
cba

Gesellschaft für Informatik e.V. (GI) (Hrsg.): INFORMATIK 2021,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

On the State of Post-Quantum Cryptography Migration

Nouri Alnahawi1, Alexander Wiesmaier1, Tobias Grasmeyer1, Julian Geißler1, Alexander
Zeier2, Pia Bauspieß1, Andreas Heinemann1

Abstract: Safeguarding current and future IT security from quantum computers implies more than
the mere development of Post-Quantum Cryptography (PQC) algorithms. Much work in this respect
is currently being conducted, making it hard to keep track of the many individual challenges and
respective solutions so far identified. In consequence, it is difficult to judge, whether all (known)
challenges have been sufficiently addressed, and whether suitable solutions have been provided. We
present results of a literature survey and discuss discovered challenges and solutions categorized into
different areas and utilize our findings to evaluate the state of readiness for a full scale PQC migration.
We use our findings as starting point to initiate an open community project in the form of a website3
to keep track of the ongoing efforts and the state of the art in PQC research. Thereby, we offer a single
entry-point for the community into the subject reflecting the current state in a timely manner.
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1 Introduction and Related Work

Most cryptographic algorithms currently used are subject to security decay over time. This
risk has become significantly greater in the light of the expected rise of quantum computers,
as established asymmetric schemes like Rivest–Shamir–Adleman (RSA), Digital Signature
Algorithm (DSA), and Elliptic-Curve Diffie–Hellman (ECDH) will be broken [Gr96; Sh97].
To maintain security against future and unknown threats, a migration from widely used and
established cryptographic standards in IT-systems and infrastructures towards quantum-
secure cryptographic schemes must be prepared and executed as soon as possible. This task
involves many aspects that need to be taken into consideration and is a transition that has
to occur on numerous levels. It is thus more than a simple exchange or replacement of a
cryptographic scheme or system [Mo15; OP19]. In this paper we highlight all aspects of the
current state of PQC in practice and discuss the main challenges regarding its integration
and migration. We focus on research efforts and open questions around PQC development,
integration, and adaptation to provide an overview of challenges already solved, challenges
currently investigated, challenges recognized yet still unsolved, as well as current blind
spots. Through a systematic literature review, using references quoted in [OP19] as a starting
point for a keyword-based search, followed by classification and forward/backward citation
chasing, we were able to extend and refine the categorization scheme by [OP19] and include
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the respective state of the art. The adapted categorization scheme is presented in Fig. 1
and is also reflected in the structure of this paper. The corresponding overview in Table 1
highlights the current state and provides brief commentary on the major challenges and
breakthroughs respectively. Thus, we present a comprehensive literature survey of relevant
papers and the current state of research and readiness. Based on this, we discuss our findings,
draw our conclusions and derive future work. As this can only be a snapshot of the current
state, we initiated a website (https://fbi.h-da.de/cma) that we keep updating and invite
the community to support us in keeping track of the current state over time.

Ott et al. [OP19] point out various contexts in which the migration towards PQC will take
place and refer to many known requirements and challenges, as well as possible scenarios
and contexts of the migration process on a higher level of abstraction. Campagna et al. [Ca15]
provide recommendations on how to make common security standards quantum-secure,
such as Transport Layer Security (TLS), Internet Key Exchange Protocol Version 2 (IKEv2),
Secure/Multipurpose internet Mail Extensions (S/MIME), Secure Shell (SSH), and X.509.
Furthermore, they describe important use cases for cryptography and potential migration
strategies to transition to PQC. To implement PQC in practical applications, [NW17] name
twelve challenges that need to be solved, including migration (hybrid approaches) and
agility (agile protocols and update mechanisms). The challenges faced by the industry in
the PQC transition process are discussed in [KNW18], and seven recommendations for
next generation cryptography are offered. Armknecht et al. [Ar19] discuss a variety of
problems in regard to achieving IT security and possible strategies to solve these. Aspects
addressed include attacker models, TLS implementations and certificates. A survey of
future challenges for PQC in the internet of things (IoT) is provided in [Fe20], as well as
an extensive comparison of the performance of PQC algorithms and useful guidelines for
post-quantum (PQ) blockchain security [FF20]. Barker et al. [BPS20] present PQC adoption
challenges and thoughts on migrating to PQC after the standardization process of the NIST
is concluded. Examples are a migration playbook and a way to get an inventory of used
cryptography in an IT-system or infrastructure. Recommendations for action on migration
to PQC are given in [BS20b], encouraging the use of crypto-agile hybrid solutions and the
corresponding adaptation of cryptographic protocols. Following on the same footsteps with
similar recommendations, [He21b; HKW21] offer a brief evaluation of the current state of
both PQ and quantum cryptography and highlight the chances and limitations of quantum
cryptography. A technical report by ETSI [ET20] provides strategies and recommendations
for quantum-safe schemes defining a staged approach for a successful migration.

2 Towards New Standards

The focus of the standardization efforts towards PQC lies within developing new crypto-
graphic primitives and algorithms, as these are considered the cornerstone of cryptographic
systems. Nonetheless, efforts have been made in scheme integration, as well as in Requests
for Comments (RFC).
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NIST Candidate Algorithms PQC algorithms are based on mathematical problems that
cannot be efficiently solved by quantum or classical computers [Be09]. These fall mainly
into five categories [GAB19; NW17; OP19]: Multivariate (quadratic polynomial equation),
lattice-based (a grid as a discrete subset of an n-dimensional real vector space), code-
based (the problem of decoding general error correcting codes), isogeny-based (algebraic
geometry), and hash-based.

The state of PQC standardization is represented by the respective ongoing NIST process
[NI16]. It was initiated in 2016 [Ch16] with 82 algorithm submissions, from which 69
candidates were accepted into the project, and out of these, 26 advanced to the second round
[Al19]. Round three was announced with 15 finalists [Mo20]. Including the alternatives,
these are nine public-key encryption and key-establishment algorithms, and six digital
signatures. Following the third NIST PQC conference, it is planned to release draft standards
between 2022 and 2023, and hopefully finalize the process by 2024. An overview of all
algorithm candidates is provided in Table 1.

As the process continues, improvements for the PQC schemes are still being studied and
proposed. Vectorizing time-consuming primitives [KKP20] is used to improve Kyber using
KEM SHA3 and AES variants [Av21]. A fast and first-order secure Kyber implementation
optimized for ARM Cortex-M4 is presented in [He21a]. Number-theoretic transform (NTT)
is another approach used to increase the performance significantly for Kyber [BKS19],
NTRU [Al21a; Ch19] and Saber [Ch21b; DA19] on Cortex-M4 chips. Using advanced single-
instruction multiple-data instructions (NEON) [DK21], optimized constant-time software
implementations for Kyber, NTRU, and Saber are provided. Techniques to optimize memory
requirements in computing discrete logarithms in SIKE [Co20] are presented in [HKP21].
Reducing the input of the hash function leads to noticeable improvements in lattice-based
key-encapsulation mechanisms (KEMs), improving Kyber and Saber [Ju21] using generic
Fujisaki-Okamoto (FO) transformation. A side-channel resistant implementation of Saber
is provided in [Ab21], showing a novel primitive for masked logical shifting on arithmetic
shares. Masking the underlying zero-knowledge proof system of Picnic [Ar21] should
improve its security against SCAs. Sampling discrete Gaussians through arbitrary-centered
sampling over Integers [ZSS20] and generating discrete Gaussians with arbitrary center and
standard deviation [Ho20] offer improvements for lattices and Falcon [Fo20]. A speed up in
the key generation of Rainbow [DS05] is proposed in [Pe20], eliminating some drawbacks
of the scheme. Through efficient statistical zero-knowledge proofs for module/ring learning
with errors (LWE) and short integer solution (SIS) relations [Bo20], it is shown that the
security of lattice-based schemes can be improved. Costello [Co21] provides a thorough
analysis of SIKE and highlights several aspects of its yet unbroken security.

Scheme Integration The cryptographic library liboqs, developed by the Open Quantum
Safe project [SM16], provides quantum resistant cryptographic primitives, and compares
implementations of theNIST candidates (exceptGEMSS [Ca19b]) integrated usingOpenSSL
within applications such as Apache web server and Chromium. They offer PQ and hybrid
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implementations for TLS, SSH, S/MIME and x.509 certificates [Mi21]. Early usage of
PQ KE cipher-suites for the TLS protocol based on R-LWE [Bo15] is demonstrated in an
integration into the OpenSSL library using the Apache web server showing that secure
PQ KE is practical. Classic McEliece is used in a quantum safe MACsec [CS21], offering
hybrid mode, ephemeral key-exchange (KE), and an end-to-end encryption in Ethernet
networks. Suitable NIST candidates are evaluated for use in Domain Name System Security
Extensions (DNSSEC) within certain constraints [Mü20]. However, most candidates require
larger signature and public key (PK) sizes compared to classical algorithms. Other efforts
focus on replacing the DH-based handshake using PQ secure KEMs or hybrid KE [Az21;
Hü20] and using DH type authenticated KE protocols from supersingular isogenies [Ba21b;
Fu18; KK18]. Moreover, a PQ handshake is successfully integrated in the WireGuard VPN
using Kyber and Rainbow [MAY21].

RFC Drafts RFC8391 [Hu18] defines the eXtended Merkle Signature Scheme XMSS, a
quantum-safe hash-based signature scheme. RFC8554 [MCF19] describes the hash-based
Leighton-Micali signature system. It provides asymmetric authentication and can achieve
a high security level, which is secure against a quantum computer. RFC drafts for hybrid
KE schemes for TLS 1.2 and 1.3 are proposed in [CC20; SFG20; Wh17]. Older drafts
for TLS include the use of additional shared secrets and the Quantum-Safe Hybrid (QSH)
cipher-suite [SS17; SWZ16]. Another draft proposed in [Ka20] defines hybrid KE and PQ
PK authentication methods for SSH. RFC8784 [Fl20] describes an extension of IKEv2
that is quantum-resistant by using pre-shared keys. A draft to integrate PQ KE into IKEv2
is proposed in [Tj19], using multiple payloads in conjunction with the existing (EC)DH
payload. The intermediate exchange for IKEv2 is defined in [Sm21], for transferring large
data in the IKEv2 Security Association (SA) establishment. This should help avoiding IP
fragmentation of large IKE messages, but cannot be used in the initial IKEv2 exchange.

Other Algorithms Some other novel approaches seem very promising and practical, even
though they are not part of the NIST standardization process. A new class of post-quantum
signature schemes based on symmetric primitives is presented in [Ch17]. Supersingular EC
[CD20] show a significant speed-up in commutative supersingular isogeny DH (CSIDH).
Instead of using hidden field equations (HFE), PK encryption schemes can be constructed
usingmultivariate quadratic polynomials [Sa20], based on the generalization of isomorphism
of polynomials with two secrets (IP2S) problem to obtain a DH like structure. Implementing
Gaussian pre-image sampling on module lattices [Be21] seems practical for signature
schemes and for advanced constructions using trapdoors such as identity-based encryption.
The PERN multivariate encryption scheme is proposed in [YWT20], based on solving
nonlinear equations over real numbers. Mikata [Th21], a signature scheme over NTRU
lattices, is arguably a more versatile variant of Falcon. Another variant of Falcon, Zalcon
[Fo21], claims more suitable for constraint environments such as smart cards. Lattice-based
KINDI-KEM, a former NIST candidate, is formally specified in DIN SPEC 91444 [Dr21].
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3 Performance Considerations

Multiple research efforts deal with the performance of PQC algorithms, mostly focusing on
hardware implementations and network performance.

Algorithm Performance As indicated by NIST [NI16], the algorithms can be classified
into three categories. The first is for a 128-bit security level, category three is for 192 bits,
and category 5 is for 256 bits. A thorough overview of all NIST candidates and their security
levels is provided in [Fe20]. Benchmarks and comparisons of round two NIST candidates
[Ba19; Da20] state that a higher security level increases latency and timing overhead.
They indicate that Kyber, FrodoKEM [Al21b], Saber, and SIKE have both high-speed and
lightweight implementations. Kyber also shows advantages in terms of execution times,
power consumption, and energy usage. Dilithium stands out for its superior signature
generation, in terms of speed and memory consumption. In general, lattice- and code-based
algorithms are more feasible than isogeny-based algorithms due to the huge performance
overhead of the latter [BRP20; PS20; We20]. Stateless hash-based symmetric signature
schemes, such as SPHINCS+ [Au20], are generally less efficient than lattice-based signature
schemes like Dilithium [Ba21a] or Falcon. They are mainly interesting for applications
without high latency requirements, such as offline code signing or certificate signing. Test
results show great advantage for SPHINCS+ over similar schemes, such as Picnic [Za20],
in terms of speed, signature size, and security. Algorithms that require too much memory or
depend on external libraries such as Classic McEliece [Ch20], BIKE [Ar20] and RAINBOW
pose a serious challenge on the implementation level.

Hardware Performance Many research efforts highlight the challenges and benefits
of implementing PQC algorithms on special hardware and IoT devices, compare their
performance, and address required measures and recommendations [Fe20; Ga18; Su20].
They also benchmark PQC schemes such as XMSS, qTesla [Al20c], SIKE, Classic McEliece,
Dilithium, Rainbow, and Kyber providing real-time performance evaluation on specific
devices and in embedded systems, such as the ARM Cortex-M4, ARM Cortex-R5, IBM Z,
and IoT Trust-Anchor chips [CC21; CKY21; Jo21; Ka19; Ma20; MK19]. Some algorithms
are still not suitable for such hardware platforms. However, improvements, optimizations, and
outlook for further optimization potential are provided. The suitability of PQC on resource
constrained devices, such as automotive hardware security modules (HSM) and in vehicle
to vehicle communication (V2V), is also analyzed and evaluated [Go21; Ni21; WS20].
Although it is considered feasible, the deployment of algorithms with multiple parameter
sets and large key/packet sizes is still work in progress and requires several adaptations. On
common IoT platforms, optimizations are offered [AS20], and it is encouraged to focus on
smaller RAM usage vs smaller code-size [De21]. Moreover, it is recommended to choose
Falcon over Dilithium for signatures, and that Saber or Kyber be selected as a KEM. Kyber is
recommended in mobile applications and is suitable for usage on smartphones [Si21]. Saber
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is still being checked regarding its suitability for mobile devices [Ri21]. In general, lattice-
based schemes such as NTRU-HRSS [Ch19; Hü17] and SPHINCS+ are recommended of IoT
settings [Ne19]. However, a decreased security level needs to be considered. In many cases,
Field Programmable Gate Arrays (FPGA) are used to investigate the possible performance
benefits [Da20; Ko17; Ku20a; ZGF20]. Several high-performance hardware architectures,
low level implementation mappings, as well as hybrid KE methods on FPGAs are proposed
and evaluated for PQ algorithms, such as SIKE, SPHINCS, Kyber, NTRU, and Saber
[Ba19; DMG21; HLX21; KAK18; Ku17]. In general, executing cryptographic algorithms
on optimized hardware leads to a significant performance boost and is essential for the
usage of these algorithms, especially for less performant PQ algorithms in performance
critical use cases [TLW19].

Network Performance With larger signatures and keys, more data must be transferred
within networks. This leads to packet fragmentation, which may result in high delays in
lossy networks [PST19]. In general, protocols such as TLS, DTLS, and QUIC are able to
handle bigger signature sizes, and while the overhead is significant, it is acceptable in most
modern use cases [Ka18a; SKD20a; SM16]. The key establishment with Kyber-based TLS
performs well compared to ECDH, whereas using SPHINCS+ signatures is challenging on
embedded PQC-TLS servers, due to signature sizes and signing time [Bü20]. Additionally,
the execution times for PQC algorithms are usually higher than for classical ones and a longer
loading time for websites is a problem, because it may lead to bad user experience [Ad19;
Kw19; SKD20b]. Use cases such as VPN are less impacted (establishing a connection only
once in a while) [KS19]. Experiments in simulated [PST19] as well as in real networks
[He19a; KV19] show which algorithms are suitable for these use cases. Some works evaluate
the usage of PQC in Blockchain networks [AK18; Ca19a] and propose using lattice-based
schemes as a replacement for ECDSA.

4 Security Considerations

The new PQ algorithms open up new undiscovered attack surfaces and introduce additional
mathematical concepts into the cryptographic world. New risks that may come with these
concepts have to be investigated.

Cryptanalysis Cryptanalysis examines the security of cryptographic schemes given a
sophisticated attacker that is able to perform analytical and/or practical attacks. Many of
the candidates that were submitted to the first round of the NIST challenge have fallen to
various cryptanalysis attacks [Di20a]. In general, either the imposed security of the attacked
algorithms dropped below the requirements of NIST, or the scheme was completely broken
and the attackers were able to retrieve the private key [Sa19]. Some schemes seem to be
secure under classical computing preliminaries only, but fail to resist quantum attacks
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[DLW19]. In addition, PQC can not only be used for KE and signatures, other areas can be
pseudo-random number generators and encryption [Ku20b]. On the other hand, researcher
extracted indications for secure designs from those attacks. Methods to assure security
against a certain type of attacks are presented in [Cr20; PS13] and [JS19] present models that
enable direct comparisons between classical and quantum algorithms, improving security
assumptions for PQC algorithms. Moreover, several new attacks targeting the foundations
of the developed PQC schemes are introduced. A new key recovery technique based on
MinRank can break multivariate primitives [SV20], whereas another on HFEs used in
GEMSS shows that the proposed parameters of the scheme are not as secure as claimed
[TPD21]. A new adaptive attack can recover the secret key for a realistic choice of parameters
on homomorphic encryption schemes [FHR21]. Hybrid attacks on NTRU can be threatening
and require revising its security estimates [Ng21]. Some security issues may occur due to
state synchronization failures, which may be avoided through using hybrid stateless/stateful
schemes with smaller signatures and faster signing [GFL19; Mc16]. The correctness of
NIST candidates is also formally re-assessed [BS20a], and security notions, such as the
anonymity and indistinguishability under (chosen/adaptive) ciphertext attacks (IND-CCA)
[Al20a; GMP21], qIND-qCPA [GKS20], and random oracles in a PQ mode [KS20] are
evaluated and improved. Moreover, new lower bounds on decoding attacks for lattice and
code-based schemes are derived [KL21], whereas new upper bounds for rank attacks HFEs
in multivariate schemes [ØSV21] are proven.

Side-Channel Attacks Side-channel attacks (SCA) target the specific circumstances of
algorithm execution like timing and power consumption. PQC algorithms introduce new
attack surfaces in this regard and have to be analyzed for weaknesses not only in a general
regard of the algorithm but also in specific hardware circumstances. For all categories of
PQC algorithms, SCAs were found, and at the same time effective countermeasures for
these attacks have been introduced [Zh20a; Zh20b]. However, the research states that SCAs
on PQC algorithms and their countermeasures are still in a very early state. Many SCAs on
PQC are not yet evaluated and the current countermeasures usually use ad-hoc designs that
protect against individual SCAs but remain vulnerable against others. Tendayi et al. [Te21]
provide a multi-target and multi-tool platform to conduct test vector leakage assessment
for NIST candidates. Chowdhury et al. [Ch21a] give an overview of several PQC-related
SCAs. They discuss SCAs for the different categories of PQC algorithms, random number
generators and physically non-cloneable functions.

There are also efforts to minimize the attack surface in general [DA20; Kh18; Zh20b],
and other studies focusing on special types of attacks. Discrete Gaussian samplers are
shown to be vulnerable to SCAs in many cases, such as timing information leakage with
FPGA-based cumulative distribution tables (CDT) for discrete Gaussian samplers [Kh16],
and the so-called flush, Gauss, and reload attack [Gr16] using CDT or Bernoulli sampling.
Some of the most threatening discovered attacks include fault attacks on lattice-based
schemes, such as (first-order) randomizing, zeroing, and skipping faults [BBK16]; the
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singularity attack on multivariate PK schemes [Di20b] using a system of linear equations;
horizontal SCA on lattice-based algorithms [Ay18] estimating the secret key from a single
power measurement with very high success rates; differential power analysis [GSE20;
Ka18b], which shows that the security of a hardware implementation of SPHINCS-256 is
compromised, due to its stateless construction, and that SC information can successfully
recover the entire secret key from fewer than 30 observed Picnic signatures; correlation
power analysis (CPA) [Pa18], through which a secret leakage on Rainbow-like multi-layered
schemes is identified; improved torsion point attacks on SIDH variants [KP21] constructing
backdoors for curves and base field primes, which implies that some modifications for SIKE
should to be considered; single-trace SCAs [Am20; AR21] recovering the entire secret key
on NewHope [Al20b], and a large portion of it on NTRU; theoretical fault injection attacks
[Ta21], which can threaten SIKE. Moreover, electromagnetic (EM) SC assisted CCAs
over multiple LWE/LWR-based PKEs and KEMs [Pr21] lead to complete key-recovery on
lattice-based schemes. Additionally, the spatial dependencies, such as the dependency of the
secret key and certain registers, of cryptographic algorithms can be exploited with the help
of near-field micro-probes [An19]. However, multivariate signature schemes offer good
protection against fault attacks, as potentially harmful attack vectors only partially succeed
in recovering the key [KL19].

However, such attacks are not restricted to the new PQC algorithms, as they can still target
some of the standard building blocks in many of the old and new schemes alike. Single
trace soft-analytical SCA on KECCAK [KPP20] shows that is possible to exploit some
vulnerabilities on 8-bit microcontrollers. Countermeasures such as masking and hiding are
therefore recommended.

Downgrade Attacks Security protocols such as TLS may suffer from possible downgrade
attacks leading the communicating parties to fall back to earlier versions of the protocol
[LSH20]. This type of attacks could be especially exploited in the case of a downgrade
from PQC to classical cryptography. Crockett et al. [CPS19] distinguish between three main
cases, where the client, the server, or both are either aware or unaware of the new protocols.
This implies a possible downgrade on the side that is already using a new protocol.

5 Migration Process

We distinguish between two levels regarding the process of migration towards PQC. Those
being the migration of algorithms into existing cryptographic applications and security
protocols, and the migration of IT-systems and infrastructures.

Algorithm Migration Several approaches show special interest in hybrid KE methods
and hybrid combiners. The primary goal of these is to ensure that the desired security

914 Nouri Alnahawi et al.



On the State of PQC Migration 9

property holds as long as one of the component schemes remains unbroken [CPS19]. These
approaches use two or more independent algorithms chosen from both PQ, and classical
schemes. This way, it is neither necessary to fully trust the potentially outdated classical
scheme, nor the relatively new PQ scheme until it had proven secure enough.

An experiment with a hybrid approach on Google servers is presented in [Br16]. The
solution combines EC with NewHope. Another series of experiments presented in [KV19;
La16] compare hybrid PQ to non-PQ key agreement in TLS. First implementations and
case studies [CPS19; ZWH21] using TLS and SSH in OpenSSL reveal some challenges
regarding message size for the protocol itself. Crockett et al. [CPS19] suggest conveying
the cryptographic data either by extending the format of the protocol message, or through
concatenating the data into a single value. The method of combining also affects the security
and performance of the protocol.

A similar approach is proposed for IKEv2 [He19b; Zi15], showing the feasibility of hybrid
KE with NIST candidates. The use of lattice-based PQC algorithms with the Apache Kafka
Software using a hybrid approach [We20] shows that the performance of the hybrid solution
is as good as the slowest algorithm used within. The use of lattice-based PQC algorithms
for the industrial protocol Open Platform Communications Unified Architecture (OPC UA)
is examined in [PS20]. The approaches are feasible but result in additional performance
and communication overhead. Parallel usage of two independent cryptographic schemes
within public key infrastructures is also possible with X.509-compliant hybrid certificates
[Bi19a]. This approach enables a step-wise transition to PQ secure and hybrid algorithms.
There are also new models for KEMs and authenticated KE protocols [Bi19b], proposing
several combiners and a provably sound design for hybrid KE using KEMs. Fischlin et al.
[FLP14] state a notion for robust multi-property combiners and implement a combiner that
satisfies the strongest notion by preserving every property of the input hash functions. An
underrepresented approach is possible through the usage of composite key structures for
keys and signatures in PKCS#10, CMP, X.509, and CMS structures [OP20].

System Migration The migration process is not simply limited to algorithm exchange
or replacement. Updating a set of software applications, their implemented algorithms or
changing their underlying infrastructure requires a tedious process, which involves thorough
planning and execution over a specific period of time. This is especially challenging when
the systems to be migrated need to stay online and/or must maintain interoperability with
other systems that may or may not (yet) be upgraded [OP19]. Therefore, one cannot assume
a successful migration without considering the challenges related to the planned approach.
According to [OP19], one must first identify the domains and their respective priorities
in the planned migration. Moreover, there are interrelated dependencies that may not
be easy to resolve. Thus, the migration could prove difficult in IT-infrastructures with
security vulnerabilities, making them prone to failures. Several works recommend the use
of a cryptographic inventory and automated discovery tools as the first step of a planned
migration [BPS20; KNW18], which is also suggested by ETSI in their three-stage migration
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approach [ET20]. Fischer und El Bansarkhani [Qu21] propose a four-step process for the
PQC migration. It starts by detecting the affected components and assessing their PQC
readiness. Then, a risk analysis is conducted to prioritize the elements to be transitioned,
followed by the actual migration of the individual components to PQC.

6 Discussion, Conclusion and Future Work

We discuss our major findings and address open issues. We follow the same categorization
scheme presented in the structure of this paper and draw final thoughts and conclusions.

Towards New Standards The efforts undertaken towards establishing new cryptographic
standards are promising, yet still focus more on low level cryptographic primitives and
schemes. Following the third NIST PQC conference in June 2021, several algorithms
have been, and are still being continuously analyzed and benchmarked. Given the rigorous
selection process with worldwide participation and a current set of 15 finalists and alternative
candidates, there should be little doubt that we will soon have a set of vetted PQC algorithms
at our disposal. Many candidates have already proved acceptable replacements for different
classical schemes and showed capable of integration within specific cryptographic protocols
and applications utilizing them. However, this implies rather having a set of multiple
established algorithms to be used in parallel. Consequently, algorithm selection depends
greatly on other factors and future developments. Therefore, carefully selecting algorithms
for specific use cases will be an important topic in the future. Still, there is enough room for
further development to adapt to special requirements. However, there seem to be a lack of
interest in the strategies required to execute the actual migration on a more sophisticated
level of abstraction. The efforts made for testing, benchmarking or integration in new or
existing protocols consist mainly of independent research and draft proposals, which is not
sufficient for the overall migration process on a broader scale.

Performance Considerations As correctly assumed by NIST [NI16], the performance
assessment of cryptographic algorithms on specialized hardware platforms has shown to be
an important research question for the candidates of the standardization process. Depending
on the choice of algorithm and field, PQC can very well be a replacement for classic
algorithms. However, it is not very clear, which algorithms perform best in which situation,
moreover on which hardware platforms or for which application scenarios. Generally, lattice
and code-based algorithms proved more efficient in terms of speed than isogeny-based ones.
However, code-based algorithms need more memory. Lattice-based signature schemes also
proved more efficient in terms of speed than stateless hash-based schemes in scenarios with
strong latency. Special FPGAs are expected to improve the overall performance significantly,
but their usage is not always a valid option. Network devices have to handle the overhead
introduced by PQC and still provide acceptable latency. This also impacts end user devices,
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e.g. smartphones, which have limited power resources and are used in mobile networks.
For example, the overhead introduced by PQC is manageable in protocols such as TLS
and DTLS. On the other hand, larger key sizes lead to longer loading times, negatively
impacting user experience in lossy networks and web related use cases. This however, is
not the case for VPN, which is less impacted by PQC. Thus, the efficiency of PQC must
allow for usage within established and new application scenarios. Notably, IoT, which is
still an underrepresented field, is of special interest due to its restricted resources. So far,
lattice-based algorithms seem to be the best choice for such systems.

Security Considerations Due to the described performance challenges that come with
the new PQ algorithms, the choice of the algorithm parameters and key sizes play a vital
role in establishing security of a cryptographic scheme. Depending on the use case different
algorithms and/or set of parameters may be suitable. It is important to understand the trade-
off between security and algorithm requirements to be able to choose the right algorithms
and/or parameters for different use cases. Moreover, since some PQC algorithm aspects are
still fairly new and didn’t face enough scrutiny, the long-term security of these algorithms
remains unclear. Especially attack vectors like side channel attacks based on timing or power
consumption are still in an early state and pose a risk. A very special technique that has not
gotten enough research so far is the exploitation of location-based leakages. Some of the
biggest issues regarding the security are related to design aspects. Cipher-suite negotiation
determines an algorithm that all parties are willing to use. Downgrade attacks target these
negotiations to force a weaker security. Many vulnerabilities have been found and fixed,
but a crucial question remains, if less costly mitigation measures can be implemented that
impact the overall performance as little as possible.

Migration Process The most common difficulties arise from the integration of PQC
algorithms into existing protocols. The existing migration approaches address issues on
the implementation and communication levels and offer promising solutions for many
challenges; such as defining hybrid formats, algorithm negotiation and parameters. Many
of the NIST candidates prove suitable for usage in a hybrid scheme; nonetheless, some
protocols have size constraints that prevent some schemes from being used. A trade-off
between increasing the size limits and performance needs further investigation for more
precise results. Depending on the scenario, different design decisions are required.

On a broader scale, a full migration of IT-systems and infrastructures involves more complex
issues. Not all systems will be updated to PQ algorithms in time or cannot be updated at
all. Therefore, strategies on how to deal with these systems have to be developed. These
could be automation frameworks that are used transparently within protocols or systems to
manage their migration into PQC or ensure their security. Automated software is needed
in order to deploy PQC algorithms and protocols with minimum human interaction. This
is especially the case in larger IT-infrastructures such as data centers and cloud-based
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applications. Such software should be able to identify the currently used cryptographic
components. Automated tools could also support real-time analysis of an ongoing migration,
check for any weaknesses and verify the security of new PQC libraries. The aforementioned
issues clearly point out the importance of developing frameworks capable of managing,
executing and testing the various aspects within a migration process on different scales
and implementation levels. Our survey shows a lack of such automated software. Too few
projects and research dealing with these questions were found.

Conclusion Considering the expected rise of quantum computing, challenges posed
upon classical cryptography and the IT-systems using them will become tangible threats
jeopardizing the safety and security of IT-systems, applications and communication alike.
In this paper, we present a survey of the ongoing research efforts towards realizing PQC
in practice. Our findings indicate a major focus of the ongoing research on algorithms per
se, and the feasibility of migrating different cryptographic schemes and security protocols
with reasonable trade-offs regarding algorithm performance and communication efficiency.
Considerable work on the standardization and integration into established standards, such
as TLS, SSH, and X.509, has been done. It is nevertheless clear that the tasks involved in
the entirety of the PQC migration stretch over a wide range of sub-fields and PQC-related
categories. There are still many challenges and open issues that need to be addressed,
especially on levels above algorithm development. These include protocol design, migration
and deployment strategies, legacy systems, testing frameworks, and process automation.

Outlook The overview and findings at hand provide a starting point for providing answers
to the yet untouched issues. Identifying the challenges and open issues is, however, only the
first step in our research. Theoretical and practical case studies can be conducted to come up
with new ideas and solutions. We initiated an online project (https://fbi.h-da.de/cma),
inviting researchers to join us continuing the work started with the paper at hand. We are
also working on the development of solutions aiding the community in the transition to PQC
and achieving this migration (https://fbi.h-da.de/pqc). A first prototype of an easy-to-
use cryptographic interface called eUCRITE (https://fbi.h-da.de/eucrite), providing
minimal knowledge abstractions for both conventional and PQC functionalities is evolved.
Other projects under development include an automated cryptographic infrastructure
detection tool, a PQC testing framework, TLS 1.3 PQC integration evaluation, and a
code-binding generator for PQC algorithms based on an abstract meta-description language.
The next step of our endeavor is to utilize the gathered findings, knowledge and experience
throughout our research on the way towards usable and agile PQC.
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Cybersecurity ATHENE.
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Appendix

Categorization Scheme

Fig. 1: Categories of PQC Migration as defined by [OP19] (grey). Extensions derived by us from
[OP19] (dotted line). Further extensions by us (white and strikethrough).
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Survey Overview

Tab. 1: Survey Overview

NIST Candidate Algorithms
Basics of Post-Quantum Cryptography [Be09]
Current state of NIST standardization process [Al19; Ch16; Mo20; NI16]
Categories of PQC algorithms [GAB19; NW17; OP19]
Improvements for NIST finalists [Ab21; BKS19; Bo20; Co21;

DK21; He21a; HKP21; Ho20;
Ju21; KKP20; Pe20; ZSS20]

ALL NIST PQC finalists [Al20c; Al21a; Ar20; Au20;
Av21; Ba21a; Ca19b; Ch19;
Ch20; Ch21b; Co20; DA19;
DS05; Fo20; Za20]

Scheme Integration
Integration into existing tools [Bo15; Mi21; SM16]
Quantum safe MACsec [CS21]
Integration into DNSSEC [Mü20]
Handshakes with PQC [Az21; Ba21b; Fu18; Hü20;

KK18; MAY21]

RFC Drafts
Hash Signatures [Hu18; MCF19]
Hybrid KE schemes for TLS [CC20; SFG20; Wh17]
Shared secrets and QSH cipher-suite [SS17; SWZ16]
Hybrid key-exchange [CC20; Ka20]
IKEv2 [Fl20; Sm21; Tj19]

Other Algorithms
New class of signature schemes [Ch17]
Speed-up for CSIDH [CD20]
PKE using multivariate quadratic polynomials [Sa20]
Signatures and identity-based encryption [Be21]
PERN multivariate encryption scheme [YWT20]
Falcon Variants [Fo21; Th21]
Lattice-based KINDI-KEM [Dr21]

Algorithm Performance
Security levels and impact [Ba19; Da20; Fe20]
Lattice and code superior to isogeny [BRP20; PS20; We20]
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Hardware Performance
Hardware Implementations [CC21; CKY21; Da20; Fe20;

Ga18; Go21; Jo21; Ka19; Ko17;
Ku20a; Ma20; MK19; Ni21;
Su20; WS20]

FPGAs [Ba19; Da20; DMG21; HLX21;
KAK18; Ko17; Ku17; Ku20a;
TLW19; ZGF20]

Mobile Devices [Ri21; Si21]
IoT [AS20; De21; Hü17; Ne19]

Network Performance
Latency increased but acceptable [Ad19; Ka18a; Kw19; PST19;

SKD20a; SKD20b; SM16]
Hash-based crypto on embedded devices [Bü20]
VPN less impacted by PQC [KS19]
Experiments with various algorithms [He19a; KV19; PST19]
Lattice for blockchain networks [AK18; Ca19a]

Cryptanalysis
Broken NIST candidates [Di20a; DLW19; Sa19]
Code-based PRNG [Ku20b]
Attack mitigations [Cr20; JS19; PS13]
Avoiding synchronization failures [GFL19; Mc16]
Formal assessments [Al20a; BS20a; GKS20;

GMP21; KS20]
Lower bounds in lattice and code PQC [KL21]
Upper bounds for multivariate PQC [ØSV21]
Key recovery [SV20; TPD21]
Adaptive attack [FHR21]
Hybrid attacks on NTRU [Ng21]

Side-Channel Attacks
Attacks and their countermeasures [Ar21; BBK16; Ch21a; DA20;

Kh16; Kh18; Zh20a; Zh20b]
Successful attacks [Am20; An19; AR21; Ay18;

Di20b; Gr16; GSE20; Ka18b;
KPP20; Pa18; Pr21]

Potential threads [Al20b; KL19; KP21; Ta21;
Te21]
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Downgrade Attacks
Possible attack vectors [LSH20]
Missing protocol awareness [CPS19]

Algorithm Migration
Large scale experiments and benchmarks [Br16; KV19; La16]
Protocol Challenges [CPS19; ZWH21]
Hybrid and Combiners [Bi19a; Bi19b; FLP14; OP20;

We20]
IKEv2 feasible for PQC [He19b; Zi15]
Lattice-based PQC for OPC UA [PS20]

System Migration
Crypto inventory and automated discovery [BPS20; ET20; KNW18]
Stages in the process of the PQC migration [ET20; Qu21]
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