
Security, Fault Tolerance and Modeling of Grid Workflows
in BPEL4Grid∗

Ernst Juhnke, Tim Dörnemann, Roland Schwarzkopf, Bernd Freisleben
Dept. of Mathematics and Computer Science, University of Marburg

{ejuhnke, doernemt, rschwarzkopf, freisleb}@informatik.uni-marburg.de

Abstract: BPEL is the de facto standard for business process modeling in today’s
enterprises and is a promising candidate for the integration of business and scientific
applications that run in Grid or Cloud environments. In this paper, selected com-
ponents of BPEL4Grid, a scientific workflow system for developing service-oriented
Grid applications based on BPEL, are presented. The focus of the paper is on secu-
rity aspects of workflow composition and fault tolerance mechanisms for long-running
workflows. Furthermore, two workflow modeling tools targeted at users with different
levels of knowledge about BPEL are briefly described.

1 Introduction

The Business Process Execution Language for Web Services (BPEL4WS or WS-BPEL
[ACD+03]) is the de facto standard for web service composition in business applications.
It enables the construction of complex web services composed of other web services that
act as the basic activities in the newly constructed service. Access to a process is exposed
by the execution engine through a web service interface (Web Services Description Lan-
guage, WSDL), allowing the process to be accessed by web service clients or to be used
as a basic activity in other processes.

This paper presents an overview of some of the key components of BPEL4Grid (see Figure
1), a scientific workflow system for developing service-oriented Grid applications, built
on BPEL and related standards (SOAP, WSDL, Eclipse). In particular, security aspects
of workflow composition and fault tolerance mechanisms for long-running workflows are
discussed. Furthermore, two workflow modeling tools that we have developed are briefly
described: (1) DAVO (Domain-Adaptable Visual Orchestrator which is the foundation
for ViGO (Visual Grid Orchestrator), a graphical modeling tool that supports the BPEL
standard and our Grid extensions. (2) SimpleBPEL, a tool that allows domain experts
with little or no knowledge about BPEL to compose workflows from predefined, domain-
specific sub-workflows (“snippets”).

∗This work is financially supported by the BMBF (D-Grid Initiative)

193

Figure 1: Components of BPEL4Grid – only components highlighted in blue will be described

2 Grid Workflow Security

While BPEL works well for traditional web services, it has a number of drawbacks with
respect to the more complex world of WSRF-based Grid computing, especially where
security is concerned. The BPEL security concept is not equipped to deal with complex
multi-protocol Grid environments and does not integrate with the Grid Security Infrastruc-
ture (GSI). While BPEL is mainly focused on anonymous HTTPS-based TLS security or
manual role-based authentication encoded in SOAP headers, Grid computing has a manda-
tory user-centric security approach using X.509 certificates, which far exceeds the scope
and capability of the BPEL security model.

To support GSI, we have further extended our previously published [DFH+07] Grid-
related BPEL extension gridInvoke by security-related settings [DSF08]. The extended
gridInvoke activity allows us to define, for example, the security method to be used, choose
whether to use encryption or signing of messages, and the delegation level of proxy cer-
tificates. The syntax of the extension is described in Listing 1.

<gridInvoke ...>
<security
method="GSITransport | GSISecureMessage | GSISecureConversation"
level="privacy | integrity"
authz="none | self | host | anyString"?
peer-credentials="filename"? anonymous="true | false"?
delegation="none | full | limited"? />?

</gridInvoke>

Listing 1: Syntax of the security settings for invocation

Since the runtime of a process might be unknown and therefore longer than the proxy

194

certificate’s lifetime, automatic renewal of proxy’s is offered by the BPEL4Grid engine.
The workflow engine monitors both the runtime of the process and the proxy’s lifetime.
If the proxy’s lifetime is about to expire, the engine will renew the certificate if desired
by the user of the workflow. The BPEL engine contacts the given MyProxy server and
retrieves a proxy certificate with the given lifetime from the server. Figure 2 illustrates this
sequence. Since the whole conversation is secured using HTTPS (from client to BPEL
engine) and pure TLS (from BPEL engine to MyProxy), it can be considered as secure.
Further details, a discussion of the implementation and a performance evaluation can be
found in a previous paper [DSF08].

Figure 2: Integration of BPEL and Grid Security Infrastructure

3 Fault Tolerance of Grid Workflows

When long-running or computationally-intensive workflows are to be executed, fault han-
dling is very important, since the failure of a single component might lead to an abandon-
ment of the entire workflow. Many faults can be corrected by either simply retrying the
failed operation or by substituting the failed component by an equivalent one.

While composition languages like WS-BPEL offer fault handling mechanisms, infrastruc-
tural failures like network timeouts and server outages should not be handled using the
language mechanisms, since this would clutter the composition logic with non-functional
aspects. Consequently, we identify classes of faults that can be handled automatically and
define a policy language to configure automatic recovery behavior without the need for
adding explicit fault handling mechanisms to the BPEL process. Furthermore, the ap-
proach provides automatic Cloud-based redundancy of services to allow substitution of
defective services.

The developed solution [JDF09] adds a policy-based fault handling mechanism to BPEL
without making any changes to the language standard. Using policies, it allows to enable
and disable both retry and substitute actions. To reduce the number of required policies, a

195

Fault Classifier (FC) categorizes faults into groups. Instead of defining a policy for every
type of fault, policies can be specified for each group of faults instead. Furthermore, the
policies permit to set parameters such as the maximum number of retries, what kind of
resources (dedicated hosts, Cloud resources, etc.) may be used for substitution and so on.

The Message Monitor (see Figure 3) monitors the response messages from invoked ser-
vices and checks whether they contain fault messages or not. In the first case, the cor-
responding message is passed to the Fault Classifier (step 2). The classifier classifies the
fault using rules stored in the Fault Database; the result is then passed (step 3) to the Policy
Processor that applies all configured policies. The result contains zero or more recovery
strategies with priorities (Retry is to be performed before Substitution, for instance).

Figure 3: Sub-components of the Fault Tolerance Module

If the Retry strategy is applied, the previously invoked service is invoked again (step 7a).
Otherwise, the Dynamic Resolver [DJF09] is executed to perform a dynamic scheduling
on the resources declared in the Substitution strategy (step 7b). These resources may either
be machines from a pool of available resources or virtual machines that are provisioned
on-demand from a Cloud infrastructure like Amazon’s EC2 [ec2] or Nimbus [nim]. Details
concerning Cloud-based redundancy and the architecture of the on-demand provisioning
framework can be found in [JDF09, DJF09].

4 Grid Workflow Modeling

4.1 Domain-Adaptable Visual Orchestrator (DAVO)

DAVO is a domain-adaptable, graphical BPEL editor [DMS+09]. The key benefits that
distinguish DAVO from other editors are the adaptable data model and the user interface,
which permit customization to specific domain needs.

In DAVO, the activities are represented using objects of the class hierarchy shown in Figure

196

<<abstract>>
Element

Assign<<abstract>>
ContainerElement

Flow

Wait

While

...

...

Basic

Activities

Structured

Activities

Figure 4: A simplified Element class hierarchy.

4. Element is the parent class of all activities, whereas ContainerElement is the
parent class for all structured activities. The actual class hierarchy is more complex than
the one displayed here. It contains additional abstractions for activities referring to other
web services and sequential structured activities, which are omitted for simplicity since
they are not relevant for the data model.

While it is sufficient for a standard BPEL workflow editor to use a simple data model to
store the process’ information, i.e. information for elements and attributes, this approach
is not feasible with regard to extensibility. For the use of BPEL within and the adaptation
of DAVO to specific domains, it is necessary to associate additional information with an
activity (e.g. Grid Security-related settings). DAVO uses named properties to associate
arbitrary information with activities. Besides name and value, these properties also con-
tain an IValidator that can be used to check validity when setValue() is called.
Additionally, the properties itself have various meta-properties, such as:

• persistent determines if the property value is stored together with the DAVO
data model.

• readOnly and visible, which are used (together with various other meta-prop-
erties) to control the automatic creation of property views, as described in [DMS+09].

The extension mechanism is illustrated in Figure 5. The core of each DAVO extension
is an implementation of the IModelExtender (IME). A specific IME implementation
knows the ElementExtension for each Element. After the ElementFactory has
created the Element (1), it passes it to the ElementExtender (2), which then asks the
IME for extensions for the given Element (3). After the IME has created the extension
for the given Element (4), it is added to the Element (5). The ElementExtension
can modify the Element in many ways. For example, it can add new properties or hide
existing ones.

197

<<abstract>>
Element ElementExtender

ElementFactory

<<abstract>>
ElementExtension

<<interface>>
IModelExtender

(1) creates

(5) applies

(3)
requests
extension
for given
element

(4) creates

(2) utilizes

Figure 5: The Element extension mechanism.

New activities can be added by simply inheriting from an arbitrary class from the hierarchy
and registering the new activity using one of DAVO’s extensions points. As consequence,
the new activity is added to DAVO’s graphical user interface, as described in [DMS+09].

The described adaptability and extensibility features were used to implement the data
model and visual representation of the aforementioned Grid-specific extensions in ViGO.
Besides that, ViGO offers assistants to model the invocation of Grid services, allows us to
graphically define security requirements and includes a WSRF-capable WSDL parser to
import services into a workflow.

4.2 Simplified Modeling with SimpleBPEL

Recently, ViGO has been extended to allow parts of workflows (“snippets”) to be saved
in libraries. The newly developed SimpleBPEL Orchestrator allows us to import those
libraries. Workflow developers may use the existing snippets as black boxes in their work-
flows. The tool checks whether snippets the user wants to combine in a workflow actually
fit together. This is done by validating whether the output data of the first component
fits to the input data of the succeeding component. If so, the tool automatically generates
necessary BPEL code (such as assign operations) without the need for any action of the de-
veloper. Figure 6 illustrates a simple example of a workflow developed using SimpleBPEL
and its actual representation in ViGO.

5 Related Work

Due to space restrictions, it is not possible to fully cover related work in all areas. We
therefore only briefly present some exemplary related work.

Amnuaykanjanasin and Nupairoj [AN05] present a BPEL-based approach for orchestrat-
ing OGSI-based Globus Toolkit 3 Grid services using proxy services. Proxy services are

198

Figure 6: Workflow modeling with SimpleBPEL vs. modeling with ViGO

facade services that hide the Grid service’s complexity and are invoked by the workflow
engine instead of the original service. The call is then delegated to the Grid service.
The approach supports security mechanisms of Globus Toolkit 3 security based on WS-
Security. Despite the fact that the complexity of Grid environments is increased by this
approach, the solution is interesting, since it allows the usage of security and notification
features. However, lifetime management of proxy certificates is not addressed at all.

By introducing a new element (find bind) into the BPEL, Karastoyanova et al. [KHC+05]
have presented their approach for runtime adaptability. The mechanism is able to find
services, e.g. by querying a UDDI registry. Based on policies, it selects suitable services
and binds them to process instances. In case a service call fails, a process instance repair
is guaranteed by rebinding to another port. Selection criteria can be modified at runtime.

Di Penta et al. [DEV+06] present WS Binder that allows the (re-) binding of partnerLinks
to services during the runtime of a process. For this aim, the authors use a proxy archi-
tecture. PartnerLinks are bound to proxy services instead of the original target services,
meaning that the workflows need to be adapted to run in the environment. If a failure
occurs at runtime, the proxy services are rebound to target services determined by the
framework’s discovery and selection component.

199

6 Conclusion

In this paper, selected components of BPEL4Grid were presented: security aspects of
workflow composition, fault tolerance mechanisms for long-running workflows, and cor-
responding workflow modeling tools. Future work will be devoted to extending the func-
tionality of BPEL4Grid with respect to workflow analysis, validation, and monitoring.

References

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D. Roller,
D. Smith, S. Thatte, I. Trickovic, and Sanjiva Weerawarana. Business Process Execution
Language for Web Services Version 1.1, 1.1 edition, May 2003.

[AN05] P. Amnuaykanjanasin and N. Nupairoj. The BPEL Orchestrating Framework for Se-
cured Grid Services. In ITCC (1), pages 348–353. IEEE, 2005.

[DEV+06] M. Di Penta, R. Esposito, M. Villani, R. Codato, M. Colombo, and Elisabetta Di Nitto.
WS Binder: a Framework to Enable Dynamic Binding of Composite Web Services.
In Proceedings of the 2006 Int. Workshop on Service-oriented Software Engineering,
pages 74–80. ACM, 2006.

[DFH+07] T. Dörnemann, T. Friese, S. Herdt, E. Juhnke, and B. Freisleben. Grid Workflow Mod-
elling Using Grid-Specific BPEL Extensions. In Proceedings of German e-Science
Conference (GES), pages 1–8, 2007.

[DJF09] T. Dörnemann, E. Juhnke, and B. Freisleben. On-Demand Resource Provisioning for
BPEL Workflows using Amazon’s Elastic Compute Cloud. In Proceedings of the 9th

IEEE Int. Symposium on Cluster Computing and the Grid, pages 140–147. IEEE, 2009.

[DMS+09] T. Dörnemann, M. Mathes, R. Schwarzkopf, E. Juhnke, and B. Freisleben. DAVO: A
Domain-Adaptable, Visual BPEL4WS Orchestrator. In Proceedings of the IEEE 23rd

Int. Conference on Advanced Information Networking and Applications (AINA ’09),
pages 121–128. IEEE, 2009.

[DSF08] T. Dörnemann, M. Smith, and B. Freisleben. Composition and Execution of Secure
Workflows in WSRF-Grids. In Proceedings of the 8th IEEE Int. Symposium on Cluster
Computing and the Grid, pages 122–129. IEEE, 2008.

[ec2] Amazon Web Services LLC, Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/.

[JDF09] E. Juhnke, T. Dörnemann, and B. Freisleben. Fault-Tolerant BPEL Workflow Execution
via Cloud-Aware Recovery Policies. In Proceedings of 35th EUROMICRO Conference
on Software Engineering and Advanced Applications (SEAA), pages 31–38. IEEE, 2009.

[KHC+05] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann, and A. Buchmann. Ex-
tending BPEL for Run Time Adaptability. In EDOC ’05: Proceedings of the Ninth
IEEE Int. EDOC Enterprise Computing Conference, pages 15–26. IEEE, 2005.

[nim] Nimbus, Nimbus IaaS Cloud Computing Solution.
http://www.nimbusproject.org.

200

