectronics Reliability, 47(6):841–852, 2007.

[SGK+04] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe, and A. G. Nowatryk. Finger-
printing: bounding soft-error-detection latency and bandwidth. IEEE Micro, 24(6):22–
29, 2004.

[SWK+05] Giacinto P. Saggese, Nicholas J. Wang, Zbigniew T. Kalbarczyk, Sanjay J. Patel, and
Ravishankar K. Iyer. An Experimental Study of Soft Errors in Microprocessors. IEEE
Micro, 25:30–39, November 2005.

[SWSG06] Zoran Stamenkovic, C. Wolf, Günter Schoof, and Jiri Gaisler. LEON-2: General
Purpose Processor for a Wireless Engine. In Matteo Sonza Reorda, Ondrej Novák,
Bernd Straube, Hana Kubatova, Zdenek Kotásek, Pavel Kubalı́k, Raimund Ubar, and
Jiri Bucek, editors, DDECS, pages 50–53. IEEE Computer Society, 2006.

[VDL10] Dirk Vogt, Björn Döbel, and Adam Lackorzynski. Stay strong, stay safe: Enhancing
Reliability of a Secure Operating System. In Proceedings of the Workshop on Isolation
and Integration for Dependable Systems (IIDS 2010), Paris, France, April 2010. ACM.

[Wan06] E. Wandeler. Modular performance analysis and interface-based design for embedded
real-time systems. PhD thesis, SWISS FEDERAL INSTITUTE OF TECHNOLOGY
ZURICH, 2006.

[ZMM04] Dakai Zhu, R. Melhem, and D. Mosse. The effects of energy management on reliability
in real-time embedded systems. In Proceedings of the 2004 IEEE/ACM International
conference on Computer-aided design, ICCAD ’04, pages 35–40, Washington, DC,
USA, 2004. IEEE Computer Society.

520

	3020085 GI P_208 Inhalt.pdf
	Informatik 2012
	Vorwort
	Inhaltsverzeichnis
	Workshops GI
	Bitcoin.pdf
	Bitcoin.pdf
	01-01-vornberger
	01-02-becker
	01-03-cap
	Introduction
	A World of States and Transactions
	Centralized Scenario
	Distributed Scenario
	Distributed Applications and Swarm Behavior

	Transaction Networks
	Definition
	Convergence of Consensus
	Backtracking
	Regaining Consensus

	Swarm Behavior
	Bitcoin as a Game
	Bitcoin as Random Walk
	Bitcoin as Social System

	Related Questions

	Digitale Soziale Netze
	Digitale Soziale Netze.pdf
	03-01-funk
	03-02-hameed
	03-03-kneissl

	IT-Unterstützung im Emergency Management & Response
	IT-Unterstützung im Emergency Management & Response .pdf
	04-01-Coskun
	04-02-Han
	04-03-Reinke
	04-04-Maehler
	Developing user centered maps and map symbols in mass casualty incidents - a qualitative interdisciplinary approach.
	Mareike Mähler1, Eva Artinger2, Christian Stolcis3, Fabian Wucholt1, Tayfur Coskun4, Yeliz Yildirim-Krannig1
	1 Introduction
	2 The influence of culture on usability
	3 Maps and Maps symbols Perception Study
	3.1 Sample
	3.2 Structure and Expiration of the Study
	3.3 Findings
	3.3 Findings

	4 Emergency Map Symbols
	4.1 Requirements
	4.2 Realization
	Features of the symbol set:

	5 Map types and Architecture
	5.1. Map types
	5.2 Architecture of the map component

	6 Conclusion, Outlook and Future Work
	Literature

	04-05-Simon

	Informatik und Nachhaltigkeitsmanagement
	Informatik und Nachhaltigkeitsmanagement.pdf
	05-01-grimm
	Evaluation von Performance Measurement Systemen zur Konzeption eines geschäftsprozessorientierten Management-Cockpits für IKT-Energieeffizienz
	Daniel Grimm, Fabian Loeser, Koray Erek, Ruediger Zarnekow
	Fakultät Wirtschaft und Management, Fachgebiet I&K-Management Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin d.grimm@tu-berlin.de f.loeser@tu-berlin.de koray.erek@tu-berlin.de ruediger.zarnekow@tu-berlin.de
	1 Einleitung
	2 Performance-Measurement-Ansätze
	2.1 Traditionelle Kennzahlensysteme
	2.2 Moderne Performance Measurement Systeme
	2.3 Performance-Measurement-Ansätze mit IKT-Fokus

	3 Bewertung der Performance-Measurement-Ansätze
	4 Anpassungen für das Management-Cockpit
	5 Diskussion und Schlussfolgerungen
	Literaturverzeichnis

	05-02-schoedwell

	Deklarative Modellierung und effiziente Optimierung (MOC 2012)
	Deklarative Modellierung und effiziente Optimierung (MOC 2012) .pdf
	06-00-geske
	06-01-beierle
	06-02-prenzel

	VLBA12-Workshop
	VLBA12-Workshop.pdf
	07-01-Teuteberg
	07-02-Balloul
	07-03-Kassem
	07-04-Dreschel

	Informationssysteme mit Open Source (ISOS 2012)
	Informationssysteme mit Open Source (ISOS 2012) .pdf
	08-01-Schoenfeld
	08-02-Wickner
	Einleitung
	Einzelsysteme
	Versionsverwaltung
	Build-Automatisierung
	Continuous-Integration-Server
	Metrik-Dashboard

	Integration in bestehende Infrastruktur
	Fazit

	08-03-Flatscher
	08-04-Hummel
	08-05-Herden
	08-06-Loxen

	Sozio-technisches Systemdesign im Zeitalter des Ubiquitous Computing (SUBICO 2012)
	Sozio-technisches Systemdesign im Zeitalter des Ubiquitous Computing (SUBICO 2012).pdf
	09-01-Hoberg
	09-02-Vogt
	Micro Online Reverse Auctions für allgegenwärtige C2B-Koordination
	Simon Vogt
	Institut für Informatik Helmut-Schmidt-Universität Hamburg Holstenhofweg 85 22043 Hamburg simonvogt@hsu-hamburg.de
	1 Einführung
	2 Pervasive und Ubiquitous Computing
	2.1 Begriffsklärung
	2.2 Entwicklung sozio-technischer Anwendungen

	3 Mechanismen für effiziente Markt-Koordination
	3.1 Phasen einer Markttransaktion
	3.2 Online Reverse Auctions

	4 Konzeption eines pervasiven Mikro-ORA-Systems
	4.1 Anforderungen und grundlegende Architektur
	4.2 System Design

	5 Implementierung und beispielhafte Anwendung
	Dieser Abschnitt präsentiert und beschreibt durch das Verfolgen eines beispielhaften Nutzungsszenarios jede Komponente des entwickelten Software-Artefaktes und demonstriert die Funktionalität der zuvor beschriebenen Implementierung. In den folgenden A...
	5.1 Fallbeispiel
	5.2 Das YoChoo Request Interface
	5.3 Die Message-Oriented Middleware
	5.4 Das „YoChoo Bidding Tool“

	6. Schlussbetrachtung
	Literaturverzeichnis

	09-03-Hoffmann

	1. Workshop zur Entwicklung Energiebewusster Software (EEbS 2012)
	1. Workshop zur Entwicklung Energiebewusster Software (EEbS 2012) .pdf
	10-00-Haerder
	10-01-Kramer
	10-02-Wilke
	10-03-Petrov
	10-04-Bunse
	Introduction and Motivation
	Principles of physics
	Measurement setup
	Evaluation showcase
	Summary, Conclusions, and Outlook

	10-05-Gottschalk
	10-06-Schirmer
	Introduction and Motivation
	Related Work
	Principles of physics
	Software-based Measurement
	Approach 1: Remaining Capacity Measurement
	Approach 2: Voltage and Discharge Current Measurement

	Evaluation
	Experimental Setup
	Results

	Summary and Outlook

	Softwarebasierte Methoden für robuste, eingebettete Systeme
	Softwarebasierte Methoden für robuste, eingebettete Systeme .pdf
	11-01-Sangchoolie
	11-02-Engel
	11-03-Jablkowski
	11-04-Axer
	11-05-Borchert

	Situation-Aware Assistant Systems Engineering Requirements, Methods, and Challenges
	Situation-Aware Assistant Systems Engineering.pdf
	12-01-wagner
	12-02-hein
	12-03-krueger
	12-04-kuhlmann
	12-05-lipaczewski

	Smart Grid
	Smart Grid.pdf
	14-01-Pruckner

	Hochschule 2020
	Hochschule 2020.pdf
	16-01-Zakhariya
	16-02-Sueptitz
	16-03-Schreiter
	16-04-Koenig
	16-05-Homrighausen
	16-06-Buehrig

	Kurzfristig entwickeln, langfristig konzipieren
	Kurzfristig entwickeln, langfristig konzipieren.pdf
	18-01-Grundmann
	18-02-Kraemer

	IT-Governance in Verteilten Sytemen (GVS)
	IT-Governance in Verteilten Sytemen (GVS) .pdf
	20-00-vorwort
	20-01-marekfia
	20-02-wulf
	20-03-will
	20-04-milicevic

	Automotive Software Engineering
	Automotive Software Engineering.pdf
	22-01-berger
	22-02-regler
	22-03-conrad
	22-04-hueger
	22-05-gerlach
	Evaluation der domänenspezifischen Sprache HMISL zur modellgetriebenen Entwicklung von Automotive HMIs
	Simon Gerlach
	HMI-Systemtechnik Volkswagen AG Brieffach 1588 D-38436 Wolfsburg simon.gerlach@volkswagen.de
	1 Hintergrund
	2 Ziele der Evaluation
	3 Prototyping
	4 Nutzerstudie
	4.1 Bewertungskriterien
	4.2 Methodik
	4.3 Ergebnisse
	4.4 Validität
	4.5 Interpretation

	5 Fazit
	Literaturverzeichnis

	22-06-pion
	22-07-janssen
	22-08-berger
	22-09-schneider

	Frühstudium 2012 - die Lebenswelt im Übergang Schule-Hochschule
	Frühstudium 2012 - die Lebenswelt im Übergang Schule-Hochschule.pdf
	23-01-Hunneshagen
	23-02-Draeger
	23-03-Schaarschmidt
	23-04-Eckardt
	23-05-Fehr
	ProInformatik
	Das Frühstudium Informatik an der Freien Universität Berlin
	Elfriede Fehr
	Fachbereich Mathematik und Informatik Institut für Informatik Takustr. 9 14195 Berlin elfriede.fehr@fu-berlin.de
	1 Einleitung und Motivation
	2 Das Konzept der ProInformatik
	2 Teilnehmerzahlen und Erfolgsbilanz
	4 Erste Ergebnisse
	5 Fazit
	Danksagung

	Literaturverzeichnis

	23-06-Geyer
	23-07-Neumann

	Gamification und Virtuelle Welten
	Gamification und Virtuelle Welten .pdf
	25-01-Hartmann
	25-02-Witt
	25-03-Pannicke
	Akzeptanz sozialer virtueller Welten am Beispiel Smeet
	Danny Pannicke, Rüdiger Zarnekow, Xiang Yan
	Technische Universität Berlin, Fachgebiet IuK-Management Straße des 17. Juni 135 10623 Berlin danny.pannicke@campus.tu-berlin.de ruediger.zarnekow@tu-berlin.de johnyan88@googlemail.com
	1 Einleitung
	2 Theoretische Einordnung
	3 Konzept-Analyse
	4 Methodisches Vorgehen
	4 Ergebnisse
	4.1 Auswertung der Interviews mit erfahrenen Benutzern
	Einstieg und relativer Vorteil
	Aktivitäten in der virtuellen Welt
	4.2 Auswertung der Berichte der studentischen Probanden

	5 Diskussion
	Literaturverzeichnis
	Anhang

	25-04-Witt
	25-05-Stieglitz

	Interaktion und Visualisierung im Daten-Web (IVDW 2012)
	Interaktion und Visualisierung im Daten-Web (IVDW 2012).pdf
	27-00-heim
	27-01-sack
	27-02-osterhoff
	27-03-Schlegel
	27-04-Haag

	Architekturen für Services Cloud Computing
	Architekturen für Services Cloud Computing.pdf
	28-01-Slawik
	Einführung: Motivation, Zielstellung und Aufbau
	Cloud-Architektur
	Einbindung der Cloud-Architektur in das Gesundheitswesen
	Fazit und Ausblick

	28-02-Irriger
	28-03-Jugel
	28-04-Falkenthal

	Trends und aktuelle Entwicklungen für die computerassistierte Neurochirurgie
	Trends und aktuelle Entwicklungen für die computerassistierte Neurochirurgie.pdf
	29-01-Gierhan
	29-02-Hoeller
	29-03-Roettger
	29-04-Merhof

	Interdisziplinäre Workshops GI
	Translationale und personalisierte Medizin - Einsatzfelder für SOA, Grid und Cloud.pdf
	Translationale und personalisierte Medizin - Einsatzfelder für SOA, Grid und Cloud .pdf
	38_01_balkenhol

	Mobile Informationstechnologien in der Medizin (Mocomed 2012) - Innovation in der Pflege
	Mobile Informationstechnologien in der Medizin (Mocomed 2012).pdf
	39-01-Alsbach
	39-02-Ahrndt
	39-03-Radzuweit
	39-04-Schenk
	39-05-Schwab
	39-06-Egbert
	39-07-Zentek

	Betrachtung der Medizinischen IT und Medizintechnik als Gesamtprozess Synergien und Chancen
	Betrachtung der Medizinischen IT und Medizintechnik als Gesamtprozess.pdf
	43-01-swoboda
	43-02-dirnberger
	43-03-birkle

	Interdisziplinäre Workshops GMDS
	Metadaten und Integrationslösungen für die Klinische Forschung
	Metadaten und Integrationslösungen für die Klinische Forschung.pdf
	45-01-Fette
	45-02-Ganslandt
	Integrated Data Repository Toolkit: Werkzeuge zur Nachnutzung medizinischer Daten für die Forschung
	Ganslandt T1, Sax U2, Löbe M3, Drepper J4, Bauer C2, Baum B2, Christoph J5, Mate S5, Quade M2, Stäubert S3, Prokosch HU5
	1 Medizinisches Zentrum für Information & Kommunikation, Uniklinik Erlangen
	2 Abteilung Medizinische Informatik, Universitätsmedizin Göttingen
	3 Institut für Medizinische Informatik, Statistik und Epidemiologie, Universität Leipzig
	4 TMF e.V., Berlin
	5 Lehrstuhl für Medizinische Informatik, Universität Erlangen-Nürnberg thomas.ganslandt@uk-erlangen.de ulrich.sax@med.uni-goettingen.de
	1 Einleitung
	2 Methoden
	3 Ergebnisse
	4 Diskussion
	5 Schlussfolgerungen und Ausblick
	Danksagung
	Literaturverzeichnis

	45-03-Schleinkofer
	45-04-Rimatzki
	45-05-Ngouongo
	45-06-Loebe

	Kundeninduzierte Orchestrierung komplexer Dienstleistungen
	Kundeninduzierte Orchestrierung komplexer Dienstleistungen.pdf
	47-01-Sillaber
	Introduction
	Related work
	Motivation and definitions
	CoSeRMaS and the BDSG: a case study
	CoSeRMaS
	Deriving requirements from the BDSG
	Managing BDSG compliance from within CoSeRMaS
	CoSeRMaS along the service chain

	Conclusion and future work

	47-02-Ried

	Selbstbestimmtes Leben mit AAL-Technologien – Probleme, Perspektiven, Praxisbeispiele
	Selbstbestimmtes Leben mit AAL.pdf
	48-01-Steiner
	48-02-Saborowski
	48-03-Nitschke
	48-04-Lamprecht
	48-05-Pramann
	1 Einleitung
	2 AAL-Anwendung als Medizinprodukte
	3 Haftungsrisiken

	Literaturverzeichnis

	Gestaltung altersgerechter Lebenswelten - Technologien des Ambient Assisted Living für das selbstständige Leben im Alter
	Gestaltung altersgerechter Lebenswelten.pdf
	49-01-Helmer
	49-02-Spehr
	Introduction
	Depth Sensor
	Human Behavior Patterns (HBPs)
	Model for HBPs
	Calibration of Extrinsic Sensor Parameters
	Local Features
	Gaussian Feature Maps
	Learning of Gaussian Feature Maps
	Recognition of HBPs

	Experimental Results
	Anomaly Detection Results

	Conclusion
	Acknowledgements

	49-03-Lipprandt
	49-04-Wist
	49-05-Buesching
	Einleitung
	Motivation und Anwendungsfall: Unterbrechungstoleranz in medizinischen Sensornetzen
	Analyse der Datenraten
	Datenrate auf dem Funkkanal
	Generierte Datenrate beim Überwachen von Aktivitäts- und Vitalparametern

	Kapazität von unterbrechungstoleranten Netzen
	Spezielle Lösung
	Allgemeine Lösung

	Zusammenfassung und Schlussfolgerung

	49-06-Rau

	Datenmanagement und Interoperabilität im Gesundheitswesen
	Datenmanagement und Interoperabilität im Gesundheitswesen.pdf
	52-01-Vorwort
	52-02-Goldacker
	52-03-Deserno
	52-04-Preissner
	52-05-Pommerening
	52-06-Abels

	4. Workshop über Daten in den Lebenswissenschaften Datenbanken als Kommunikationszentrum
	4. Workshop über Daten in den Lebenswissenschaften.pdf
	53-01-Vorwort
	53-02-Werner
	53-03-Thiele
	53-04-Henkel
	53-05-lange
	53-06-prasser
	53-07-shoshi
	KAIS: Ein webbasiertes System zur patientenindividuellen Arzneimittel-Interaktionsprüfung
	Alban Shoshi1*, Arben Shoshi2 und Ralf Hofestädt1
	1Bioinformatik/Medizinische Informatik, Universität Bielefeld, Bielefeld, Deutschland 2EDV-Abteilung, Franziskus Hospital Bielefeld, Bielefeld, Deutschland alban.shoshi@uni-bielefeld.de arben.shoshi@franziskus.de ralf.hofestaedt@uni-bielefeld.de *Ko...
	1 Einleitung
	2 Methoden
	2.1 Aufgabenstellung und Ziele
	2.2 Implementierung
	2.2.1 Systemarchitektur und Datenbankstruktur
	2.2.2 Benutzeroberfläche

	3 Zusammenfassung
	Literaturverzeichnis

	IT Governance und Strategisches Informationsmanagement in Gesundheitswesen und Öffentlicher Verwaltung
	IT Governance und Strategisches Informationsmanagement in Gesundheitswesen und Öffentlicher Verwaltung .pdf
	55-00-Einleitung
	55-01-Obermeier
	55-02-Haller
	55-03-Krey
	55-04-Walser

	CCESigG Workshop Der Weg zur rechtssicheren elektronischen Dokumentation, Kommunikation und Archivierung im Gesundheitswesen
	CCESigG Workshop „Der Weg zur rechtssicheren elektronischen Dokumentation, Kommunikation und Archivierung im Gesundheitswesen“ .pdf
	56-01-Huehnlein
	56-02-Huehnlein
	1 Einleitung
	2 Grundlegende Betrachtungen zur Authentisierung und Signatur
	2.1 Begriffliche Abgrenzung und Verbindung von Authentisierung und Signatur
	2.1.1 Authentisierung und Authentifizierung
	2.1.2 Authentisierung von Daten – (Qualifizierte) elektronische Signatur
	2.1.3 Authentisierung von Entitäten – Elektronischer Identitätsnachweis

	2.2 Synergiepotenzial und gemeinsame Regulierung
	2.3 Eignung von Authentifizierungsverfahren

	3 Die Referenzarchitektur für die Authentisierung und Signatur
	3.1 Systemkomponenten
	3.1.1 System des Benutzers
	3.1.2 System des Applikationsanbieters
	3.1.3 Infrastruktur

	3.2 Schnittstellen

	4 Anwendungsfälle
	4.1 Registrierung eines Benutzers
	4.2 Authentisierung eines registrierten Benutzers
	4.3 Erstellung einer elektronischen Signatur durch den Benutzer
	4.4 Beweiskrafterhalt für qualifiziert elektronisch signierte Dokumente
	4.5 Automatisierte Erzeugung von Server-seitigen Signaturen
	4.6 Erstellung einer Server-basierten Signatur nach Authentisierung des Benutzers

	5 Zusammenfassung

	56-03-Balfanz
	56-04-Hallof gematik
	56-05-Feller
	56-06-Seidel
	56-07-Wild

	Medizinische Bildverarbeitung für die computergestützte Diagnostik und Therapie
	Medizinische Bildverarbeitung für die computergestützte Diagnostik und Therapie.pdf
	57-01-Luetzkendorf
	57-02-Baecke
	57-03-Mueller
	 Abstract: Aktuell wird als eine vielversprechende Therapiemethode das sogenannte Neuro-feedback für verschiedene Angst-, Zwangs- oder Suchtstörungen diskutiert. Dabei wird dem Probanden noch während einer Messung die neuronale Aktivierung aus bestimmten Regionen seines Gehirns präsentiert, welche er dann selbständig und in Echtzeit regulieren soll. In der vorliegenden Arbeit wird erstmalig ein Rahmenkonzept zur Echtzeit-Adaption einer komplexen Virtual Reality (VR)-Umgebung vorgestellt. Die Analyse der neuronalen Aktivierung sowie das Neurofeedback wurden dabei mittels funktioneller Magnetresonanztomographie (fMRT) realisiert. Das entwickelte Adaptionskonzept nutzt die in Echtzeit analysierten Hirnaktivierungen und führt abhängig von der Ausprägung der Hirnaktivierung eine automatische Anpassung der VR-Umgebung zur Laufzeit durch. Die komplexen Interaktionsmöglichkeiten des Probanden mit der VR bleiben während dieser Anpassung erhalten. Zur sicheren Evaluation des Frameworks unter kontrollierten Bedingungen wurden der gesamte Prozessablauf und das Entscheidungskriterium auf ein simuliertes Echtzeit-fMRT-Experiment mit realen fMRT-Daten von 12 Probanden angewandt und analysiert. Die Ergebnisse zeigen die erfolgreiche Echtzeit-Adaptierung einer komplexen VR-Umgebung abhängig von den Hirnaktivierungen des Probanden.
	1 Einleitung
	2 Stimulus-Adaptionskonzept
	2.1 Prozessabläufe
	2.2 Adaptionsalgorithmus/Framework zur dynamischen VR-Adaption
	 2.2.1 Extraktion der Referenzwerte
	2.2.2 Adaption der VR-Stimuli

	3 Evaluierung und Ergebnisse
	4 Diskussion und Zusammenfassung
	Literaturverzeichnis

	57-04-Suniaga
	57-05-Walczak
	57-06-Duscha
	57-07-Wilms
	57-08-Werner

	Elektronische Prüfungen – technische Konzepte für große Prüfungsgruppen und Integration in eCampus-Strukturen.pdf
	Elektronische Prüfungen.pdf
	58-01-priss
	58-02-poerzgen
	58-03-stoecker

	Doktorandenprogramm.pdf
	Doktorandenprogramm.pdf
	doktorandenkolloquiu_submission_1
	doktorandenkolloquiu_submission_2
	doktorandenkolloquiu_submission_5
	doktorandenkolloquiu_submission_6
	doktorandenkolloquiu_submission_7
	Introduction
	Related Work
	User-Centered Planning Process
	Structure
	Context information
	Algorithm

	Prototype
	Conclusion and Future Work

	doktorandenkolloquiu_submission_9
	doktorandenkolloquiu_submission_10
	doktorandenkolloquiu_submission_11

