
Automatic Heavy-weight Static Analysis Tools for Finding Bugs in

Safety-critical Embedded C/C++ Code

David Farago, Florian Merz, Carsten Sinz (<forename>.<surname>@kit.edu)
Karlsruhe Institute of Technology, Institute for Theoretical Computer Science

May 7, 2014

Abstract
This paper motivates the use of automatic heavy-weight static analysis tools to find bugs in C (and

C++) code for safety-critical embedded systems. By heavy-weight we mean tools that employ powerful
analysis to cover all cases. The paper introduces two automatic and relatively heavy-weight tools that are
currently employed in the automotive industry, and depicts their underlying techniques, advantages, and
disadvantages. Since their results are often imprecise (false positives or false negatives), we advocate the use
of alternative techniques such as software bounded model checking (SBMC), which can achieve bit-precise
results. Finally, the tool LLBMC is described as an example of a tool implementing SBMC, which makes
use of satisfiability modulo theories (SMT) decision procedures as well as the LLVM compiler framework.

1 Introduction

The number of embedded (or cyber-physical) systems
increases permanently, and they take over more and
more safety-critical tasks. Correctness of these sys-
tems is often an issue, and difficulties in quality assur-
ance are still prevalent and not yet solved [23]. This
is also the case for embedded systems in the auto-
motive industry: while the number of recalls per year
decreases, the rate of vehicles affected by software fail-
ures increases, so that in 2013 nearly every second re-
call was due to software related issues [17, 1]. This
is not astonishing, since about 90% of all automotive
innovations are based on electronics and software [1].

Since most embedded code is written in an imper-
ative programming language, mainly C [1], its most
frequent fault classes are:
• memory faults, like illegal access (array index

out of bound or buffer overflow, illegal pointer
access or null pointer dereference), memory
leaks, invalid or double free, use after free;

• arithmetic faults, like integer under-/overflow
and division by zero;

• bit operation faults, like invalid bit shifts.
Automotive embedded C code is often developed

in accordance to standards such as ISO-26262 [15, 7]
and MISRA-C [8]. Especially the latter standard con-
tains an extensive list of requirements that restrict the
allowed C language features, thereby trying to avoid
the most common pitfalls encountered when program-
ming in C. MISRA-C covers a wide range of topics.
The most notable rules are concerned with disallow-
ing dynamic memory management and recursion, and
restricting loops and the use of loop counter variables
with the goal of reducing the risk of infinite loops.

To automatically find these kinds of faults, industry

employs automatic static analysis tools, as described
in the next section.

2 State of the Art

2.1 Approaches and Tools

Many software quality assurance tools are based on
light-weight, heuristical approaches, such as pattern
matching. Examples are Secure Programming Lint
(Splint) [21, 9, 6], Cppcheck [13, 9], or QA·C [19].
Due to the heuristics employed, the tools may be
not precise enough for safety-critical code: in many
situations, they cannot detect whether a fault oc-
curs or not. This either leads to many false warn-
ings (false positives) or to missed faults (false neg-
atives); the term incorrect result summarizes both.
Therefore, this paper focuses on automatic heavy-
weight approaches and tools for safety-critical embed-
ded C/C++ code, which try to avoid these shortcom-
ings.

Many heavy-weight tools use approaches that check
the conformance of the code to some formal specifi-
cation, e.g. using design by contract. Examples are
VCC [22], BLAST [11] and SLAM [20]. Each of these
tools offers its own specification language. Such for-
mal specifications can be more expressive and concise
than user assertions formulated in C. (They might,
e.g., allow expressions using quantifiers.) Using a dif-
ferent language for specifications can also avoid mak-
ing the same mistake in the production code and in
the specified property. But as additional formal spec-
ifications add costs, this paper does not cover those
approaches and tools.

Unfortunately, analyzing source code in a heavy-
weight manner that covers all cases can quickly be-
come too complex due to the amount of possible ex-



ecution paths. The tools described in this section,
Polyspace and Coverity, use abstract interpretation [4]
over the whole code base as technique to achieve de-
cidability and scalability: the concrete semantics, rep-
resented by the set P of all possible execution paths
of the program, are abstracted, leading to an approx-
imate program with a superset of execution paths
Pabstract .

The abstraction is achieved by partitioning variable
domains. For instance, the domain of a signed integer
variable v by only storing its sign, i.e. reducing v’s
domain from 232 values to the three values {−, 0,+}.
Therefore, 231 states with negative values for v are
represented by one abstract state with the value “−”
for v. Due to the lost details, Pabstract might contain
some paths outside of P , possibly causing false pos-
itives. Therefore, abstract interpretation also has to
cope with imprecision, but not as much as light-weight
approaches. The applied abstractions depend on both
the properties and the program being checked. Due to
the abstractions, all tools based on abstract interpre-
tation cannot give detailed and concrete information
about the detected faults, making it very difficult to
understand warnings and to figure out whether they
are false positives.

Polyspace [18, 6, 5] is one of the first industrial
heavy-weight tools for checking C/C++ code, as well
as Ada. It is extensively applied for embedded soft-
ware. Since it uses abstract interpretation, it tries
to cope with imprecision by differentiating warnings
that it knows are true (marked green) and those which
might be false positives (marked orange). Since the
amount of orange warnings often becomes large, their
manual post-processing becomes expensive. There-
fore, orange warnings are often still considered as false
positives, although orange gives a hint; the false pos-
itive rate can be as high as 50% [6, 5], i.e. half the
warnings are orange. Fortunately, green warnings are
never false positives. The rate of false positives per
line of code is slightly above 2%.

Coverity Code Advisor [12, 6, 5] started 10 years
ago and has become a popular automatic heavy-
weight tool for checking C/C++ code, as well as Java
and C#. It uses abstract interpretation, mainly with
interval ranges and simple relationships between local
variables as abstraction mechanism, resulting in weak
performance for global variables and aliasing. Cover-
ity copes with the high amount of false positives of ab-
stract interpretation by trying to detect which warn-
ings might be false positives and suppressing them
(instead of marking them orange as Polyspace does).
Due to the employed abstractions, Coverity cannot
detect this precisely, leading to many false negatives.
In summary, Coverity has a smaller false positive rate
of about 15%, but also contains false negatives.

There are further heavy-weight tools for check-
ing C/C++ code, for instance Astrée [10], Kloc-
work [16, 6, 5] and Frama-C [14]. This paper does not

introduce them because they also use abstract inter-
pretation and hence behave similarly. Furthermore,
they are hardly ever used in the automotive indus-
try [1].

2.2 Advantages and Disadvantages

To investigate the advantages and disadvantages of
the static analysis tools, we use the following criteria:
• How many incorrect results occur?
• Which fault classes are covered, and how pre-

cisely?
• Are user assertions supported?
• Can nontermination be detected?
• Are multiple languages supported?
• Can analysis be performed incrementally?
• How well/much information is provided for a de-

tected fault?
• How laborious is the setup and configuration for

a static analysis run?
The last four items are very important since they de-
termine the usability of the tool within the software
development life-cycle.

Polyspace yields many incorrect results, as de-
scribed in the previous subsection. It covers all fault
classes mentioned above, but does not detect all faults
in each class. It can check user assertions and nonter-
mination. The setup for a Polyspace run is large since
all code, project and build files, as well as abstract in-
terpretation heuristics must be configured. Further-
more, it does not re-use information from previous
runs, i.e. each run of Polyspace is independent, caus-
ing a lot of overhead in the software development life-
cycle. Since Polyspace has been bought out by Math-
Works, it integrates very well with Simulink, support-
ing model-based design and traceability.

Coverity also yields many incorrect results, partly
false negatives and partly false positives. It covers all
fault classes mentioned above, but does not detect all
faults in each class. It can check user assertions to
some extent, but not nontermination. No changes to
the code or build system are required, making setup
and configuration very fast. Furthermore, it supports
iterative analysis using impact analysis. Therefore,
Coverity can efficiently be integrated into the software
development life-cycle.

A summary is given in Table 1.

3 LLBMC

3.1 Approach

LLBMC is a software bounded model checking tool
developed at the Karlsruhe Institute of Technology
since 2009.

Bounded model checking was first presented in [2]
for the formal verification of hardware systems. It was
designed to taking advantage of recent performance
improvements in SAT solvers. Since then, bounded
model checking has become a well established method
in hardware verification.



CBMC [3, 9] was the first tool to successfully ap-
ply bounded model checking to real life software sys-
tems, by translating a software system to a proposi-
tional formula and using SAT solvers for determining
the formula’s unsatisfiability and thereby the system’s
correctness.

LLBMC, while following CBMC’s general ap-
proach, employs an SMT solver instead of a SAT
solver. This added layer of abstraction enables fur-
ther performance improvements.

Currently, LLBMC focuses on supporting C/C++,
but because LLBMC is based on the LLVM compiler
framework, LLBMC will automatically support fur-
ther languages as soon as LLVM supports them.

In software bounded model checking, as imple-
mented in LLBMC, first all loops in the program are
unrolled and all function calls are inlined. Note, that
this is especially well-suited for programs following the
MISRA-C [8] rules. The resulting non-looping, single-
function program is then translated to an intermediate
logic representation, which uses static single assign-
ment form and an explicit representation of the mem-
ory state. The resulting representation of the program
is entirely stateless and can be translated into an SMT
formula straightforwardly. With the help of an SMT
solver, this formula is then checked for satisfiability.
If the formula is satisfiable, the model created by the
solver can be translated into a counter example for
the software system. If the formula is unsatisfiable the
checked properties are not violated by the program.

3.2 Advantages and Disadvantages

This approach means LLBMC is well suited for pro-
grams, for which loop and recursion bounds are fixed
and ideally, though not strictly necessarily, known in
advance.

Due to LLBMC’s use of the theory of bitvectors
instead of mathematical integers the analysis is bit-
precise. This means for example the effects of arith-
metic overflows are always handled correctly, as are
any of the usual bitwise operations.

Because LLBMC does not rely on finding a suited
abstract domain, it can more easily support arbitrary
user assertions. If a property can be expressed in C
(or C++) it can be checked by LLBMC and prelimi-
nary support for more expressive specifications is be-
ing worked on.

LLVM’s C and C++ frontend clang is already GCC
compatible and support for MSVC compatibility is
actively being developed. This not only covers as-
pects like language extensions provided by the differ-
ent compilers, but also command line compatibility.
LLBMC greatly benefits from this extensive built-in
tooling support.

What is more, LLBMC’s choice of LLVM as a fron-
tend greatly reduces the efforts required for support-
ing languages other than C/C++, and, if need arises,
LLVM’s GCC plugin dragonegg even allows verifica-

tion of those languages supported by the GNU com-
piler collection such as Ada or Fortran.

Finally, one of the most powerful features of
LLBMC is its ability to generate complete, bit-precise
counter examples for any fault it uncovers. These
counter examples provide all necessary information to
localize the cause for the fault.

LLBMC proved itself already in the anual SV-
COMP software competition, winning four gold, six
silver, and four bronze medals during the last three
years. Furthemore, encouraged by a successful multi-
year collaboration with Daimler AG, founding of a
start-up company is currently planed and already
funded by the Helmholtz Association.

4 Conclusion

This paper has motivated automatic heavy-weight
static analysis without formal specifications, espe-
cially for safety-critical embedded systems. For de-
cidability and scalability, any approach must approx-
imate the concrete semantics of the code.

The industrial tools Coverity Code Advisor and
Polyspace use abstract interpretation, which leads to
higher precision than light-weight tools, but still many
incorrect results. The tool LLBMC uses software
bounded model-checking, which is a suitable alterna-
tive, especially for embedded systems. Thus LLBMC
better satisfies most criteria, as summarized in Ta-
ble 1.

References

[1] H. Altinger, F. Wotawa, and M. Schurius. Test-
ing methods used in the automotive industry –
results from a survey. In JAMAICA 2014, 2014.
Submitted.

[2] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita,
and Y. Zhu. Symbolic model checking using sat
procedures instead of bdds. In DAC’99, pages
317–320, New York, NY, USA, 1999. ACM.

[3] E. M. Clarke, D. Kroening, and F. Lerda. A tool
for checking ANSI-C programs. In TACAS 2008,
volume 2988 of LNCS, pages 168–176, 2004.

[4] P. Cousot. Abstract interpretation based formal
methods and future challenges. In Informatics
2001 (Dagstuhl 10th Anniversary), volume 2000
of LNCS, pages 138–156. Springer, 2001.

[5] P. Emanuelsson and U. Nilsson. A comparative
study of industrial static analysis tools. Electr.
Notes Theor. Comput. Sci., 217:5–21, 2008.

[6] I. Gomes, P. Morgado, T. Gomes, and R. Mor-
eira. An overview on the static code analysis ap-
proach in software development. Technical re-
port, Faculdade de Engenharia da Universidade
do Porto, 2009.



[7] M. Hillenbrand. Funktionale Sicherheit nach ISO
26262 in der Konzeptphase der Entwicklung von
Elektrik/Elektronik Architekturen von Fahrzeu-
gen. PhD thesis, KIT, 2011.

[8] MISRA C: Guidelines for the Use of the C Lan-
guage in Critical Systems 2012.

[9] L. Torri, G. Fachini, L. Steinfeld, V. Camara,
L. Carro, and E. Cota. An evaluation of
free/open source static analysis tools applied to
embedded software. In 11th LATW, pages 1–6.
IEEE, 2010.

[10] The Atrée Static Analyzer. http://www.

astree.ens.fr/. Accessed: May 2014.

[11] MTC: BLAST project. http://mtc.epfl.ch/

software-tools/blast/index-epfl.php. Ac-
cessed: May 2014.

[12] Software Development Testing and Static Anal-
ysis Tools. http://www.coverity.com/. Ac-
cessed: May 2014.

[13] CppCheck - A tool for static C/C++ code anal-
ysis. http://cppcheck.sourceforge.net/. Ac-
cessed: May 2014.

[14] Frama-C home page. http://frama-c.com/.
Accessed: May 2014.

[15] ISO Online Browsing Platform - ISO 26262-
1:2011(en). https://www.iso.org/obp/ui/

#iso:std:iso:26262:-1:ed-1:v1:en, 2014.
Accessed: May 2014.

[16] Source Code Analysis Tools for Software Secu-
rity & Reliability - Klocwork. http://www.

klocwork.com/. Accessed: May 2014.

[17] Recalls database of the National Highway Traffic
Safety Administration. http://www-odi.nhtsa.
dot.gov/owners/RecentInvestigations, 2014.
Accessed: May 2014.

[18] Static Analysis Tools for C/C++ and Ada
- Polyspace. http://www.mathworks.com/

products/polyspace/. Accessed: May 2014.

[19] QAC and QAC++ Static Analysers.
http://www.phaedsys.com/principals/

programmingresearch/index.html. Accessed:
May 2014.

[20] SLAM - Microsoft Research. http://research.
microsoft.com/en-us/projects/slam/. Ac-
cessed: May 2014.

[21] Splint home page. http://www.splint.org/.
Accessed: May 2014.

[22] VCC: A C Verifier - Microsoft Research.
http://research.microsoft.com/en-us/

projects/vcc/. Accessed: May 2014.

[23] M. Zhivich and R. K. Cunningham. The real
cost of software errors. IEEE Security & Privacy,
7(2):87–90, 2009.

Table 1: Which criteria are fulfilled how well by each tool?
Criterion Tool

Coverity PolySpace LLBMC
Detection of. . .

memory faults some some all
arithmetic faults all all all

bit operation faults some some all
Support for. . .

user assertions weak strong strong
nontermination no yes yes (within bounds)

multiple languages C/C++/Java/C# C/C++/Ada C/C++ (and all LLVM)
incremental analysis yes no no
Miscellanea

fault information limited limited full counterexamples
setup effort little medium little (via LLVM)

incorrect results many many few or none


