
ev3dev-prolog – Prolog API for LEGO EV3

Sibylle Schwarz1, Mario Wenzel2

Abstract: We present ev3dev-prolog – an extendable Prolog API to control LEGO EV3 robots –
and demonstrate our approach by several examples from introductory robotics courses like obstacle
avoidance and Braitenberg vehicles as well as a more complex example. We show how to interleave
our API with planning and replanning in Prolog to move a robot through an unknown environment.

The presented API is divided into two abstraction layers. Low level predicates control individual
sensors and actors, higher level predicates control user-defined robots consisting of several sensors
and actors. The connection between the parts of the robot and an SWI-Prolog interpreter running on
the robot is established via ev3dev.

Keywords: logic programming, SWI-Prolog, robotics, LEGO EV3, ev3dev

1 Motivation

Intelligent control of autonomous robots has been an important goal of AI research from its

very beginning. Applications in mobile robotics are frequently used to motivate research

and lectures on AI, planning and logic programming [Po95], [RN95]. However, in many AI

courses this motivation remains theoretical.

On the other hand, robotics experiments for beginners are evidently successful in growing

young people’s interest in STEM topics (Science, Technology, Engineering, Mathematics)

like computer science, construction, physics and mechanics. LEGO MINDSTORMS EV3

is a flexible robotics platform for construction and programming of various robots with

standard LEGO pieces. These robots are frequently used in introductory robotics courses

for children and young students. Since LEGO MINDSTORMS robots allow advanced

constructions with complex behaviour, they are also used in university courses and in

research.

LEGO provides a visual programming environment to control EV3 robots particularly

suited for beginners. For several reasons, we even use the visual programming interface in

robotics projects and competitions for our first year students. Instructions for many basic

experiments in robotics like obstacle avoidance, line following, self-balancing, are available

online and in the literature.

1 HTWK Leipzig, Institut für Informatik, sibylle.schwarz@htwk-leipzig.de
2 Martin-Luther-Universität Halle-Wittenberg, Institut für Informatik, mario.wenzel@informatik.uni-halle.de

cba doi:10.18420/inf2019_ws41

Draude, Lange, Sick (Hrsg.): INFORMATIK 2019 Workshops,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2019 385

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2019_ws41

Due to the reactive nature of commands to control sensors and actors, they are usually

implemented as side effects in low level imperative languages. Over the years, several

platform-independent and open source APIs for imperative languages evolved, like Java

[Lu16] or LEGOs special C-like language NXC.

Logic programming languages like Prolog allow concise and clear descriptions of desired

properties of solutions without explicitly describing how to obtain a solution. Logic pro-

gramming is particularly suitable for AI tasks containing nondeterministic search and rule

processing.

To apply these advantages to robot control, bindings between logic programming lan-

guages and lower level imperative sensor and actor commands are necessary. Unfortunately,

bindings between robot control and logic programming are rare. There have been some

successful approaches to connect Prolog and AI to predecessors of the LEGO EV3 system.

In this paper, we further develop this idea to a connection between SWI-Prolog and the

EV3 hardware. We have not yet tested our system with other Prolog systems.

Legolog [LP00] is a Prolog-based system for LEGO RCX robots. This system involves

the Golog planner [Le97] and interleaves generation and execution of plans. We adopt this

approach of interleaved planning and moving in unknown environments in our experiment

in Section 6 and present a solution for EV3 robots using our Prolog API ev3dev-prolog.

In [HH02], Hanus and Höppner provide a framework to program LEGO RCX robots in

the functional-logic language Curry. In [Na08], Nalepa presents a Prolog API for LEGO

NXT robots that contains predicates for basic sensor and motor actions. The predicates in

the lower layer of ev3dev-prolog resemble these predicates. In some cases, we use fewer

parameters since connections between motors, sensors and EV3 ports can be recognized

automatically. Moreover, ev3dev-prolog contains a second abstraction layer with predicates

to define robot configurations and control robots consisting of several sensors and actors.

We use the alternative operating system ev3dev for EV3 robots. It wraps all communication

details between actors, sensors, and the CPU. With ev3dev-prolog, we provide a method

to connect Prolog-based AI with EV3 robots, both at a level accessible to non-experts in

robotics and Prolog. We demonstrate the application of ev3dev-prolog in examples from

our introductory robotics courses for students.

Section 2 contains a short overview of the EV3 hardware and the ev3dev operating system.

In Section 3, we explain the implementation of Prolog predicates to control sensors and

actors of the EV3 system. We show how to use this low level part of ev3dev-prolog to

control Braitenberg vehicles, simple robots with direct sensor actor interaction.

In Section 4, we show how to control robots consisting of several parts, i.e. motors, wheels,

and sensors in a fixed configuration by higher level predicates – like “move 200 mm” or

“turn 30 deg”. The translation of these commands to low level commands depends on several

parameters like wheel diameter and distance of the robot. We present predicates to define

386 Sibylle Schwarz, Mario Wenzel

configurations of robots and demonstrate how to move a robot and avoid dynamic obstacles

using a combination of higher and lower level predicates in ev3dev-prolog.

In Section 5, we summarize the high level predicates in ev3dev-prolog as an interface to

Prolog programmers that are not interested in the details of the driver framework.

Section 6 contains a complex example that uses ev3dev-prolog in a combination of robotics

and AI. We present a Prolog program to control a robot with a more complex behaviour

that involves path planning in partially unknown environments.

2 ev3dev-prolog – A Prolog Binding for LEGO EV3

EV3 [Le] is the most recent LEGO MINDSTORMS robotics platform. It consists of a

programmable brick, motors and sensors that can be combined by standard LEGO pieces to

a wide variety of robots. Unlike its predecessors, the EV3 brick includes a powerful ARM9

CPU processor running Debian Linux. Hence advanced programs like Prolog interpreters

can be installed and run directly on the brick.

For LEGO EV3 robots, the ev3dev framework [ev] allows to address sensors and actors

via the file system. ev3dev is an open source OS for LEGO EV3 based on Debian Linux.

It provides a low-level driver framework for controlling EV3 brick devices, sensors, and

motors. Usually, ev3dev is run on the EV3 brick by booting from an SD card containing the

ev3dev image. SWI-Prolog is then readily available for ev3dev using the built-in package

manager.

In this paper, we describe how ev3dev can be used to control EV3 robots by Prolog

programs. Our API consists of three layers. In the driver framework (ev3dev predicates),

ev3dev file access operations are wrapped into Prolog predicates. Predicates in the second

layer (low level predicates) are used to read and control single sensors and actors. They do

not access files directly but use ev3dev predicates from the driver framework. On top of this

basic library we define higher level abstractions in the upper layer of our API to provide an

application programming interface for configuring and controlling robots.

physical construction applications

robot configuration robot control

sensor and actor control

ev3dev predicates

ev3dev

ev3 brick and peripherals

API

driver
framework

low level

high level

ev3dev-prolog Ű Prolog API for LEGO EV3 387

To control an actor or read a value from a sensor, ev3dev provides a number of virtual files

that can be read from and written to, as shown in the directory listing for a motor.

robot@ev3dev:~$ ls -l /sys/class/tacho-motor/motor0/
-r--r--r-- 1 root ev3dev 4096 Jun 28 13:42 address
--w--w---- 1 root ev3dev 4096 Jun 28 13:42 command
-r--r--r-- 1 root ev3dev 4096 Jun 28 13:42 commands
-r--r--r-- 1 root ev3dev 4096 Jun 28 13:42 max_speed
-r--r--r-- 1 root ev3dev 4096 Jun 28 13:42 speed
-rw-rw-r-- 1 root ev3dev 4096 Jun 28 13:42 speed_sp
-r--r--r-- 1 root ev3dev 4096 Jun 28 13:42 state

To run a motor, run-forever is written in its command file. Which commands are actually

supported by the motor can be read from the commands file. The motor is stopped by

writing stop in the command file. To facilitate this, the driver framework forms a thin

wrapper around the provided accessor files and ev3dev module structure. The program

below contains only low level ev3dev predicates.

command(Port, Command) :-
command_file(Port, File), file_write(File, Command).

command_file(Port, File) :-
tacho_motor(Port, _, Basepath),
atomic_concat(Basepath, ’/command’, File).

tacho_motor(Port, Type, Path) :-
subsystem_detect(Port, Type, Path, ’/sys/class/tacho-motor/motor*/’).

subsystem_detect(Port, Type, Path, Prefix) :-
expand_file_name(Prefix, Paths), member(Path, Paths),
atomic_concat(Path, ’/address’, AddressFile),
atomic_concat(Path, ’/driver_name’, DriverFile),
file_read(AddressFile, Port), file_read(DriverFile, Type).

If the parameters Port, Type, and Path are not bound, the predicate

subsystem_detect/4 will bind them as per the device detection by ev3dev. Consequently,

if there is no tacho motor attached to the given port, the predicate tacho_motor/3 fails.

This can be used to check whether the implementation of the program fits the physical

configuration of the robot.

3 Motor and Sensor Control in ev3dev-prolog

3.1 Reading Sensor Values

All low level predicates presented in Section 2 correspond to ev3dev interface files. Tasks

like “get sensor value at port X” or “stop motor at port X” are combinations of multiple

basic actions, each represented by a low level predicate defined in Section 2. ev3dev-prolog

provides predicates for this type of combined actions.

388 Sibylle Schwarz, Mario Wenzel

To read a sensor value, it is necessary to check whether there is actually a sensor of the

supported type attached to the specified port, set the operating mode of the sensor to the

mode corresponding to that sensor value, and then read a specific file containing the sensor

value that corresponds to the operating mode.

For instance, the predicate to read the current value of a color sensor is implemented as

col_ambient(Port, Val) :-
lego_sensor(Port, ’lego-ev3-color’),
mode(Port, ’COL-AMBIENT’),
value(Port, 0, Val).

3.2 Motor Control

To run a motor for a given number of rotations with a given percentwise speed, that

speed needs to be converted to internal motor speeds, the motor needs to be set running

and the predicate has to delay its complete evaluation until the motor has stopped. If the

evaluation of the predicate would be finished as soon as the motor starts running, following

actions would interfere with unfinished actions. This is a problem in many robot control

languages. In some of them, even the semantics of related language constructs remains

unclear. ev3dev-prolog provides combined predicates to control motors, for instance

motor_run(Motor, Speed, Angle) :-
speed_adjust(Speed, Motor, CSpeed), speed_sp(Motor, CSpeed),
position_sp(Motor, Angle), command(Motor, ’run-to-rel-pos’),
motor_wait_while(Motor, ’running’).

speed_adjust(PercentVal, MotorPort, Speed) :-
max_speed(MotorPort, MaxSpeed),
Speed is floor(PercentVal / 100.0 * MaxSpeed).

The predicate motor_wait_while/2 allows the interpreter to stall execution of further

actions and evaluations until the motor reaches a state that implies that the action is finished.

Possible motor states are running, stalled, or holding.

motor_wait_while(Motor, State) :-
tacho_motor(Motor), repeat,
motor_states(Motor, States), \+ memberchk(State, States),!.

3.3 Application of the Low Level API: Braitenberg Vehicles

The predicates presented in the previous sections are sufficient to implement simple robot

behaviour in intuitively understandable predicates. In our introductory robotics courses, we

use two-wheeled Braitenberg vehicles (see [St85], where also the schematics are from).

In Braitenberg vehicles, the connection between cognition and action is simple and direct.

Every movement of the vehicle is an immediate reaction to the output value of a sensor.

ev3dev-prolog Ű Prolog API for LEGO EV3 389

There is no intelligence involved. The values of (light or ultrasonic) sensors directly

determine the speed of the wheel motors. Because this simple construction can generate

surprisingly complex behaviour, experiments with Braitenberg vehicles are suitable to draw

interest in robotics.

Our EV3 Braitenberg vehicle and schematics of the movement of Braitenberg vehicles.

Braitenberg vehicle 1

Higher light intensity produces faster movement. Less light produces slower movement.

Darkness produces standstill. The control of this robot is implemented by the following

predicate. Recursively, the intensity received from one light sensor is applied to both motors.

braitenberg1a :-
col_ambient(_, Light), forall(tacho_motor(M), motor_run(M, Light)),
!, braitenberg1a.

Braitenberg vehicle 2

The left light sensor corresponds to the left motor’s rotation and the right light sensor

corresponds to the right motor’s rotation. The vehicle is turning away from the light because

the motor that is on the same side as the light source runs faster than the other one.

braitenberg2 :-
col_ambient(in2, LightR), motor_run(outB, LightR),
col_ambient(in3, LightL), motor_run(outC, LightL),
!, braitenberg2.

By exchanging the ports for both sensors or both motors, either in software or physically,

the vehicle changes behaviour by turning towards the light since the motor on the darker

side rotates faster than the one on the light side. Using a mobile light source like a torch,

funny experiments are possible, since students can be chased by the robot or lead the robot

around the room.

390 Sibylle Schwarz, Mario Wenzel

4 Robot Control in ev3dev-prolog

4.1 Robot Configuration

Robots have certain physical properties. Basic robots usually have two motors with wheels

on either side using so called “tank controls” that can be controlled independently. To use

the motors’ odometry to move a specific distance or turn a specific angles, the robot needs

information about the sizes of the attached wheels as well as the distance of both wheels.

Evaluating the set_robot/4 predicate, the interpreter not only checks that all variables

are instantiated and that there are motors attached at the specified ports. It also checks that

both motors are of the same type. Different motor types have different physical properties,

like acceleration and maximum speed. Therefore, the combination of different motor types

to a tank control is usually considered as invalid. In the following predicate, the matching

type of both motors is guaranteed by the binding of the variable Type.

set_robot(WheelDiameter, AxleLength, LeftMotorPort, RightMotorPort) :-
nonvar(WheelDiameter), nonvar(AxleLength),
nonvar(LeftMotorPort), nonvar(RightMotorPort),
tacho_motor(LeftMotorPort, Type),
tacho_motor(RightMotorPort, Type),
retractall(robot(_, _, _, _)),
asserta(robot(WheelDiameter, AxleLength, LeftMotorPort, RightMotorPort)).

4.2 Robot Movement

As mentioned before, motor actions that take some time to execute should block the cor-

responding predicate from returning before the motor action is finished. This is critical

because both motors have to run simultaneously to move the robot straight forward. There-

fore, each motor is started in a separate thread (using thread_create/3) to allow for

parallel evaluation and execution. Since the predicate is blocking, once both threads are

joined again, the motors have stopped and the given command was finished.

go(Speed) :-
Speed \= 0, robot(_, _, LM, RM),
motor_run(LM, Speed), motor_run(RM, Speed).

go(Speed, Angle) :-
Speed \= 0, Angle \= 0,
robot(_, _, LM, RM),
thread_create(motor_run(LM, Speed, Angle), Id1, []),
thread_create(motor_run(RM, Speed, Angle), Id2, []),
thread_join(Id1, true), thread_join(Id2, true),!.

go_cm(Speed, Distance) :-
robot(WD, _, _, _),
Angle is round((Distance*360)/(pi*WD)),
go(Speed,Angle).

ev3dev-prolog Ű Prolog API for LEGO EV3 391

stop :-
robot(_, _, LM, RM), motor_stop(LM), motor_stop(RM).

Prolog’s evaluation strategy (SLD resolution) allows to combine multiple implementations

for robot actions, depending on the components of the robot. The robot might have a

gyroscopic sensor detecting rotation in the plane. Movements controlled by sensed rotation

is usually more accurate than purely relying on internal motor measurements. Using Prolog’s

evaluation strategy, we can use this sensor to make the robot turn a certain angle. If no

gyroscopic sensor is connected to the robot, a fallback to odometry is used.

turn(Speed, Angle) :-
gyro_sensor(Port), NSpeed is -Speed,
stop, gyro_reset(Port),
repeat, gyro_ang(Port, ReadAngle),
Diff is Angle - ReadAngle,
(% approach target angle slowly

(Diff = 0, stop,!);
(Diff > 0, turn(min(Speed, Diff / 4)), fail);
(Diff < 0, turn(max(NSpeed, Diff / 4)), fail)

).
turn(Speed, Angle) :-

robot(WD, AL, LM, RM), MAngle is round(AL/WD*Angle),
NegMAngle is -MAngle,
thread_create(motor_run(LM, Speed, MAngle), Id1, []),
thread_create(motor_run(RM, Speed, NegMAngle), Id2, []),
thread_join(Id1, true), thread_join(Id2, true),!.

For continuously turning the robot in place without a target angle, ev3dev-prolog contains

the predicate turn/1 that runs the motors counter-rotating.

turn(Speed) :-
robot(_, _, LM, RM), NSpeed is -Speed,
motor_run(LM, Speed), motor_run(RM, NSpeed).

4.3 Application of the High Level API: Obstacle Avoidance

An application using these higher level commands is a robot that detects and avoids

obstacles. The robot should go forward until it spots an obstacle and then turn away from it,

continuing to go forward after the turn.

start :-
set_robot(5.6, 10.6, outB, outC),
obstacle_avoidance.

obstacle_avoidance :-
((us_dist_cm(_, Dist), Dist > 50, go(20));
turn(20, 90)),!,
obstacle_avoidance.

392 Sibylle Schwarz, Mario Wenzel

Note that this implementation of obstacle_avoidance/0 is abstract and does not use

any specific motor port or physical aspect of the actual robot. The correct movement is

controlled by the robot configuration. The sensor measurement works without providing the

actual port of the ultrasonic sensor. As long as there is an ultrasonic sensor attached, it will

be auto-detected and the measurement taken. In this application we only assume that there

is one sensor attached to the robot in a useful orientation. In applications that uses multiple

sensors, they can be distinguished by explicitly stating the port each sensor is plugged into.

5 Basic Robot Commands in ev3dev-prolog

Actions of mobile Robots are usually controlled by commands like

go (a given distance) at a given speed

turn (a given angle) at a given speed

stop

This small collection of commands for basic movements is common to most control

languages for mobile robots. We present an implementation of these basic commands in

ev3dev-prolog. It allows to generate complex movements of two-wheeled LEGO EV3

robots and other user-defined robot configurations.

High level API

Predicate Parameters Effect

set_robot/4

Wheel diameter (in cm)

Define the specific parameters of

the robot model

Axle length (in cm)

Port of left motor

Port of right motor

stop/0 Stop all motors of the robot

go/1 Speed (in %) Turn the robot’s motors

continuously or a certain anglego/2 Angle (in degrees)

go_cm/2
Speed (in %)

Move the robot a certain distance
Distance (in cm)

turn/1 Speed (in %) Turn the robot continuously or a

certain angleturn/2 Angle (in degrees)

To control robots with grippers, for instance, ev3dev-prolog can be extended by commands

to open and close the gripper.

ev3dev-prolog Ű Prolog API for LEGO EV3 393

The commands from the high level API are translated to Prolog predicates that trigger

low level motor and sensor actions as defined in Section 2. If the execution of a move is

impossible, the according predicate fails.

To produce correct movements, the translation depends on the specifics of the robot model

like the diameter of its wheels and the distance between them. The configuration of a robot

with two motors, each of them connected to one wheel, is set by a predicate set_robot/4

with parameters WheelDiameter, AxleLength, LeftMotorPort, RightMotorPort. By the

Prolog evaluation strategy, some system checks are easyly integrated in this specification

predicate. For instance, if there is no motor connected to outB, the predicate set_robot(5,

10, outA, outB) will fail.

This high level part of ev3dev-prolog hides the physical configuration of the robot. To

the user, the configuration of the robot is only accessible via the predicate set_robot/4.

In more complex robot models, it is necessary to directly access sensors and motors. For

example grippers, as well as many sensors with myriad of ways they can be attached to or

removed from a robot. In the robot construction phase, it is not always reasonable to define

a robot configuration for every special robot. For direct access to motors and sensors, our

API contains a set of lower level predicates. These predicates can be parameterized by the

physical port of the sensor or actor.

Low level API

Predicate Parameters Effect

us_dist_cm/2

Sensor port

(in1, in2, in3, or in4)

Read an ultrasonic sensor in dis-

tance and cm mode

col_ambient/2 Read a light sensor in ambient light

mode

col_reflect/2

Sensor value

Read a light sensor in reflected light

mode

gyro_rate/2 Read a gyroscopic sensor in rate of

change mode

motor_stop/1 Motor port Stop a motor

(outA, outB, outC, or outD)

motor_run/2 Motor port
Run a motor continuously or for a

certain angle
Speed (in %)

motor_run/3 Angle (in degrees)

Currently, ev3dev-prolog supports the operating modes of the light sensor, ultrasonic sensor,

gyroscopic sensor, and touch sensor. Using our base predicates for file access, this can

easily be extended to other sensors, like, temperature sensors. ev3dev-prolog can control all

394 Sibylle Schwarz, Mario Wenzel

motors supported by the tacho motor system, i.e., large and medium EV3 motors and the

older NXT motors.

6 Moving robots in unknown environments

In this section, we demonstrate how to use ev3dev-prolog to move robots in unknown

environments. Currently, the environment is represented by a rectangular 2D grid (see

[La06]). Cells of this grid can be blocked by obstacles.

The pose of a robot consists of position and direction of its movement. The robot knows the

coordinates of its goal position relatively to its starting pose and shall move to this position.

At the beginning, the robot knows nothing about obstacles on its way to the goal.

In AI lectures, we are using these robots to examine and compare different planning

algorithms like A∗ search or bidirectional planning. Therefore, the path planner is a black

box in the following implementation.

Using the planner, the robot generates a plan to its goal position and starts to move according

to this plan. If the robot discovers an obstacle that prevents to execute a planned movement,

this new information about the environment is included into the internal knowledge base

and replanning starts from the robot’s current pose.

plan_and_go_to([TX, TY], [DX, DY]) :-
repeat, state_position([SX, SY], [SDX, SDY]),
findnsols(1, Plan, plan(Plan, state([SX, SY], [SDX, SDY]),

state([TX, TY], [DX, DY])), _),
execute_plan(Plan),!.

execute_plan([fin]).
execute_plan([Move|Tail]) :- !, Move, execute_plan(Tail).

Note that only one plan is created. If the execution of this plan fails in a pose different

from the starting pose, no alternative plan from the original position would be applicable.

Therefore any backtracking has to return to the planning phase to create a new plan from

the current pose with the extended knowledge about the environment.

High level ev3dev-prolog predicates allow to create planning predicates that on evaluation

change the global state (state_position/2) of the robot. During the planning phase we

assume that every move is possible and its effects are simulated.

plan_fits([step(fin, TargetField, TargetDirection)],
state(TargetField, TargetDirection)).

plan_fits([step(move_if_free, [FX, FY], [DX, DY])|Tail], Goal) :-
TX is FX + DX, TY is FY + DY, \+ obstructed([TX, TY]),
Tail = [step(_, [TX, TY], [DX, DY])|_], plan_fits(Tail, Goal).

Even if a plan is found, it might fail completely during the execution phase due to obstacles

blocking parts of the planned path.

ev3dev-prolog Ű Prolog API for LEGO EV3 395

Obstacles are detected by an ultrasonic sensor as explained in the obstacle avoidance

example in Section 4.3. The execution phase gives feedback to the planning phase by

asserting predicates that represent global obstacles.

In the implementation below, obstacles are static and are not retracted later. Dynamic

obstacles can be handled by marking obstacles with some additional data on when they can

be retracted and how their influence on the planing phase may change over time.

free :- us_dist_cm(_, Distance),
(Distance > 20; state_position([X,Y],[DX, DY]),

TX is X+DX, TY is Y+DY,
asserta(obstructed([TX, TY])), fail).

If only one ultrasonic sensor is connected to the robot, it is not necessary to define the port

of this sensor. Hence the user does not even need to know the port where the sensor is

connected. Even reconnection of the sensor to another port does not require any change in

the program. If no ultrasonic sensor is connected to the robot, the predicate us_dist_cm(_,

Distance) fails.

This is an advantage compared to common control languages for Lego robots like the

graphical EV3 programming interface, LeJos, and Nalepa’s Prolog API [Na08].

Changes in the robot pose are adjusted by retraction of the previous state and assertion of

the current state.

move :- state_position([X, Y], [DX, DY]),
go_cm(10, 20), retract(state_position([X, Y], [DX, DY])),
TX is X+DX, TY is Y+DY,
asserta(state_position([TX, TY], [DX, DY])).

move_if_free :- free, move.

Let, for example, the robot move from (0,0) to (2,2) on an empty grid. The first plan the

planner proposes is: moving forward twice, turning right, and moving forward twice again.

On execution after the first move – while the robot is at (1,0) – the second move fails if an

obstacle is detected at (2,0).

Dynamic planning

0 1 2

0

1

2

0 1 2 0 1 2

0

1

2

Then the planning phase starts anew and the new plan might be: a right turn, twice forward

to (1,2) and a left turn followed by a final move forward. The execution of this plan might

396 Sibylle Schwarz, Mario Wenzel

succeed or not. If another obstacle is detected on this path, it is added to the global obstacle

database and another plan is created from the new position accounting for the new obstacle.

Note that the execution of plans is independent of the implementation of the planner. Before

moving to the next cell, the robot checks whether the move can be performed and stops

the execution of the current plan if not. Therefore it is not possible to execute a plan that,

for example, crashes the robot into a wall. The robot will not enter the blocked cell. If

necessary, replanning is performed until a plan is found that can be executed completely or,

according to the internal knowledge, the goal position is not accessible from the current

pose of the robot.

7 Discussion

The original contribution of this paper is ev3dev-prolog – an extendable Prolog API

for LEGO EV3 robots. We demonstrate the application of this API in several robotics

experiments used in lectures on robotics, AI, and logic programming.

The reactive behaviour of Prolog programs is interesting in itself. Examining the programs

and the resulting behaviour helps to understand the backtrackable reasoning process in

Prolog interpreters. This is one reason, why we want to use the presented approach in our

lectures on logic programming.

Advanced experiments involving planning problems and other tasks that can be solved by

Prolog programs demonstrate the power of the logic programming paradigm in robotics.

In [LP00] and [Ca09], advanced AI approaches are documented for predecessors of the

LEGO MINDSTORMS EV3 platform. Because of the restricted computing power in those

earlier versions, plans were mostly generated outside the robot and then transferred to the

robot for execution. The enhanced computing power of the EV3 robot allows computation

and modification of plans as well as their execution directly in the robot.

As presented in Section 5, ev3dev-prolog allows to implement complex robot behaviours

concisely in a declarative way. ev3dev-prolog provides a convenient and easily accessible

way to demonstrate the power of logic programming and AI in robot control. As shown in

the example in Section 6, ev3dev-prolog can be used to demonstrate and compare rule based

AI techniques for knowledge representation and processing with LEGO EV3 robots. This

enables an easy integration of motivating experiments and competitions in in lab sessions

on robotics, AI and logic programming.

An extension of ev3dev-prolog by bindings to other sensors and actors, like, display, speaker,

and keypad LEDs on the EV3 brick could be useful. ev3dev-prolog should also be improved

by predicates to move robots along given trajectories like curves with parameterizable radii.

An extension of our path planning example from 2D grids to arbitrary 2D environments

will be the next step into more complex navigation experiments.

ev3dev-prolog Ű Prolog API for LEGO EV3 397

References

[Ca09] Caldiran, O.; Haspalamutgil, K.; Ok, A.; Palaz, C.; Erdem, E.; Patoglu, V.:

Bridging the Gap between High-Level Reasoning and Low-Level Control. In:

LPNMR. Vol. 5753. Lecture Notes in Computer Science, Springer, pp. 342–354,

2009.

[ev] ev3dev: ev3dev, http://www.ev3dev.org, Accessed: 2019-07-01.

[HH02] Hanus, M.; Höppner, K.: Programming Autonomous Robots in Curry. Electr.

Notes Theor. Comput. Sci. 76/, pp. 178–196, 2002.

[La06] LaValle, S. M.: Planning algorithms. Cambridge University Press, 2006.

[Le] Lego: LEGO MINDSTORMS EV3, https://www.lego.com/en- us/

mindstorms/products/mindstorms-ev3-31313, Accessed: 2019-07-01.

[Le97] Levesque, H. J.; Reiter, R.; Lespérance, Y.; Lin, F.; Scherl, R. B.: GOLOG: A

Logic Programming Language for Dynamic Domains. J. Log. Program. 31/1-3,

pp. 59–83, 1997.

[LP00] Levesque, H. J.; Pagnucco, M.: Legolog: Inexpensive experiments in cognitive

robotics. In: In Proc. of CogRob2000. 2000.

[Lu16] Lu, W.: Beginning Robotics Programming in Java with LEGO Mindstorms.

Apress, Berkely, CA, USA, 2016.

[Na08] Nalepa, G. J.: Prototype Prolog API for Mindstorms NXT. In: KI. Vol. 5243.

Lecture Notes in Computer Science, Springer, pp. 393–394, 2008.

[Po95] Poole, D.: Logic Programming for Robot Control. In: IJCAI. Morgan Kaufmann,

pp. 150–157, 1995.

[RN95] Russell, S. J.; Norvig, P.: Artificial intelligence - a modern approach: the intelli-

gent agent book. Prentice Hall, 1995.

[St85] Stefik, M.: V. Braitenberg, Vehicles: Experiments in Synthetic Psychology. Artif.

Intell. 27/2, pp. 246–248, 1985.

398 Sibylle Schwarz, Mario Wenzel

