Towards Adaptive Management of
QoS-aware Service Compositions - Execution Strategies:

Mariusz Momotko!, Michat Gajewski!, André Ludwig?,
Ryszard Kowalczyk3, Marek Kowalkiewicz?, Jian Ying Zhang3

'Rodan Systems S.A., ul. Pulawska 465, 02-844 Warsaw, Poland
{Michal.Gajewski, Mariusz.Momotko } @rodan.pl
2 University of Leipzig, Marschnerstr. 31, 04109 Leipzig, Germany
ludwig @wifa.uni-leipzig.de
3 Swinburne University of Technology, PO Box 218 Hawthorn, Victoria 3122, Australia
{jyzhang, rkowalczyk } @it.swin.edu.au

4 Poznan University of Economics, Al. Niepodleglosci 10, 60-967 Poznan, Poland
M.Kowalkiewicz @kie.ae.poznan.pl

Abstract. Service compositions enable users to realize their complex needs as a
single request. Despite intensive research, especially in the area of business
processes, web services and grids, an open and valid question is still how to
manage service compositions in order to satisfy both functional and
non-functional requirements as well as adapt to dynamic changes. In this paper
we describe an approach towards adaptive management of QoS-aware service
compositions. This approach integrates well known concepts and techniques
and proposes various execution strategies based on dynamic selection and
negotiation of services, contracting based on service level agreements, service
enactment with flexible support for exception handling, monitoring of service
level objectives, and profiling of execution data.

1 Introduction

Users want to realize their needs as simply as possible and, therefore, look for
sophisticated services that would handle compound needs related to their life events
or business activities as a single request. One of the most promising approaches for
such sophisticated services is to implement them as compositions of other, simpler
services (referred further to as atomic services).

In the last decade, huge effort has been put into developing solutions targeting
management of service composition, especially in the area of web services and grids.
As its result, a number of new standards on various aspects of service composition
management have been defined. In Web Service Business Process Execution
Language (WS-BPEL) OASIS standardised a language to define service

1 This paper presents results of the Adaptive Services Grid (ASG) project (contract no
004617, FP6-2003-IST-2) funded by the Sixth Framework Programme of the European
Commission.

110



compositions. In Web Service Quality Model (WSQM) OASIS also proposed a
quality model and a set of quality factors for web services. One of the recent OASIS
standards is Web Service Distributed Management (WSDM) which enables
management applications to be built using Web services, allowing resources to be
controlled (and monitored) by many managers through a single interface. Now,
OASIS is working on Web Service Quality Description Language (WS-QDL) which
will describe WSQM in a standardised type of XML representation. At the same time,
IBM corporation defined Web Service Level Agreement (WSLA) — a language to
represent service level agreement (SLA) for web services. Recently, GRAAP working
group of the Global Grid Forum has prepared a draft version of a WS-Agreement
specification which describes domain-independent elements of a simple contracting
process, extensible by domain specific elements.

Focusing on adaptive management of service compositions, several intensive research
works have been carried out recently. The eFlow project at HP labs [CIJKMMCO00]
proposes an adaptive and dynamic approach to manage service compositions focusing
on their functional aspects such as dynamic service discovery and ad-hoc changes.
The QUEST framework [GNKCWO03] extends the work done on eFlow introducing
quality of service (QoS) provisioning. In this framework, contracting of service
compositions and atomic services is done by SLA documents. The MAIS project
[CPO5] focused on negotiation of web service QoS parameters with the ability to use
different negotiation strategies. In the area of SLA-based contracting and monitoring,
there are several advanced approaches and frameworks such as those presented in
[SB04] and [BGOO06].

Despite all this efforts, still an open and valid question is how to manage service
compositions in order to satisfy both functional and non-functional requirements
properly as well as adapt to dynamic changes. So far, adaptability in the existing
approaches and tools is weak or inadequate. They do not work well in case of
dynamic changes related to the contracted atomic services. In case of failures they
have problems with finding alternative solutions that would satisfy both functional
and non-functional requirements. In particular, they are not able to: re-negotiate a
contract in case of QoS constraint violation, and re-select dynamically another atomic
service that satisfies QoS constraints. In addition, the existing approaches do not pay
too much attention on service profiling and historical execution data and therefore
they are not able to optimise their way of working.

To address this problem we propose a comprehensive approach towards adaptive
management of QoS-aware service compositions. It integrates well known concepts
and techniques and proposes various execution strategies based on dynamic selection
and negotiation of services included in a service composition, contracting based on
service level agreements, service enactment with flexible support for exception
handling, monitoring of service level objectives, and profiling of execution data. Also
in the area of technologies we integrate existing solutions such as agent technologies
for negotiation, SLA management, business process/workflow management, and QoS
monitoring based on SLAs.

111



The paper is organised as follows. To introduce the approach and show its potential
benefits, section 2 presents a usage scenario based on a dynamic supply chain for
internet services. This scenario is implemented in the Adaptive Service Grid (ASG)
project [ASG]. Then the approach is described in detail in section 3. This section
defines execution strategies for service compositions identifying main tasks and
showing how these tasks may be organised to assure adaptability. In addition this
section describes basic representations of service compositions. The paper closes with
a conclusion and an outlook of future work.

The concepts proposed in this article have been used to design an open architecture
for adaptive service composition management (presented in another article submitted
to ICSOC’2006, Industrial track). This architecture has been implemented
prototypically in Adaptive Service Grid, a European co-founded project.

2 Example Scenario

To introduce the approach and to show its potential benefits we start from a simplified
description of a Dynamic Supply Chain for Internet services provision (referred later
to as DSC scenario), which is a usage scenario that describes a system for automated
Domain Name registration and provisioning of Webspace, based on the ASG
platform. Services include Domain Name checking, creation of web hosting accounts,
registration of domains and so forth. A complete scenario description can be found on
the ASG project website [ASG]. Here, we blind out details such as dynamic
composition of new supply chain processes and focus on integration of quality of
service aspects.

In the DSC scenario composite services composed of a number of atomic services are
offered to the end customer. Since individual service requests differ in terms of
service quality requirements, execution cost limitations etc. the ASG platform needs
to dynamically decide which composition of services is most valuable to a requester.
A sample request may be “Provide a service for Domain Name registration,
Webspace provision, payment etc. whereas the service needs to be available in less
than 60 time units (TU) and costs for setting up this services must be below 15
monetary units (MU)” (initial state request and goal). Based on this information the
ASG platform composes a composite service specification that can fulfil the initial
state request. Figure 1 shows the composite service specification composed by ASG
for the received request.

Services such as CheckDomain can be provided by several candidate service
providers (e.g. Denic, UnitedDomains, and domainPro) while other services can only
be provided by one service provider (e.g. CreateWebhostingAccount). Beside that,
some service providers are able to adjust QoS values like duration of execution of
their services while others are not. In some cases, duration of services may be
dependent on various external factors, and therefore not fixed. By analogy, some of
the service providers are able to quote different prices/costs while others only accept
fixed prices/costs. Hence, QoS parameters and costs are variable or fixed and

112



negotiable or non-negotiable. The CheckDomain service can be delivered at different
QoS levels, i.e. different durations (DurationX, DurationY, etc.) and costs (CostX,
CostY, etc.), and various combinations of them while the CreateWebhostingAccount
service has a fixed duration of less than 5 TU and costs of 0.50 MU.

Since a service composition specification includes neither conditional nor alternative
branches the ASG platform decides to apply the first-contract-all-then-enact strategy
(compare rules for selection execution strategies given in table 2). Since a composite
service specification is just a logical composition of necessary services specifications
in a second step the ASG platform needs to select executable service implementations
from a potentially high number of service providers before it is able to enact the
service composition. In order to fulfil this complex task of end-to-end QoS
management and service selection, the ASG platform makes use of negotiation for
finding the most suitable configuration of QoS parameter values for all included DSC
services.

Fig. 1. End-to-end QoS requirements in composite services (before negotiation)

One of the main problems in this area is the decomposition of QoS parameters onto
the services involved in the composite services and their optimization to fulfil the
reseller’s business requirements. In the example in figure 1 the overall maximum
duration is less then 60 TU, the CreateWebhostingAccount service takes up to 5 TU,
the CreateDomain service takes up to 30 TU and so forth. Negotiation must find
service implementations for CheckDomain, RegisterDomain, and CreditcardPayment
that take as little time that the maximum duration threshold of 60 TU holds. Figure 2
presents a possible solution found by negotiation to meet the above described
constraints.

113



F ived Gos Hagrhartesd (ot

Fig. 2. Duration configuration that meets overall duration threshold (after negotiation)

As stated above the services involved in the DSC scenario are provided externally by
service providers. Hence, the possibility to maintain the quality of service provision is
outside the influence of the ASG service composition provider and the responsibility
of external service providers. In consequence it may happen that services are not
satisfying in means of agreed quality, i.e. duration of the denic:CheckDomain service
is higher than 1 TU. While individual compensation mechanisms such as payment of
penalties are an important instrument to deal with such violations with external
service providers, the contractual obligations with the end customer demand urgent
exception handling such as dynamic replacement of the faulty service. Since end-to-
end QoS requirements are still valid for the service composition, dynamic re-selection
mechanisms must be applied to find an alternative candidate for the service to be
replaced. As an example the CheckDomain services can be provided by different
service providers as well, i.e. UnitedDomains and domainPro (see figure 1). Denic
was initially chosen to be the involved service provider with service duration of 1 TU
and costs of 0.5 MU.

The replacement service of the CheckDomain service provided by UnitedDomains or
domainPro may not have the same service qualities but it must be ensured that the
end-to-end QoS requirements of the service composition are still fulfilled. The
process of dynamic re-selection is driven by re-negotiation, essentially a negotiation
with the goal of fulfilling overall QoS requirements. Re-negotiation may have chosen
UnitedDomains’ replacement candidate service CheckDomain which has a duration of
3 TU and costs of 1 MU which results in 57 TU and 14.5 MU for the overall service
composition. The resulting loss in benefits of the service composition provider may at
least partially be compensated by penalties claimed from the service provider Denic
of the faulty service.

3 Execution Strategies for Service Compositions

After introducing the main concepts via example scenario, now we would like to
focus on ‘dynamics’ of service execution and discuss execution strategies. We start
from describing the basic tasks which are common to all presented strategies. Then
we present the strategies themselves discussing their advantages and disadvantages.
Afterwards, we identify several simple rules for the selection of the most appropriate

114



strategy to execute a service composition. Finally, we describe basic representations
of service compositions based on WS-BPEL.

3.1 Basic Tasks

There are many possible strategies for executing a service composition. However,
there is a common feature of all possible strategies - they are built on the top of basic
tasks. These tasks: concern a single atomic service and are described in the
consecutive sections.

3.1.1 Service Selection and Contracting (SC)

Before execution, a service included in a service composition is expressed as an
atomic service specification (see section 3.4), not a concrete service implementation.
This specification describes the functional and non-functional requirements of the
service as well as the structure of its input and output parameters. In general, there
may be more than one atomic service implementations that match this specification.
Therefore, we need to have a mechanism to select the most appropriate service
implementation. This selection is done as follows. First a service registry is asked to
provide a list of all possible service implementations that match functional
requirements of a given service. In the next step this list is filtered (through
comparison or negotiation) and those implementations which do not satisfy
non-functional requirements (i.e. QoS constraints) are rejected. The non-functional
requirements for an atomic service are determined on the basis of non-functional
requirements defined for the whole service composition as well as information on
QoS parameters if already contracted for other atomic services included in the
composition. According to the selected strategy, the algorithm for calculation of the
QoS constraints for an atomic service may vary. In addition, some QoS constraints
may depend on QoS parameters extracted from service profiling data. For example,
the QoS constraints defined for a given atomic service may be as follows: execution
cost less than 5 MU, duration not greater than 10 TU and provider reliability higher
than 85%.

Moreover, some services may declare (during service registration) that some/all QoS
parameters which they provide may be negotiable. This is especially useful when
there are some service implementations that satisfy functional requirements but none
of them satisfies all non-functional requirements. In that case the service composition
provider can negotiate some/all QoS parameters with the atomic service providers.
For instance, we have three possible service implementations: X (0.3 MU <execution
cost <1 MU, execution duration <1 TU, both negotiable), Y (execution cost =2 MU,
duration < 0.5 TU, both not negotiable), Z (execution cost = 3 MU, duration < 0.2
TU, both not negotiable), and it is needed to have a service implementation that
satisfies the following non-functional requirements: cost <0.5 MU and duration <1
TU, then we may try to negotiate with X for its execution cost. Some possible ways
how such negotiation may be done: a) ask X provider to lower the cost — maybe at the

2 The tasks which are not directly related to execution of a service composition have been
omitted (e.g. registration or un-registration of an atomic service)

115



moment the service implementation is able to offer a lower price, b) as a) but we offer
that if X provider lowers the price, then the service composition provider will select it
more often than the other service implementations (i.e. in the next selections).

For negotiation, we use agent-based negotiation techniques [Br05]. Negotiation of
QoS parameters for each service is performed with its candidate service providers
according to the FIPA Iterative Contract Net Protocol (ICNP) [FIPA] in coordination
with each other. The negotiation agents act on behalf of service consumer to negotiate
with different service providers, These agents consist of one coordinator agent, and
many negotiator agents.. The coordinator agent is responsible for coordinating
concurrent negotiations of all atomic services in the service composition. Each
negotiator agent (on behalf of service consumer) is responsible for negotiation for one
atomic service in the service composition. These negotiator agents are coordinated by
the coordinator agent in order to ensure end-to-end QoS. On the service providers'
side, all proxy agents are negotiation engines, each representing one service provider.
Normally, for one atomic service, there may be more than one service provider who
can offer the same functionality (service), with different QoS. The proxy agent
interacts on behalf of one service provider with the same service consumer's
negotiator to determine QoS values for that atomic service. The negotiation agents
follow ICNP and make negotiation decisions according to their private negotiation
strategies in order to best satisfy their users’ (service consumer) objectives,
preferences and constraints on end-to-end QoS. The negotiation model is based on the
principles of multi-attribute utility theory, and involves different negotiation strategies
[ChO6] such as concessions and trade-offs, as well as on-line and off-line opponent
modelling [BK06] based on the profiling data.

3.1.2 Service Execution and Monitoring (EM)

The service implementation chosen during selection and contracting may be
executed. All service input parameters are evaluated and, together with a reference to
the agreed SLA document sent as a request to the service implementation. After
completing a request all results are collected and, if appropriate, passed to the next
atomic services within the service composition.

During invocation of the service implementation, it is also monitored. Periodically
(according, for example, to expected duration of the service invocation determined on
the previous service executions), the service provider is asked to complete data on
QoS parameters which it is responsible to provide (monitor). This data is then
completed with the other QoS parameters which are either provided (monitored) by
the service composition provider or determined on the basis of already known values
of other QoS parameters. All merged information is entered to the SLA document and
verified against QoS constraints. If any of the QoS constraint is violated, a service
execution exception is thrown. Also, if the service invocation fails because of other
reasons (e.g. lack of required resources, runtime exception, etc.), a service execution
exception is thrown as well.

No matter what was the exact result of service invocation (execution failure, success
etc.), all events and notifications along with workflow logs from the service

116



execution, are sent to a service profiler. This profiler uses this data in order to create
up-to-date profiles of service implementations based on the data about service
instances at two levels: compound service level and atomic service level. When
creating profiles, different types of execution data are used. Service profiler does not
analyze service results data, however information from service execution (start time,
finish time), service exceptions (critical errors, warnings), and service execution
states for interleaved monitoring (for example to monitor execution duration time, to
check if SLA agreement has been broken). So far, we consider the following profiling
parameters (see table 1). Provider reliability and provider accessibility informs about
average reliability and accessibility of all services offered by a particular provider.

Table 1. An initial list of profiling parameters

Parameter name (compliant with WSQOM) Value type
ResponseTime (Avg/Min/Max) Time (ms)
ExecutionDuration(Avg/Min/Max)=ResponseTime+Network delays Time (ms)
Price (Avg/Min/Max) Cost (MU)
Reliability = #failed executions / #total executions Percentage
Accessibility = #successful executions / #total executions Percentage
ProviderReliability / ProviderAccessibility Percentage

3.1.3 Exception Handling (Ex)

If a service execution exception is thrown, then the service composition provider tries
to find another atomic service implementation which can satisfy functional and
non-functional requirements. It should be underlined, that after such a failure, the
non-functional requirements will probably be more restrictive than they were when
the service invocation had been started (e.g. constraints on duration). To find another
service implementation, we propose the following options. 1) if the source of
exception was violation of a QoS constraint, then the service composition provider
tries to re-negotiate the contract with the current atomic service provider (and
possibly with other service providers affected by the exception). The (positive) result
of such re-negotiation is an updated SLA document. 2) if it was not possible to
re-negotiate the contract or the source of the failure was related to a functional
problem, then the service composition provider tries to re-select a replacement from
other atomic service providers that match the service specification and new
requirements. Also new service implementations registered after starting invocation
of the atomic service may be taken into consideration. 3) if such reselection fails then
the service composition provider tries to negotiate the contract in the same way as it is
described for service selection and contracting activity. If neither selection nor
negotiation is successful, the Service execution subsystem throws exception. In this
case, using re-planning features, the service composition provider can try to continue
service execution with its new definition as it has been described in details in [We05].
Finally, if after the effort above, an alternative solution still could not be found, then
the customer is informed that his/her request can not be satisfied.

117




3.2 Execution Strategies

The basic tasks described in the previous sections are used to define execution
strategies. The number of tasks used in a strategy depends on the strategy itself, and
on the number of atomic services included in a given service composition. As usual,
there is no one optimal strategy. Every strategy focuses on different aspects of service
executions and has both advantages and disadvantages. Two basic (quite opposite)
execution strategies (see also [ZBLNHO03]) and three intermediate execution strategies
are described in the consecutive sections.

sC Step 1 I\ @ 'I Step 2

Fig. 3. The concept of the basic strategies: first-contract-all-then-enact (left) and step-by-step-
negotiate-and-enact (right).

3.2.1 First-contract-all-then-enact Strategy

This strategy assumes (see figure 3, left side) that selection and contracting of all
atomic services included in the service composition is done before its execution.
Execution and monitoring of the individual atomic services is done step by step
according to the control flow defined for the service composition. Any failure
reported during service execution is handled by exception handling mechanism
described in the previous sections.

This strategy makes it possible to guarantee non-functional requirements for the
whole service composition (global level). Since contracting is done before execution,
concurrent selection and negotiation is allowed. As a result, it is possible to consider
aggregated concessions and preferences (e.g., if the same provider provides services
for several atomic services, then some discount may be regarded), so that the service
composition QoS parameters can be optimised.

On the contrary, in this strategy all the activities on conditional branches need to be
selected and contracted although some of them may never be enacted. A reservation
mechanism is needed. Also service implementations registered during service
execution cannot be selected. Finally, the strategy requires coordinated negotiation
mechanisms with a coordination agent and a set of negotiation agents.

3.2.2 Step-by-step-contract-and-enact Strategy

This strategy assumes (see figure 3, right side) that selection, contracting and atomic
service execution is intertwined. That is, the first atomic service in the service
composition can be executed and monitored when its SLA document is established.
After completion of this atomic service, the selection and contracting is carried out for
each subsequent atomic service and followed by its execution. Any failure occurred

118



during service execution is handled by exception handling mechanism described in
the previous sections.

This strategy allows for on-the-fly selection and negotiation based on results and
actual QoS values of services that have been executed. This will lead to more accurate
and efficient negotiation since it is based on what it had been done for the executed
services. Only the invoked atomic services are contracted, not executed branches of
service composition are not considered. Also it is possible to select atomic services
that have been registered after starting execution of the service composition.

On the contrary, the strategy can only optimise QoS for a given atomic service (local
level). As a result, the global QoS requirements can not be optimized. Local
constraints need to be provided — but if it gets a list of providers satisfying local
constraints then there is a risk of missing their combinations. Instantiation and
execution of the whole service composition can not be guaranteed (i.e. a service
implementation is executed but it may be impossible to select and contract a
subsequent service implementation) thus failing the whole service composition and
wasting already executed services (need for un-doing the services).

3.2.3 Other Strategies

The late-contracting-then-enact strategy assumes that the selection and contracting
of atomic services is done before their execution, as soon as it is sure that they will be
executed within a given composition. If, for example, there are two alternative
branches, as soon as it is known which of them will be taken, all atomic services on
the satisfied branch are selected and contracted. Execution of the atomic services is
carried out according to the control flow definition. This strategy is similar to the
first-contract-all-then-enact strategy but minimises the risk in contracting services
which will never be executed. The risk to not satisfy the global QoS requirements is
less than for the mentioned strategy but still exists.

The first-contract-plausible-then-enact strategy tries to select and contract first
(before service composition execution) all atomic services that belong to the
composition path which is the most likely to be executed. The path is predicted on the
basis of historical data from previous executions of the service composition. The
services that belong to other paths are not selected and contracted. Execution of the
atomic services is carried out according to the control flow definition. This strategy
minimises the risk of a) contracting services that will never be executed, b) satisfying
the global QoS requirements. However, it will work properly only for that cases in
which execution concerns the most probable path in the composition. For the other
paths it will have similar problems as the step-by-step-contract-and-enact strategy.

The first-contract-critical-then-enact strategy selects and contracts before
execution only those atomic services which are hard to be contracted dynamically.
‘Hard’ in this context means that the number of service candidates for those service
specifications is significantly lower than the number of candidates for the other
services included. This strategy is similar to the step-by-step-contract-and-enact
strategy but reduces the risk of not satisfying the global QoS requirements. On the
other hand, it also does not cope with branches which will never be executed.

119



3.3 Rules for Selection of Execution Strategies

As was stated earlier, there is no one optimal strategy. However, for some service
compositions, there are simple rules which help to select the most appropriate
strategy. These rules (see table 2) are based on analysing the control flow of a given
service composition, previous executions, non-functional requirements and included
atomic services (their profiles).

Table 2. Several simple rules for selection of the execution strategy.

If service composition includes Then apply strategy

neither conditional nor alternative branches First-contract-all-then-enact

A small # of conditional/alternative branches (e.g. < 10) | Late-contracting-then-enact

just one path with high probability of execution (e.g. 0.9) | First-contract-plausible-then-enact

atomic services which may be easily contracted (i.e. | Step-by-step-contract-and-enact
from previous executions we know that for all included
atomic services no negotiation was needed).

Significant number of services (e.g. 10) which are ‘hard’ | First-contract-critical-then-enact
to contract (please refer to section 3.2.3).

3.4 Representations for Service Compositions

Specification of a service composition is provided at the design phase of adaptive
management of service compositions. This specification describes the composition in
terms of control flow (i.e. the order of the invoked atomic services) and data flow
(mapping between input and output parameters of atomic services). This specification
operates on classes of atomic services, instead of concrete services (compare the DSC
specification provided in figure 1). Basically, such a specification provides a solution
to satisfy all (static) functional requirements (classes of atomic services that together
satisfy them) and leaves flexibility during processing a request (i.e. execution of the
composed service) to select and contract concrete atomic services of given service
classes that also satisfy its (dynamic) non-functional requirements.

Making the service composition specification generic is very useful, but on the other
hand prevents it from using standard execution engines that process WS-BPEL
processes. In order to cope with this problem we propose an intermediate solution
based on the concept proposed in [AADH]. We represent the specification as a
WS-BPEL process and, instead of invoking concrete atomic services, we invoke
concrete brokers (services) for atomic service classes. Every atomic service class
has its own broker. Such a broker has input and output parameters as every concrete
service of this class. In addition, it receives as an input parameter a set of
non-functional requirements that makes it possible to choose an appropriate atomic
service of a given class.

The way of using service composition specification at the execution phase depends on
the applied execution strategy. For the execution strategies which carry out
contracting of more than one atomic service before their enactment (e.g. first-
contract-then-enact), the specification will be analysed by service selection and

120




contracting component (based on WS-BPEL) in order to contract appropriate atomic
services. After that, the input parameter representing non-functional requirements will
be replaced with information of the selected atomic service and a reference to the
agreed contract (SLA document). For the other execution strategies, which intertwine
contracting and enactment, the specification will be interpreted by service enactment
component (again based on WS-BPEL) which will invoke appropriate service class
brokers. These brokers will be responsible for organising selection and contracting
and then assure appropriate invocation and monitoring.

History from execution of a service composition is represented as a service
composition execution. This includes basic information about service composition
and invoked atomic services (transformed information from invocation of service
class brokers) in the form of a workflow log. This log is used for service profiling.

4 Conclusions

Adaptive management of service compositions is an area of web services research
that has recently been attracting more and more attention. The most important
questions stimulating research in this area include proper management of service
compositions in order to satisfy not only functional requirements, but also non-
functional ones. Another important issue is adaptation to dynamic changes in the
service environment, which so far has not been researched to a satisfactory extent,
and there is still a place for improvement of current methods and tools. The work in
the Adaptive Services Grid project, described in this paper, is aiming at solving the
stated problems and bringing research results from existing, well developed areas into
the field of web services. The work in the ASG project has resulted in implementing
the DSC scenario, which shows a potential of adaptive management of services
compositions. In our work, in order to propose an open, comprehensive platform for
adaptive management of QoS aware service compositions, we integrated concepts
developed in different research areas and proposed mechanisms for dynamic selection
and negotiation of services, contracting based on service level agreements, service
enactment with exception handling, monitoring of service level objectives, and
profiling of execution data.

Some issues have still not been resolved. The approaches towards QoS-aware
adaptive process management may be lacking some features that are crucial in a real
business environment. We are investigating what negotiation features are crucial in a
complete platform for web service composition that could be applied in real business
scenarios. Another unresolved problem, especially in terms of business applications,
is the transparency of the service management platform. In most cases of service use,
it is required that reactions are instant and without any delays. The ASG platform, as
an entity between atomic service providers and customers has to be as transparent as
possible in terms of execution delays, costs and so on.

As future steps and future research directions, we plan to further extend the DSC

scenario, include selected Quality of Results parameters that could be potentially
negotiated. We believe that proposing a comprehensive solution for adaptive process

121



management, along with proof-of-concept solutions of selected issues will help better
understand the nature and challenges of Services Oriented Architecture and in a result
facilitate development of SOA applications in the future.

References

[AADH]

[BGOO06]

[Bro5]

[BKO6]

[CHKMMCO00]

[CPO5]
[GNKCWO03]

[ASG]
[FIPA]

[ChO6]

[SB04]
[We05]

[ZBLNHO3]

Aalst, W.M.P. van der, Algred, L., Dumas, M., Hoefstede, A.H.M. ter,
Design and implementation of the YAWL system, available via
http://www.yawl.fit.qut.edu.au/yawldocs/yawl_system.pdf.

Bostrom, G., Giambiagi, P., Olsson, T.: Quality of Service Evaluation in
Virtual Organizations Using SLAs. submitted to 1* Workshop on
Interoperability Solutions ~ to Trust, Security, Policies and QoS for
Enhanced Enterprise Systems, 2006.

Braun, P., et al.: E-Negotiation Systems and Software Agents Methods,
Models, and Applications. In i-DMSS: Foundations, Applications
and Challenges. UK, 2005.

Brzostowski, J., Kowalczyk, R.: Predicting partner's behaviour in agent
negotiation. AAMAS2006, Japan, May 2006. (in press).

Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Ming-Chien Shan, M.,
Ch.: Adaptive and Dynamic Service Composition in eFlow. HP
technical Report, 2000.

Comuzzi, M., Pernici, B., An Architecture for Flexible Web Service QoS
Negotiation, EDOC, 2005.

Gu, X., Nahrstedt, K., Chang, R., Ward, C.: QoS-assured service
composition in managed service overlay networks. DCS’2003.
Integrated Project “Adaptive Services Grid”, http://asg-platform.org

FIPA Iterated Contract Net Interaction Protocol Specification available
online at www.fipa.org/specs/fipa00030/XCO0030F.pdf.

Chhetri, M., et al.: Experimentation with three different approaches of
Automation Negotiation. SOCABE2006, Japan, May, 2006 (in
press).

Salle, A., Bartolini, C.: Management by Contract, HPL-2003-186, HP labs,
2004.

Weske, M., et. al.: Dynamic Failure Recovery of Generated Workflows.
DEXA’2005, BPMPM Workshop, 2005.

Zeng, L., Benatallah, B., Lei, H., Ngu, A., H., H., Flaxer, D., and Chang,
H.: Flexible composition of enterprise web services. Electronic
Markets - Web Services, 2003.

122





