Towards enabling SaaS for Business Rules

Emilian Pascalau', Adrian Giurca?
'Hasso Plattner Institute ?Brandenburg University of Technology
Prof.-Dr.-Helmert-Str. 2-3 Walther-Pauer-Str. 3
14482 Potsdam, Germany 03046 Cottbus, Germany
emilian.pascalau @hpi.uni-potsdam.de giurca@tu-cottbus.de

Abstract: The actual trends concerning enterprise development take heavily into ac-
count the Software as a Service paradigm. Business rules are widely used to define
business behavior. Therefore, to be able to access business rules in this context a proper
way of discovery and invocation is required. This paper describes the architecture, and
business processes of a Semantic Web Service based registry for business rules.

1 Introduction and Motivation

The problematic of discovering and differentiating data is certainly not new in the software
community. In order for data to be meaningful, the context of that data must be understood.
As such, service discovery infrastructures are essential. Providing the ability to structure
and model data and metadata to solve this problem is at the heart of any registry design, so
as to prevent data from being undiscoverable or misunderstood. Nowadays, business rules
are widely used in software applications. In the last 10 years business rules were employed
to declaratively describe policies, business processes and practices inside enterprise. Rules
are becoming increasingly important in business modeling and requirements engineering,
as well as in Semantic Web Applications. There are several rule platforms and rule lan-
guages notably Jess, FLORA 2, Drools, Jena Rules, JSON Rules [GP08] but there is no
standard way for defining business rules. The standardization is a concern for both OMG
and W3C. The first produces OMG PRR Proposal[OMGO07] and the second RIF-BLD
[BKO8]. The actual trend concerning aggregate enterprise that follows the Software as
a Service [BLBT00] paradigm envisions a continuous growth (Market Trends: Software
as a Service, Worldwide, 2007-2012, Gartner). An obvious necessity and requirement in
order to be able to use rules in SaaS based applications is to able to find and access rules
in a service oriented manner. Besides the already well known registries and repositories
such as UDDI [OAS04] and ebXML [OASO1b, OASO1a] that enable enterprises with the
ability to conduct businesses based on standards for business process collaboration, core
data components, collaboration protocol agreements, messaging, there are also other types
of registries such as metadata registries: NSDL Registry, Metadata Project. The founding
principles of metadata registries were introduced in [HWO02]. The authors argue in [HW02]
that the approach of declaring schemas in metadata registries advance the W3C vision of

207

enabling a "cooperative’ Web where machines and humans can exchange electronic con-
tent that has clear-cut, unambiguous meaning, by providing a common approach for the
discovery, understanding, and exchange of semantics. Therefore a registry to describe and
discover business rulesets remains actual and necessary. First steps towards a business
rules registry have been already done. While [GDPWO08] introduced the entry information
model for a business rules registry, this paper introduces the architecture of such a registry
foreseeing also the SaaS demand. Besides the architecture also the Client/Registry inter-
action is depicted with the help of BPMN [OMGO08] models. Moreover the registry will
facilitate discovering of business rules by using Semantic Web techniques.

2 The Registry Architecture

There is a need of being capable to change software easily to meet evolving business
requirements. More and more nowadays software development requires a shift towards a
demand-centric orientation. This trail foresees the point were software will be delivered
as a service within the framework of an open marketplace.

As stated in [BLB100] “the term software as a service is beginning to gain acceptance
in the market-place; however the notion of service-based software extends beyond these
emerging concepts’.

In such an approach a service conforms with the much accepted definition stating that a
service is “an act or performance offered by one party to another. Although the process

may be tied to a physical product, the performance is essentially intangible and does not
normally result in ownership of any of the factors of production” [LVL96].

The authors in [BLBT00] argued that the "service-based model of software is one in which
services are configured to meet a specific set of requirements at a point in time”. Compo-
nents may be bound instantly, just at the time they are needed - and then the binding may
be discarded.

Based on these facts service based architecture is the normal consequence.

2.1 The Information Model

One proposal towards a ruleset entry model has been already introduced in [GDPWO0S].
However, we are going to use a simplified version of it. Therefore, the following informa-
tion is required for a web-based rule registry entry:

Information related to the ruleset

1. An URlI reference to the specific ruleset implementation, encoded by using rulesetID
property;,

208

2. An URI reference to the ruleset representation language, encoded by using Dublin
Core dc:type;

3. A literal representing the code of the business addressed by this ruleset. It is a code
(e.g. Naics, UNSPSC) of the corresponding business part (dc: related);

4. An URI reference to the format of the ruleset representation (dc: format);

Information related to the ruleset vocabulary

1. An URI reference to the specific vocabulary implementation, expressed by using
vocabularyID property;

2. An URI reference to the vocabulary representation language (encoded with the
Dublin Core dc: type);

3. An URI reference to the format of the vocabulary representation (dc : format);

All the above parts are required, and represent the minimal request of representing a rule
set entry into the registry.

In addition to the above required information, users can provide optional information such
as: (a) An URI reference to the natural description of the ruleset, (b) metadata of the ruleset
creator, (c) the release date and others as they were discussed in [GDPWOS].

As already been argued at the beginning of this section, the registry architecture is based
on Web Services (See also [CMRW07, GHM ' 07] for more arguments on such solution).

2.2 The Architecture

The registry general architecture! is depicted in Figure 1 and at the first look follows
the general principles of enterprise architecture. One notable distinction is that the Data
Access Object Layer is based on SPARQL and not SQL. This is due to the fact that the
Platform Specific Language of our registry is RDF.

An instantiation of the general architecture depicted in Figure 1 into an implementation
specific one is illustrated in Figure 2.

The presentation layer from the general architecture (Figure 1) is represented in the in-
stantiated architecture view (Figure 2) by two possible representation technologies JSP
and Web Service. Same the business layer of the general architecture comprises two pos-
sible representations in the instantiation architecture: EJB and/or Web Service annotated
EJB.

"Modeled with the Fundamental Modeling Concepts by using the ORYX browser based editor. The ORYX
editor is a web-based editor (developed at the BPT chair, Hasso Plattner Institute) for modeling business processes
in BPMN.

209

Client Application

A O
|

Presentation Layer

Business Layer

SPARQL based
EntityManager

Registry Repository
RDF /XML

Figure 1: Registry’s General Architecture

The instantiation architecture we propose is based upon JEES technologies and particularly
EJB3 [Mic07]. As deployment environment we experiment with JBoss Application Server
but any JEES compliant application server can be used as well. JBoss AS meets all of our
platform requirements particularly it is JEES compliant, is open source, and is one of the
most used application servers.

Recall that registry entries are encoded by using RDF based technologies. In addition,
since the amount of data is likely to be low space consuming, our solution proposes to
store data into RDF/XML files.

This architecture provides the user with a wide range of connectivity possibilities includ-
ing: (a) either through a JSP web based interface easy to use for human users and (b) for
machine clients in two flavors: (b1) SOAP Web Service based and (b2) a programming
API. The JSP interface and the SOAP one are comprised inside the Web Server (Tomcat).
The programming API is likely to be compatible with the JAXR[Mic02] Sun specifica-
tions. The specification provides a uniform and standard Java API for accessing different
kinds of XML Registries. Also the API based approach could be useful for those applica-
tions that don’t support Web Services.

210

/CIient— /—Application Server (JBoss AS)

~Web Server — — —

! \ .
| ~—Container - — ——————————— — — N
HTTPH | | ! :
|
I

|
HTTP/RMI———— .
Web Browser JSP Programming
L e EJB E
] SPARQL based
Registry Repository
RDF/XML

f::l EntityManager
EJB
Figure 2: The Instantiation of the Registry’s General Architecture

Clients

~—— e —— =

J/ J/

2.3 The Implementation

The web service is implemented as an annotated EJB3 and also the JSP interface com-
municates through EJBs by including SEAM framework. An important component is the
SPARQL based EntityManager [Mic07]. The EJIB3 technology comes with an already
DAO layer in the form of the EntityManager. However, this EntityManager is SQL
based and is suited for relational databases and not for RDF/XML repositories as in our
case. Our approach is based on a Semantic Query Language SPARQL which is suited for
our RDF/XML repository. SPARQL is a W3C standard and its purpose is to query, in
principle the Web, but in general data models following semantic connections that exists
between the models. The implementation of such an EntityManager will also enrich
the JBoss Application Server with a new semantic query language.

3 Client-Registry Interaction

The Business Process Management Initiative (BPMI) has developed a standard Business
Process Modeling Notation (BPMN) [OMGOS]. The primary goal of BPMN is to provide
a notation that is readily understandable by all business users such that business processes
can be illustrated using a standard notation understandable also to business analysts that
create the initial drafts of the processes, continuing towards technical developers respon-
sible for implementing the technology that will perform those processes, and finally going
on, towards the business people who will manage and monitor those processes.

As defined in [Wes07] “a business process model consists of a set of activity models and
execution constraints between them”. In today’s business scenarios, service composition
to provide added-value products to the market seems to be general trend. This section
illustrates with the help of BPMN models the interaction between registry and its clients.

211

The registry interacts with the client through four processes: publish, update, delete and
query. Architectural speaking there can be different types of clients (see Figure 2). How-
ever the registry itself interacts with these different types of clients based on the four
operation types, using the same workflow. All processes models depicted in the following
subsections comprise the Client pool and the RuleRegistry pool.

3.1 RuleSet Publish Process

The rule publish process is depicted in Figure 3. The process of publishing a RuleSet is
started by the Client with a ruleSetEntryPublishRequest activity. The Rule
Registry publish process is triggered by the message event of RuleSet publishing
from a client. The process continues with the Publish Sub-Process. The Publish
Sub-Process must end within a predefined time frame otherwise a Timeout exception
will be raised. In case of a Timeout the client is notified by the activity not 1 fyTimeout,
and the RuleRegistry process terminates. The Publish Sub-Process comprises
two activities: verifySubmittedRuleSetEntry and saveSubmittedRuleSet
Entry. If the Publish Sub-Process has successfully ended then the client is noti-
fied of the activity success, and the process ends.

While the Publish Sub-Process is active the user can cancel its request. This is
depicted with the help of the cancelRuleSetEntryPublishRequest activity, in
the Client pool.

In the RuleRegistry pool this is modeled with some complex constructs. First the
RuleRegistry receives the cancellation message. The cancelation request is handled
by the handelCancelPublishSub-Process activity, followed by the Cancel
PublishSub-Process event. An event with the same name is also attached to the
Publish Sub-Process. In fact this is one and the same event. This pattern is called
Cancel Case according to [WvdADT06]. Besides the Cancel Case pattern, this model
takes use also of Send Pattern and Receive Pattern.

3.2 RuleSet Update Process

The process of updating a registry RuleSetEntry (See Figure 4) starts witha Client
updateRuleSetEntryRequest. In this case the message sent to the RuleRegis—
try contains the ruleSetEntryId and the clientCredentials. The registry
receives the request and tries to find the ruleSetEntry requested by the client. If the
entry is not found then the registry informs the client and the update process is finished for
both parties. If the entry is found then the registry validates client’s credentials. Only the
client that published the ruleSetEntry is allowed to update the registry entry. When
these requirements are met then the registry sends the complete ruleSetEntry to the
client. In such a way the client is able to update the entry’s content and sends it back to the
registry. As for the publish operation, the update operation is time based, so it has to

212

Process is ended by one of
the activities that enter in the

acknowledge

ruleSetEntry has been published

Y

Success gateway

the user cancelgd the request
Sub-Process

€ "
k3 ruleSetEntry request has timed out @
5 Publish (= _ acknowledge
Request timeou
5 cancel |
Y RuleSetEntry |
. /T |
| cancel Publish | |
" Request | |
| T | |
1 ! ! |
f T
-——=! | | |
"	
! I	
(TTTTT e “ !	
_‘:_Ww\m\pm:_:\ “	
T H]	
! ! o	
\	
" y A Process is ended by one of	
	Timeout ! the activities or cancel
	_ events that enter in the
_	Publish Sub-Process gateway
! ishi notify
I fl f publishi i
2 Sl s verify save P Successful -
B ubmitted Submitted Publish
> RuleSetEntry RuleSetEntry
$
S
4 Cancel Publish

handle
Cancel

Publish
Sub-Process

Cancel Publish
Sub-Process

RuleSet Publish Process

Figure 3

213

Client

Process is ended by any of the
activities that enter the gateway

acknowledge |
Success

successfully Updated

update
RuleSetEntry
Request

update
RuleSetEntry

acknowledge
timeout

normalFlow allowed to update

operation timed out

cancel
Rule
Update

| cancel Ugdate

not allowed tq update

E_mmmwmsi_a
clientCredential
|

A
E_mm&m::‘,\

RuleRegistry

notify
Timeout

:ou_a\
ruleSetEntryld
notFound

Update Sub-Process

|
|
|
|
|
|
|
1 o
| notify
|

verify update
o Submitted Submitted m_DnanmM:_
m:a verify ! RuleSetEntry RuleSetEntry P

ruleSetEntry ClientCredentials

Send
RuleSetEntry

Cancel Update

valid credentials Sub-Process

Verify Client Credential to
allow RuleSetEntry

user canceled

Modifications. handle
Cancel
modify the entry. Update

Sub-Process) Cancel Publish

Sub-Process

RuleSet Update Process
214

Figure 4

be fulfilled in a specific time. During this time the client is allowed to cancel the process.

3.3 RuleSet Delete Process

The delete process is illustrated in Figure 5 and is similar with the update process. What
it brings new is that in this case the client is requested to confirm the operation. Again only
the initial publisher is allowed to delete the ruleSetEntry. After delete confirmation
is received the registry’s process continues with atomic activities. No sub-processes are
involved.

3.4 RuleSet Query Process

The query process (Figure 6) compared to the other three processes already discussed
looks as being the simplest. The C1ient requests a query by sending a QueryRequest
message to the RuleRegistry. This message is the starting event for the RuleRegis—
try query process. The registry verifies the query’s content. If query’s content is invalid
then informs the Client about the invalidity of the request and ends its own process.
Receiving a message stating that the initial request was invalid, makes the Client able
to choose from two flows: either acknowledging the invalidity of the request and then
terminating the process or acknowledging the invalidity of the request but issuing a new
query towards the registry.

If the request is valid then the registry searches for the RuleSetEntry fulfilling the
query content and, if a RuleSetEntry is found then the registry forwards it towards the
Client. In case that no RuleSetEntry has been found the Client can either issue
another query or terminate its process.

This process takes advantage of the Arbitrary cycles pattern described in detail in [Wes07,
WvdAD106]. A small excerpt of Figure 6, depicting only the loop is presented in Figure
7.

4 Conclusion and Future Work

This paper proposes architecture for a business rule registry. The architecture is service
based and foresees the general actual trend of developing new software in the context of
software as a service (SaaS). One core part is the BPMN modeling of registry business
processes. Such approach is well suited for both business administration professionals
and also for software engineers and software architects that must provide the concrete
implementation. Future work envisions concrete implementation, and how the registry
comes in handy in real life business use cases. Besides all, the need for providing registry
services also in REST based style has to be investigated.

215

acknowledge

confirm
- Success

Verify Client Credential to
allow RuleSetEntry
Modifications.

modify the entry.

allowed to delete,
request confirmation

-
confirm delete Delete Deletion
Delete
" RuleSetEntry | |
5 Request allowed to delete | |
o ! |
|

! I I

| not allowed to delet! | cancel @ “ |

_ @ | cancel delete Delete | |

| | |
| A M N | |
| | \

_ _ ! ! L !
	_	

ruleSefEntryld “ _ Av _ !
n__mznoq_ram:zm_ | | ruleSeiEntryld | _.c_wmm,ﬁ_maa_a _
n I]
" L, _ b i
I ! ! I
& notify | | V.
[_ w_‘_oz_ma\ﬁ d notAllowed | |
ruleSetEntryl |
_ notFound | receiye delete confirmation RuleSetEntry
IIIIII wed to delete, _
> inval(d credentials |
2 |
= find verify |
ﬁ ruleSetEntry ClientCredential
& Request

Del

Confirmation

ete

user cancelled delet

RuleSet Delete Process

Figure 5

216

new query Request

acknowledge
invalidRequest

Invalid request then
terminate process

invalid Rgquest 2\

= no entry found based on request
2 WMMMM\% Ty fou requ acknowledge
o NotFound
AN
| |
| valid Request |
|
_ | _7 acknowledge
| _ | entry found Found
| |
1 ! |]
—_————— 7 T |
! |
! |
! |
_ [
N ~
| |
I I mw
| |
QEWJA,.»_nn:;mi | I E_mmmm.m_‘;a\
T t
| [_
| . [|
| notify | |
| InvalidRequest |
| invalid query content I
2 notify |
R |
) verify NotFound |
14 queryContent no entry found based op query
2 S
@ notify
Found

valid query content, entry found

continue with search

: Query Process

Figure 6

217

query
Request

References

[BKOS]

[BLBT00]

[CMRWO7]

[GDPWOS]

[GHM™'07]

[GPO8]

[HWO02]

[LVLI6]

[Mic02]

[Mic07]

acknowledge

invalldRequest Invalid request then

terminate process

invalid Request

Figure 7: Loop

H. Boley and M. Kifer. RIF Basic Logic Dialect. http://www.w3.0rg/2005/
rules/wiki/BLD, 2008.

K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay, and M. Munro.
Service-Based Software: The Future for Flexible Software. In Proceedings of
the Seventh Asia-Pacific Software Engineering Conference (APSEC2000), pages
214 - 221. IEEE Computer Society, 2000. http://www.bds.ie/Pdf/
ServiceOrientedl.pdf.

R. Chinnici, J. Moreau, A. Ryman, and S. Weerawarana. Web Services Description
Language (WSDL) Version 2.0 Part 1: Core Language. W3C, 2 edition, June 2007.
http://www.w3.0rg/TR/wsd120/, retrieved Novemeber 2008.

A. Giurca, I. Diaconescu, E. Pascalau, and G. Wagner. On the Foundations of Web-
based Registries for Business Rules. In Proceedings of the 2nd International Sym-
posium on Intelligent Distributed Computing, IDC2008, volume 162 of Studies in
Computational Intelligence, pages 251 — 255. Springer Berlin / Heidelberg, 2008.
http://dx.doi.org/10.1007/978-3-540-85257-5_26.

M. Gudgin, M. Hadley, N. Mendelsohn, J. Moreau, H. Frystyk Nielsen, A. Kar-
markar, and Y. Lafon. SOAP Version 1.2 Part 1: Messaging Framework (Second
Edition). W3C, 2 edition, April 2007. http://www.w3.0rg/TR/soapl2/,
retrieved Novemeber 2008.

A. Giurca and E. Pascalau. JSON Rules. In Proceedings of the Proceedings of 4th
Knowledge Engineering and Software Engineering, KESE 2008, collocated with KI
2008. CEUR Workshop Proceedings, 2008.

R. Heery and H. Wagner. A Metadata Registry for the Semantic Web. D-
Lib Magazine, 8(5), May 2002. http://dlib.org/dlib/may02/wagner/
O5wagner.html.

C. Lovelock, S. Vandermerwe, and B. Lewis. Services Marketing . Prentice Hall
Europe, 1996.

Sun Microsystems. JSR 93: JavaTM API for XML Registries 1.0 JAXR). http:
//www.Jjcp.org/en/jsr/detail?id=93, June 2002.

Sun Microsystems. JSR 220: Enterprise JavaBeansTM 3.0. http://Jjcp.org/
en/jsr/detail?id=220, November 2007.

218

[OASO1a]

[OASO1b]

[OAS04]

[OMG07]

[OMGO8]

[Wes07]

[WvdAD™06]

OASIS. ebXML Business Process Specification Schema Version 1.01. http://
www.ebxml.org/specs/ebBPSS.pdf, May 2001.

OASIS. ebXML Technical Architecture Specification v1.0.4. http://www.
ebxml.org/specs/ebTA.pdf, February 2001.

OASIS. UDDI Version 3.0.2, UDDI Spec Technical Committee Draft, Dated
20041019. http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf, Oc-
tober 2004.

OMG. Production Rule Representation (PRR), Beta 1. Technical report, OMG,
November 2007.

OMG. Business Process Modeling Notation, V1.1. http://www.omg.org/
spec/BPMN/1.1/PDF, January 2008.

M. Weske. Business Process Management: Concepts, Languages, Architectures .
Springer-Verlag Berlin Heidelberg, 2007.

P. Wohed, WM.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Rus-
sell. On the Suitability of BPMN for Business Process Modelling . In Busi-
ness Process Management, volume 4102 of Lecture Notes in Computer Sci-
ence, pages 161-176. Springer Berlin / Heidelberg, 2006. http://dx.doi.
org/10.1007/11841760_12, http://www.workflowpatterns.com/
documentation/documents/BPMN-eval-BPMO06.pdf.

219

