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Abstract: This paper re-examines the threat of spoofing or presentation attacks in the
context of automatic speaker verification (ASV). While voice conversion and speech
synthesis attacks present a serious threat, and have accordingly received a great deal
of attention in the recent literature, they can only be implemented with a high level
of technical know-how. In contrast, the implementation of replay attacks require no
specific expertise nor any sophisticated equipment and thus they arguably present a
greater risk. The comparative threat of each attack is re-examined in this paper against
six different ASV systems including a state-of-the-art iVector-PLDA system. Despite
the lack of attention in the literature, experiments show that low-effort replay attacks
provoke higher levels of false acceptance than comparatively higher-effort spoofing
attacks such as voice conversion and speech synthesis. Results therefore show the
need to refocus research effort and to develop countermeasures against replay attacks
in future work.

1 Introduction

Spoofing refers to the presentation of a falsified or manipulated sample to the sensor of
a biometric system in order to provoke a high score and thus illegitimate acceptance. In
recent years, the automatic speaker verification (ASV) community has started to inves-
tigate spoofing and countermeasures actively [EKY13, EKY"14]. A growing body of
independent work has now demonstrated the vulnerability of ASV systems to spoofing
through impersonation [FWAHOS8], voice conversion [PAB*05, BMF07], speech synthe-
sis [MHTK99, LAPY 10] and attacks with non-speech, artificial tone-like signals [AVE12].

Common to the bulk of previous work is the consideration of attacks which require ei-
ther specific skills, e.g. impersonation, or high-level technology, e.g. speech synthesis and
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voice conversion. With the noteworthy exceptions of [LB99, VL10], relatively little at-
tention has been paid to low-effort spoofing attacks such as replay. Replay attacks can be
performed without any specific expertise nor any sophisticated equipment. Since they are
the most easily implemented, it is natural to assume that replay attacks will be the most
commonly encountered in practice. Nonetheless, the threat of replay attacks has neither
been quantified using large, standard datasets nor compared to that of voice conversion
or speech synthesis attacks. This paper accordingly aims to re-assess ASV vulnerabilities
to replay attacks using the same ASV systems and corpora used in previous assessments
involving voice conversion and speech synthesis spoofing attacks. The results of this con-
tribution are in contrast to our original hypothesis that lower effort spoofing attacks are
less effective.

The paper is organised as follows. Section 2 describes an approach to simulate replay
attacks in order that their effect can be compared to those of voice conversion and speech
synthesis using the same corpora. A common experimental setup in which the vulnera-
bilities of six different ASV systems is presented in Section 3. Results are presented in
Section 4 and our conclusions and ideas for future work are presented in Section 5.

2 Replay attacks vs. high-effort spoofing

Replay is an example of low-effort spoofing attacks; they require simply the replaying of
a previously captured speech signal. Replay attacks can be realised with increasing ease,
considering the widespread availability of mobile devices with reasonable quality in-built
speakers (and microphones). The risk of playback attacks is even higher if recordings of a
speaker are publicly available.

When modelling a replay attack one should take into account the impact of the following
elements:

e acoustic effects introduced by the recording device;
e acoustic conditions in the environment where the voice was acquired;
e acoustic effects of the replay device, and the

e acoustic conditions in the environment where the attack takes place.

If x(t) is the speech signal of the client, the playback (spoofing) signal y(t) can be repre-
sented by:

y(t) = z(t) * mic(t) * a(t) * spk(t) * b(t) (1
where * denotes convolution, mic(t) and spk(t) are impulse responses of the microphone
and the speaker, respectively, and a(t) and b(t) are impulse responses of recording and

replay environments, respectively. In this study we consider the worst-case scenario,
in which the spoofer possesses high quality recordings of the client. The impact of the
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recording device and recording environment room can thus be neglected and Equation 1 is
simplified to:

y(t) = (t)  spk(t) = b(t) 2

Surprisingly, only few studies have been published so far on replay spoofing. The work
in [LB99] assessed the vulnerabilities of an HMM-based text-dependent ASV system
with concatenated digits. They showed that replay attacks are highly effective, but their
experiments related to only two speakers. In the study of [VL10] several playback cases
were analysed: recording using a close-talk or a far-field microphone and transmission
over an analogue or digital channel. Using their own corpus with five speakers the work
showed that a joint factor analysis (JFA) ASV system is vulnerable to replay attacks — the
FAR at the EER threshold increased from 1% to almost 70%.

In contrast, a great deal of attention has been paid to medium- and high-effort spoofing
algorithms — a thorough review of these can be found, e.g., in [EKY13]. They typically
used large corpora (such as the NIST databases). This paper aims to investigate the threat
of replay attacks with large databases and to compare the effectiveness of replay spoofing
with the most effective medium- and high-effort spoofing algorithms - voice conversion
and speech synthesis. These two attacks are described in the following.

2.1 Voice conversion

We used the approach to voice conversion originally presented in [MBCO0S5]. At the frame
level, the speech signal of a spoofer denoted by y(t) is filtered in the spectral domain as
follows:

Y(f) (©)

where H,(f) and H,(f) are the vocal tract transfer functions of the targeted speaker and
the spoofer respectively. Y (f) is the spoofer’s speech signal whereas Y”'(f) denotes the
result after voice conversion. As such, y(t) is mapped or converted towards the target in a
spectral-envelope sense, which is sufficient to overcome most ASV systems.

H,(f) is determined from a set of two Gaussian mixture models (GMMs). The first,
denoted as the automatic speaker recognition (asr) model in the original work, is related
to ASV feature space and utilised for the calculation of a posteriori probabilities whereas
the second, denoted as the filtering (fil) model, is a tied model of linear predictive cepstral
coding (LPCC) coefficients from which H,(f) is derived. LPCC filter parameters are
obtained according to:

M
Tfil = Zp(gz‘srwasr)u;il @

i=1
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Attack Naive impostor ~ Replay  Voice conversion  Speech synthesis
impostor’s . impostor’s .
h . 1 h
Speech used (genuine) client’s (converted) synthetic
Effort Zero low medium-high high
Effectiveness low )] high high

Table 1: Comparison of four different attacks in terms of speech used, required effort and effective-
ness.

where p(g! ., |yasr) is the a posteriori probability of Gaussian component g’ . given the
frame y,- and %, is the mean of component g%;, which is tied to g .. H,(f) is esti-
mated from x y;; using an LPCC-to-LPC transformation and a time-domain signal is syn-
thesised from converted frames with a standard overlap-add technique. Full details can be
found in [MBCO05, BMFO06].

2.2 Speech synthesis

There is a large variety of speech synthesis algorithms, such as formant, diphone or unit-
selection based synthesis. State-of-the-art text-to-speech systems use either unit-selection
or the hidden Markov model-based synthesis (HTS). Whilst the former requires large
amounts of speech data, the latter does not, and can therefore much more easily gener-
ate speech targeted towards a specific client.

Accordingly, in this paper we consider spoofing with HTS synthesis, following the ap-
proach described in [YNZ109], and using the HMM-based Speech Synthesis System
(HTS)'. Parametrisation includes STRAIGHT (Speech Transformation and Representa-
tion using Adaptive Interpolation of weiGHTed spectrum) features, Mel-cepstrum coeffi-
cients and the logarithm of the fundamental frequency (log F{y) with their delta and accel-
eration coefficients. Acoustic spectral characteristics and duration probabilities are mod-
elled using multispace distribution hidden semi-Markov models (MSD-HSMM) [RMS5].
Speaker dependent excitation, spectral and duration models are adapted from correspond-
ing independent models according to a speaker adaptation strategy referred to as con-
strained structural maximum a posteriori linear regression (CSMAPLR) [YKNT09]. Fi-
nally, time domain signals are synthesised using a vocoder based on Mel-logarithmic spec-
trum approximation (MLSA) filters. They correspond to STRAIGHT Mel-cepstral coeffi-
cients and are driven by a mixed excitation signal and waveforms reconstructed using the
pitch synchronous overlap add (PSOLA) method.

Thttp://hts.sp.nitech.ac.jp/
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2.3 Replay vs. voice conversion and speech synthesis

Table 1 shows a comparison of naive (zero-effort) impostors to replay, voice conversion
and speech synthesis, as well as with naive imposture. The attacks are ordered in terms
of the effort involved in each case. Replay attacks require slightly increased effort (need
for target voice acquisition and replay hardware). Voice conversion and speech synthesis
require specialised algorithms, in addition to appropriate hardware and parameters describ-
ing the client’s voice. They belong to a class of higher-effort spoofing attacks. While voice
conversion is still based upon the conversion of an original speech signal, speech synthesis
starts with text input. In this sense the attack requires the most effort of all to implement
successfully. One may reasonably suppose that the effectiveness of each attack is linked
to the effort involved; the higher the effort, the greater the impact on ASV performance.
We suppose that replay attacks are less effective — though the experimental validation is
lacking in the literature. This paper aims to assess this hypothesis.

3 Experimental setup

In the following we describe the ASV systems used in this study, the datasets, protocols
and metrics, and then the implementation of each of the different spoofing attacks consid-
ered, including playback.

3.1 ASV systems

We assessed the impact of each spoofing attacks on six popular ASV systems: (i) a stan-
dard GMM-UBM system with 1024 Gaussian components, (ii) a GMM supervector linear
kernel (GSL) system, (iii) a GSL system with nuissance atribute projection (NAP) used
for channel compensation [CSRS06], (iv) a GSL with factor analysis (FA) [FMST07],
(v) a GMM-UBM system with factor analysis, and (vi) a state-of-the-art iVector sys-
tem [DKD*11].

The iVector system employs intersession compensation with probabilistic linear discrimi-
nant analysis (PLDA) [LFM™ 12] with length normalisation [GREW11]. From here on in,
it is referred to as the IV-PLDA system. The ASV systems were tested with and without
normalisation. The [IV-PLDA system used symmetric score normalisation (S-norm) as de-
scribed in [Ken10], while the remaining systems utilised standard T-norm normalisation.

All ASV systems used a common speech activity detector which fits a 3-component GMM
to the log-energy distribution and which adjusts the speech/non-speech threshold accord-
ing to the GMM parameters [BBFT04]. Such an approach has been used successfully in
many independent studies [MCGBO1, FBKT08].

All ASV systems were based on the LIA-SpkDet toolkit [BSM108] and the ALIZE Ii-
brary [BSFMO04] and were directly derived from the work in [FMS07]. They furthermore
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used a common UBM with 1024 Gaussian components and a common feature parametrisa-
tion: linear frequency cepstral coefficients (LFCCs), their first derivatives and delta energy.

3.2 Datasets, protocols and metrics

All experiments reported below were performed using the male subsets of the standard
2005 and 2006 NIST Speaker Recognition Evaluation datasets (NIST 05 and NIST’06),
distributed via the Linguistic Data Consortium (LDC). NIST’05 was used for optimising
the ASV configurations whereas all results reported later relate to NIST’06, which was
used for evaluation only.

In all cases the data used for UBM learning comes from the NIST 04 dataset. Due to the
significant amount of data necessary to estimate the total variability matrix 7" used in the
IV-PLDA system, the NIST 06 dataset was additionally used as background data for de-
velopment whereas the NIST ‘05 dataset was used as backgroud data for evaluation. In all
cases the background datasets were augmented with the NIST’04 and NIST 08 datasets.
T is thus learned using approximately 11,000 utterances from 900 speakers, while inde-
pendence between development and evaluation experiments is always respected.

All experiments related to the 8conv4w-1conv4w condition where one conversation pro-
vides an average of 2.5 minutes of speech (one side of a 5 minute conversation). In all
cases, however, only one of the eight, randomly selected training conversations was used
for enrolment. Experimental results should thus be compared to those produced by other
authors for the 1conv4w-1conv4w condition. Standard NIST protocols dictate in the or-
der of 1,000 true client tests and 10,000 impostor tests for development and evaluation
datasets.

Given the consideration of spoofing, and without any specific, standard operating criteria
under such a scenario, the equal error rate (EER) is preferred to the minimum detection
cost function (minDCF) for ASV assessment. Also reported is the spoofing false accep-
tance rate (SFAR) for a false rejection rate (FRR) which is fixed to the EER of the baseline.

3.3 Spoofing attack

The setup of the four considered attacks is presented in the following, in the order of effort
required — from zero-effort naive impostors to high-effort speech synthesis.

The simplest, zero-effort attack consists in challenging the ASV system with the voice of
a naive impostor. This particular setup corresponds to the NIST baseline performance,
which was assessed according to the protocol described in Section 3.2.

To emulate replay attacks at the sensor level we reproduce the distortions caused by a
replay device and the effects introduced in typical acoustic conditions. We decided to
use the speaker of a popular smartphone brand as the playback device (with the impulse
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Norm | Attack GMM SGL SGL-NAP SGL-FA FA v

Naive impostor 9.08 7.89 6.35 6.08 5.60 3.04
No Replay 3291 28.50 28.73 2639  29.27 29.59
norm | Voice conversion || 31.48 36.94 30.44 30.23 23.16 2045
Speech synthesis || 39.90 14.66 13.83 11.98  30.81 10.92
Naive impostor 8.63  8.13 6.31 5.72 5.61 2.98
With | Replay 32.62 28.63 25.68 2425 2588 30.69
norm | Voice conversion || 33.69 36.92 27.58 2397 2396 19.30
Speech synthesis || 27.29 15.04 13.78 11.91 16.22  10.82

Table 2: EER values for different ASV systems for various spoofing attacks, without and with score
normalisation.

responses publicly available?) and an office room, as a likely environment for a spoofing
attack. The impulse response of the office room, sized 5.00m x 6.40m x 2.90m, with glass
windows, concrete walls, a carpet and typical office furniture, was taken from the Aachen
Impulse Response (AIR) database [JSVO09].

Voice conversion was conducted with our implementation of the approach originally pro-
posed in [MBCO05]. We again consider the worst-case scenario where the attacker/spoofer
has full prior knowledge of the ASV system, and so the front-end processing used in voice
conversion was exactly the same as that used for ASV. The filtering model and filter H,, ( f)
used 19 LPCC and LPC coefficients, respectively.

Speech synthesis attacks were implemented using the voice cloning toolkit® with a default
configuration. We used standard speaker-independent models provided with the toolkit
which were trained on the EMIME corpus [Wes10]. The adaptation data for each tar-
get speaker comprises three utterances (with transcriptions). Speech signals for spoofing
assessment are generated using arbitrary text similar in length to that of true client test
utterances.

4 Results

Table 2 shows EER results for replay and other attacks against the six various ASV sys-
tems, with and without score normalisation. The results for naive, zero-effort impostors
correspond to baseline performance of the examined ASV systems and are in line with
what can be expected from such systems in text-independent “one conversation” tasks —
the IV-PLDA system performs best (EER of 2.98% with score normalisation), while the
basic GMM-UBM yields the worst results.

For all other attacks presented in Table 2, all genuine client tests were unchanged, whereas
impostor tests were replaced with spoofed accesses. All systems are shown to be severely

2http://www.aaronbrownsound.com/
3http://homepages.inf.ed.ac.uk/jyamagis/software/page37/page37.html
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Figure 1: DET plots for GMM-UBM (left) and iVector-PLDA (right) systems.

sensitive to replay attacks — even for the most resistant (in terms of EER) GSL kernel
system with factor analysis and with T-norm, the EER rose to 24%. The GMM-UBM and
IV-PLDA systems yielded the worst results for replay — here the EER increased to more
than 30%.

The impact of voice conversion, despite demanding considerably more effort to imple-
ment, causes a similar degradation in performance to that of replay attacks, with the ex-
ception of the IV-PLDA system which is more resistant to voice conversion than replay
(19% EER vs. 31%, respectively). High-effort speech synthesis attacks proved even less
effective — the EER for the best [V-PLDA system reached only 10.82%. These observa-
tions are also illustrated through detection error trade-off (DET) plots* in Fig. 1.

For all the ASV systems, test or score normalisation mostly helped to decrease EER values
in the face of spoofing, e.g., for the factor analysis system the EER decreased from more
than 30% to around 16%. In contrast, in some cases, e.g., for replay attacks and the I'V-
PLDA and GSL systems, the EER slightly increased after applying score normalisation.

The ambiguous impact of score normalisation is also visible in Table 3. It shows the EER
and SFAR results for the simplest ASV system (GMM-UBM), the best system in the sense
of baseline performance (IV-PLDA), and the system which showed the best robustness to
replay attacks (GSL-FA). For calculating the SFAR result, the operating point was set to
the baseline EER of the given system. Surprisingly, the IV-PLDA system showed the
highest SFAR values for replay attacks — more than 80% of false acceptances, both with
and without score normalisation. The shape of the DET plot towards the low false reject
region in Fig. 2 confirms the high vulnerability of the IV-PLDA system to replay attacks
compared to other systems.

4Produced with the TABULA RASA Scoretoolkit (http://publications.idiap.ch/downolads/reports/2012/Anjos_Idiap-
Com-02-2012.pdf)
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EER (%) SFAR (%)

ASV Attack
no-norm nOrm | no-norm — norm
Naive impostor 9.08 8.63 9.08 8.63
GMM- | Replay 32.91 32.62 66.01 58.86

UBM Voice conversion 31.48 33.69 60.05 91.37
Speech synthesis 39.90 27.29 87.14 71.83
Naive impostor 3.04 2.98 3.04 2.98
IV- Replay 29.59 30.69 92.56 80.86
PLDA | Voice conversion 20.45 19.30 93.86 84.67
Speech synthesis 10.92 10.82 43.78 30.00

Naive impostor 6.08 5.72 6.08 5.72
SGL- Replay 26.39 24.25 60.91 60.49
FA Voice conversion 30.23 23.97 89.68 73.16

Speech synthesis 11.98 11.91 39.54 56.49

Table 3: Comparison of ASV performance in terms of EER and SFAR for the GMM-UBM, IV-
PLDA and SGL-FA systems (without and with normalisation) for various spoofing attacks. For
SFAR, FRR is set to the baseline EER.

— GMM-UBM [
-- sGL
SGL-NAP
----- SGL-FA
— FA 1
N-PLDA ]

False Acceptance Rate [in %]

False Rejection Rate [in %]

Figure 2: DET plots for replay attack challenging six various ASV systems, with test/score normal-
isation.
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Figure 3: EER results for iVector-PLDA system against spoofing attacks with various effort level

5 Conclusions

This paper re-assesses the threat of replay attacks against automatic speaker verification
(ASV) systems. The work was performed using simulated attacks and with large, standard
NIST speaker recognition corpora and six ASV systems.

Despite the lack of attention to replay attacks in the literature and contrary to our hypoth-
esis, results show that low-effort replay attacks pose a significant risk, surpassing that of
comparatively high-effort attacks such as voice conversion and speech synthesis. Wor-
thy of note is the performance of the state-of-the-art iVector-PLDA system which, despite
showing the best baseline performance, is the most vulnerable to replay attacks, especially
for FARs below 10%.

Future work should thus pay greater attention to replay attacks and, in particular, suitable
replay attack countermeasures. The assumption that higher-effort attacks pose the greatest
threat might be ill-founded. Given that the implementation of replay attacks demands
neither specific expertise nor any sophisticated equipment, the risk to ASV is arguably
greater than that of voice conversion and speech synthesis which currently receive the
most attention in the literature. Future evaluation should not only consider the threat of
any particular attack, but also the ease with which they can be performed. We suggest that
a risk-based approach should be adopted.
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