
Heisig, et al. (Hrsg.): WM in digitalen Arbeitswelten – Aktuelle Ansätze und Perspektiven, 
Proceedings 10. Konferenz Prof. WM, Potsdam 18.-20.03.2019 94 

3.1 Experience management for task placements in a cloud. 

Eric Kübler 12 and Mirjam Minor13 

Abstract: The execution of workflows in a cloud is more and more popular, and new business 
concept based on this combination emerge. However, the task to control a cloud in such a way, 
that the rented cloud resources match the requirements for the currently executed workflows is 
difficult. Simple solutions struggle with over-, and under-provisioning problems or lack the needed 
flexibility for the new business concepts. A smart concept for cloud management should use 
knowledge about the characteristic of the executed task to improve the resource utilization of the 
cloud. In this paper we present our approach for a CBR based concept for cloud management that 
reuses experience on proper  cloud configurations. We introduce our similarity function for task 
placements in a cloud and illustrate the approach with some sample workflows form the music 
mastering domain.  
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1 Introduction 

Cloud computing offers nearly infinite resources on-demand on a pay as you go pricing 
model [MG]. Therefore it is not surprising that more and more business models are 
based on the use of cloud computing. One field that can benefit from cloud computing is 
the execution of workflows. A workflow is defined by the Workflow Management Coa-
lition [Co] as "the automation of a business process, in whole or part, during which doc-
uments, information or tasks are passed from one participant to another for action, ac-
cording to a set of procedural rules". A tasks, also called activity is defined as follows: 
{A process [...] consists of one or more activities, each comprising a logical, self-
contained unit of work within the process. An activity represents work, which will be 
performed by a combination of resource (specified by participant assignment) and/or 
computer applications (specified by application assignment)"[Co, p.14]. The execution 
of a workflow in a cloud means that the cloud provides the workflow with resources and 
software that are required to complete the tasks of the workflow. This could be for ex-
ample the provision of a virtual machine with an installed office software for a task dur-
ing that a human actor has to write a letter. Another example is the deployment of a web 
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server with a certain web service that renders images, for a task that automatically pro-
cesses images. We call the assignment of tasks to its cloud resources a task placement. 

 The creation of a task placement can be trivial, if every task just get its own cloud re-
sources. However, this is very ineffective and will lead to over-provisioning of resources 
and consequently to unnecessary costs for the user. The problem of finding an optimal 
assignment of tasks to cloud resources, where the resource utilization is optimal, can be 
modeled as a bin packing problem, which is NP complete. The problem is even harder, 
because the bins (in this case virtual machines or containers like docker) can vary in 
their size (different amount of available memory, disk space ...), where the objects (the 
tasks) not just have one value for their needed requirement (size), but can have several 
different requirements (for CPU, memory, Linux Kernel version, for example), that all 
need to be fulfilled. Further, it is not desirable to execute all tasks with the same re-
quirements on the same resources. This will lead to a state, where the execution of all 
tasks are slowed down. This so-called under-provisioning can lead to future problems 
(for example deadline problems or frustrated users) and should be avoided too. It is re-
quired to find a good balance between over- and under-provisioning of resources [Ar]. 
To find such a balance is generally a problem. In general, the management of resources 
is an important aspect for cloud computing [Ba]. There are plenty of approaches for 
cloud management in the literature.  

The simplest methods to provide resources is the static way. This means, the system does 
not adjust itself to a changing situation. Obviously, this will lead to under- or over-
provisioning [SD]. A more dynamic approach is required. The range for such approaches 
is great and spans from rather simple, rule-based approaches such as observations on the 
number of open connections [PM] to complex algorithms [Qu]. 

All of the above approaches have the problem, that they are not very flexible when it 
comes to a change of the used cloud or workflow management system. Many do not 
consider available knowledge about the tasks and cloud configuration. Thus, it takes 
quite long to compute a proper task placement. To handle this complex problem in a 
reasonable time and to avoid over- and under-provisioning, it is necessary to use the 
knowledge about the tasks to manage the cloud resources properly. 

In this paper we introduce a CBR approach for task placements in cloud computing, that 
uses knowledge about the tasks and the workflow structure. The idea of CBR is that 
similar problems have similar solutions [AP]. The idea of using CBR for cloud manage-
ment is not new. The work of Maurer et al. [MBS] applies CBR to implement automatic 
cloud management. Aamodt and Plaza describe a case as follows: "In CBR terminology, 
a case usually denotes a problem situation. A previously experienced situation, which 
has been captured and learned in a way that it can be reused in the solving of future 
problems" [AP]. In cloud management, this is to reuse problem solving knowledge on 
the cloud resources. In this work, a case is a task placement with problems. These prob-
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lems could be for example violated Service Level Agreements (SLAs), missing web 
services or unused resources. A solution is a new task placement, that solves the prob-
lems. A sample solution is a newly started VM with the missing web service, the shut-
down of the unused resources or the increasing of the resources to avoid future SLA 
violations. To retrieve similar problems (cases), a similarity function determines the 
similarity between two cases. Due to the fact that CBR only requires the similarity func-
tion to receive other, similar problems and their similar solution, the time and computa-
tional effort is relatively low. We introduce our similarity function for task placements in 
cloud computing, discuss in short some alternatives within the function and give an 
example how the function will be applied. The CBR approach will be embedded into our 
Workflow Cloud Framework (WFCF). WFCF is a connector based integration frame-
work to integration workflow management tools with cloud computing.

2 Similarity of task placements

In this section we describe the structure of our cases, the MAC/FAC method and the 
similarity function for our cases. 

2.1 Case representation

As mentioned before, a task placement is the assignment of the currently active tasks to 
cloud resources. Fig. 1 gives an example. In this example, the tasks Task2 and Task3 are 
active, where Task 1 is already done. Task3 is assigned to a container named CON2
where Task2 is assigned to a VM named VM2 and Task4 is assigned to CON3. Assigned 
means that CON2, CON3 and VM2 host the software that the tasks needs to execute, for 
example a web service or an Office Suite. The task calls the web service, or the user uses 
a remote desktop connection to work with the Office Suite. 

Fig. 1: A simple illustration of a task placement with a task assigned to a VM and another to a VM.
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A case is a task placement with some problems. This could be for example violations of 
Service Level Agreements (SLA) or the violation of internal constraints for example that 
there should be no unused cloud resources. The solution is a new task placement that 
solves the problems. 

2.2 Relevance of case parts for retrieval 

Next, we discuss what should be important for the similarity of two task placements. A 
task placement has plenty of parameters that could be considered for the similarity. In 
this work, we consider a cloud node either as a virtual machine (VM), or a container. 
Both have a set of resources, this can include, but is not limited to, CPU, GPU, memory, 
disc storage, network capacity and different kinds of installed software. For comparison, 
even two cloud nodes with the same set of resources (same CPU, installed software etc.) 
could considered as different, if the resource utilization is different. For example, a cloud 
node with 4GB of memory and a utilization of 100% of the memory, should be more 
similar to a node with 4GB memory and 90% utilization than a node with 4GB memory 
and a utilization of 10%. Though, a VM and a container share some attributes, it makes a 
difference if a Node is a VM or a Container. For example, a container can be migrated 
relatively easy from one VM to another, even if the VMs are hosted on different cloud 
providers. This is not so easy and sometimes even impossible for an entire VM. So the 
solution for a VM can not be always the migration to an other host, this is possible for a 
container. In this case, it is necessary to propagate the new URL or IP address to the 
workflow. 

Therefore, to compare two cloud nodes, it is important to distinguish whether it is a VM 
or container, to know the set of resources and the utilization of the hardware resources.  

More important than the cloud nodes are the tasks that are currently executed with the 
cloud nodes. One of the goals of our WFCF framework is the careful use of cloud re-
sources for the execution of workflow tasks. Without any task, there is generally no need 
for any cloud nodes. That means, that the driving force of the task placement are the 
tasks. To determine the needed cloud resources for a task, we introduced in one of our 
previous works the concept of task characteristics in cloud computing [KM]. In short, 
the idea is to label tasks with its needs and give a hint of the foreseeable resource usage. 
In our current work, we extend the idea of characteristics so that for example the charac-
teristic "compute intensive" now has a value of  0 to 4 to indicate how intensive the task 
uses the CPU and not just a binary value of 0 or 1 to determine if the task is compute 
intensive or not. Other characteristics that determine if a task is long or short running, 
were replaced by a values that contain the minimal, maximal and average execution 
time. 

Another important aspect should be the problems that a placement has. As mentioned 
before, this could be for example violations of Service Level Agreements (SLA) or the 
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violation of internal constraints for example that there should be no cloud node active 
that is not in use. 

2.3 MAC/FAC approach 

It is clear that this can lead to many parameters to compare for similarity. And at this 
point we even haven't discussed the similarity of sets of tasks and sets of cloud nodes. 
For performance reason, we use the MAC/FAC Principle as introduced in [FGL], to 
distribute the effort. The idea is to collect fast a set of few promising case candidates 
(MAC step) and investigate the similarity of the candidates in more detail in a second 
step (FAC step). 

As mentioned before, the most important aspect for similarity are the tasks. Therefore in 
the MAC step we compare the currently active tasks of the problem case with the cur-
rently active tasks in cases stored in the case base. The currently active tasks is repre-
sented by a set of vectors. At this point it is tempting to define a similarity for two tasks. 
Since tasks are Vectors, the hamming distance or the euclidean distance can be used to 
determine similarity. But in this case, we have to consider the similarity between two 
sets of vectors. There are some metrics for defining the similarity between two sets, for 
example the Hausdorff metric [HKR93] or the sum of minimum distances [EM97]. The 
problem with these heuristics is, that it is very easy to create a case where the similarity 
is very high but the sets are by intuition very dissimilar. For example in one set are only 
equal tasks. This could be for example a set with only a single type of image rendering 
tasks and the other set contains different tasks but one rendering task and a mapping did 
map all rendering task of the first tasks to the single  rendering tasks of the second set, 
then the similarity would be 1 for these two sets. of course, this is not desired. Another 
option is not to use a metric for building a single mapping, but to build all possible map-
pings for the vectors and chose the mapping with the minimum weight like the Kuhn-
Munkers algorithm [Ku55, Mu57]. Though, this method is very compute intensive as 
mentioned in [AFS93]. 

Our solution for a fast approach that is not that much vulnerable for special cases, uses 
an intersection of the task sets to determine the similarity. Let T1 and T2 be a Set of 

Tasks, then is the function . The benefit of this function is, 
that it covers the difference between the size of the sets, as well as the actually equal 
tasks. This will help in the FAC step to find more relevant task placements in a reasona-
ble amount of time. Beside the tasks, it is important to consider the problems that a task 
placement has. As mentioned before, this could be SLA or constraint violations. The 
SLAs and constraints are stored in a a vector, are ordered by name and contains the 
number of violations for each SLA or constraint. We call this an SLA vector. To com-
pare two SLA vectors, we first make sure that both vectors have the same parameters, 

simT (T 1 ,T 2)=
|T 1∩T2 |
|T 1∪ T2 |
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which means the same SLAs and constraints. Let slav1 an SLA vector with the sla slav1 
= {SLA11, SlA21} and slav2 = {SlA22, SLA32} with the values SLA11 = 1, SLA21 = 3, 
SLA22 = 2, SLA32 = 1. In a first step we add in both SLA vectors the missing parameters 
but set their value to 0. The new vectors are slav'1 = {SLA11, SlA21, SLA3'1} and slav'2 = 
{SLA1'2, SlA22, SLA32} with SLA1'1 = 1, SLA1'2 = 0,SLA21 = 3, SLA12 = 2, SLA32 = 1, 
SLA3'1 = 0 . Now we can compute the euclidean distance between two SLA vectors. Let 
qi ϵ SLA1 and pi ϵ SLA2, than is the euclidean distance for the SLA vectors  

. 

The similarity function is now: 

. 

The MAC step is a combination of the similarity of the current active tasks, and the 
problems, therefore we chose an aggregated similarity function  

, 

where TP1 and TP2 are task placements with T1, slav1 ϵ TP1 and T2, slav2 ϵ TP2. Depend-
ing on the test results, we may add some weights to the components of the similarity 
function, but for now we consider the tasks and the problems as equally important. 

After a fast determination of promising candidates, the FAC step compares the candi-
dates with the current problem situation in more detail. Here is the placement of the 
tasks, the resources of the cloud nodes and their utilization important, as well as the 
question, which tasks are to be executed next. 

2.4 Similarity of tasks in placements 

As shown before in Fig. 1, a task placement can be seen as a tree, if all VMs and con-
tainers that are not related to a VM, are assigned to an abstract "hardware" node, as 
shown in Fig. 2. This tree is unordered and labelled, where the labels are the resources 
that a cloud node contains. Graph isomorphism is NP complete as well known, but to 
compute the edit distance between two unordered labelled trees is also NP complete, as 
shown in [Zh96].  

 

d sla( p ,q)= √1n× ∑i= 1
n

(qi− pi)
2

sim sla ( slav1 , slav 2)=
1

1+ d sla ( slav 1, slav 2)

simmac(TP1, TP2)=
simT (T1, T 2)+ sim sla (slav1, slav2)

2
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The problem is not easier, if we alter the tree and add new nodes with null values for the 
labels, to get a more generalized structure as shown in Fig. 3. 

Fig. 2: Task placement as tree with hardware as the root and the tasks as leafs

Fig. 3: Task placement as tree with the hardware as root and abstract nodes for a more 
generalized model
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resources, we use once again the euclidean distance dr(r1,r2), as well as for the utiliza-
tion du(u1, u2).  The similarity functions is then again  

and  
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The overall distance function for two task_cloud_vectors is: 

Similar to the MAC step we might add weights in the future.

2.5 Similarity of entire task placements

After defining the similarity for two task_cloud_vectors, the next step is do define the 
similarity between two sets of vectors. For this we have chosen the Kuhn-Munkers algo-
rithm (also called Hungarian algorithm) as described in [Ku55, Ku57]. This algorithm 
builds a minimum weight mapping for bipartite graphs, our in this case between two sets 
of vectors, where the edge weight is the distance between two task_cloud_vectors. In a 
first step a distance matrix must be built, that contains the distance from each 
task_cloud_vector in the first set to each task_cloud_vector in the second set. The Kuhn-
Munkers algorithm requires a square matrix. If the two sets have a different number of 
vectors, we add to the smaller set dummy vectors and set their edge weight to infinite. 
Because of the strict selection in the MAC step, based on the intersection of the tasks, 
there should be not many dummy vectors in our matrix. 

After building the matrix, the Kuhn-Munkers algorithm successively improves the map-
ping between both sets. We will show a running example in the following section. To 
determine the similarity between two sets of vectors, after Kuhn-Munkers has finished, 
we build the sum of the edges between the sets is build. Since this is a distance function, 
the similarity function for Kuhn-Munkers is 

d tags (tag1 , tag2)= ( |tag1∪ tag2|)− (| tag1∩ tag2 |)

d tcv(tcv1 , tcv2)= dtags(tags1 , tags2)+ d u(u1 ,u2 )+ d r( r1,r2)+ dntask (t1, t2)

Fig. 4: Task placement as paths
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.

In [AFS93] is mentioned, that the run time of Kuhn-Munkers is O(n^4) where n is the 
number of task_cloud_vectors, but that the run time can be improved to O(n^3). This is 
very compute intensive, in particular this has to be computed for each candidate, selected 
during the MAC step, therefor the selection of the MAC step should be very strict.

3 Illustrating Example

In this section we give a running example of our MAC/FAC similarity function. We use 
music mastering workflow as our application domain. An example workflow is given in 
fig. 5. This workflow contains several different tasks. The tasks sample rate, limiter, 
normalize, channels, fading and sample size require all a special web service for their 
own. For example, the task limiter needs the limiter web service (limiter_ws), where the 
task channels needs the channels web service (channel_ws) and so on.

For our current problem case let us assume, that there are two workflow instances cur-
rently executed and therefore two tasks currently active. Fig 6 shows the placement for 
the problem situation. The labels vector1-3 are important in the FAC step, when we 
compare the vectors. The problems in this case are, that the task limiter has no assigned 
cloud resources, where vm3 has no assigned task. This is also noted in the SLA_vector. 
The notation for the MAC step is for the problem case:

sim km( tcv1 , tcv2)= 1−
1

1+ d km( tcv1 , tcv2)

Fig. 5: Workflow form the music mastering domain
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problem = (task = (channels,limiter), sla_{vector} = (missing web service, unused re-
sources)). 

In this example the Case Base has stored four old cases, called case1, case2, case3, 
case4. For the MAC step we first look at the currently active tasks and the SLA_vector 
of this cases. 

• case1 = (task = (limiter,normalize), slavector = (underprovisioning))

• case2 = (task = (limiter,channels), slavector = (missing webservice))

• case3 = (task = (normalize, fading), slavector = (missing web service, unused 
resources))

• case4 = (task = (sample_rat), slavector = (underprovisiong))

Table 1 shows the computed similarity of the four cases to the problem case.

Case name similarity

case1 5

case2 0,75

case3 0,75

case4 0

Table 1: Similarity of the cases in the case base to the problem case

Fig. 6: Task placement of the problem case
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In this example, case2 and case3 are chosen for a detail analysis in the FAC step.

The core of the FAC step is the analysis of the task_cloud_vectors and finding a fitting 
mapping. Fig. 7 show the task_cloud_vectors for case2 and case3. In a first step we add 
to the problem case and the cases stored in the case base, null_tasks, null_container and 
null_VM to complete all Task_cloud_Vectors. Then we build the similarity matrix for 
the two cases with the problem case. 

As mentioned before, The Kuhn-Munkers algorithm needs a square matrix, therefore we 
added to case2 a third (dummy) vector, and set the distance to 999, because the distance 
to the dummy vectors should be infinite and therefore not preferable for the algorithm. 
The Kuhn-Munkers algorithm next search minimum distance for each column. Next, the 
algorithm reduces the value of each element in each column by the column minimum. 
Next, the row minimum is formed, similar to the column minimum and each element for 
each row is again reduced by the row minimum. In the next step the algorithm searches a 
combination of 0, so that each row and each column only contains one 0. Can such a 
combination found, that this is the optimal mapping and the algorithm is done. Else, if no 
valid mapping can be found at this point, the algorithm next mark the critical rows and 
columns and determine a minimum. Table 2 and 3 shows the distance matrix for case2
and case3 as well as the result of the Kuhn-Munkers algorithm for our example cases. 
For example: in case2, vector1 was mapped to vector1 of the problem case, therefore the 
distance was bordered. The sum of chosen mapping is for case2 17,5 + 0 + 999 = 
1016,5 where the distance for case3 to the problem case is 17,5 + 12 + 0 = 29,5. The 

Fig. 7: The task_cloud_vectors stored in the case base
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most similar case to the problem case is also case3, which make sense. Both cases have 
much in common and only small difference in details.   

Vectors Probcase vector1 Probcase vector2 Probcase vector3 

Vector1 17,5 25 22 

Vector2 12,5 13 0 

Vector3 999 999 999 

Table 2: Distance from the vectors of case2 to the problem case 

Vectors Probcase vector1 Probcase vector2 Probcase vector3 

Vector1 17,5 25 22 

Vector2 41 12 14 

Vector3 29,5 28 0 

Table 3: Distance from the vectors of case3 to the problem case 

4 Conclusion 

In this paper we presented our MAC/FAC approach for task placements in cloud compu-
ting and illustrated it with an example. The basic idea is to reuse problem solving 
knowledge from past task placements in order to mend SLA violations in recent task 
placements. Our MAC/FAC approach provides an efficient means to retrieve matching 
task placements. The concept of using this knowledge management approach for cloud 
management is promising. An illustrating example from the music mastering domain 
achieved good retrieval results. Even for a relatively complex query the results have 
been plausible; the best matching case indeed was very useful to solve the sample prob-
lem case. The insights from this realistic scenario serve as a preliminary proof-of-
concept. However, experiments with a larger case base than in the illustrating example 
are required to provide further evidence for the feasibility of the approach. The im-
provement of the similarity functions by weights is a further issue. Our next steps are to 
implement the similarity functions and to conduct more experiments with WFCF.    
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