
Integration and Cooperation of Media Types

Hui Ma1, Klaus-Dieter Schewe1, Bernhard Thalheim2

1Massey University, Information Science Research Centre
& Department of Information Systems

Private Bag 11222, Palmerston North, New Zealand
[h.ma|k.d.schewe]@massey.ac.nz

2Christian Albrechts University Kiel
Department of Computer Science and Applied Mathematics

Olshausenstr. 40, D-24098 Kiel, Germany
thalheim@is.informatik.uni-kiel.de

Abstract: Media types are a core design construct in the co-design approach for
web information systems (WISs). They provide abstract means for describing content,
functionality, context and adaptivity to user preferences and intentions, end-devices,
and channel limitations. Basically, a media type is a view that is extended by opera-
tions and cohesion. Thus, the problem of integrating these extended views is a core
design problem for WISs.

In this paper we develop formal transformation rules for media type integration
that are embedded in a pragmatic method addressing how they should be applied for
integration. They extend view integration rules in such a way that operations and
cohesion are dealt with simultaneously.

Cooperation provides an alternative to integration in which the integrated view is
only virtual, i.e. the constituating views are kept and exchange functions are designed
to provide the same functionality as if the views were integrated. We show that the
transformation rules can also be applied to the problem of media type cooperation.

1 Introduction

In the field of web information systems (WISs) the importance of views is commonly
accepted [AGS98, CFB+03, ST04, ST05]. In [FST98, FKST00] the notion of media type
has been introduced. A media type is an extended view over some underlying database.
However, different to the approaches in [AGS98, CFB+03] the defining query already
constructs the navigation structure. Furthermore, media types are prepared for dynamic
WISs [LG99] by adding operations, and for adaptivity by adding cohesion preorders.

As it is likely that during the development of WISs the local data, i.e. the views, that is to be
presented to the user and the local functionality is modelled before the underlying database
schema is set up, the integration of media types is a decisive part of a WIS development
methodology. At its core media type integration concerns the old problem of database
schema and integration.

139



The starting point for schema integration is a set of schemata over some data models.
Usually the focus is on two schemata over the same data model. If the underlying data
models differ, then we may assume some preprocessing transforming both schemata – or
one of them, if this is sufficient – into an almost equivalent schema over a data model with
higher expressiveness. Then schema integration aims at replacing the given schemata by
a single new one in such a way that the new schema dominates or is equivalent to the old
ones.

If the involved schemata are the target schemata of views we talk of view integration
[BC86, SP94, Th00]. In this case the schema transformation function defines an embed-
ding into the new schema. If this is coupled with the defining queries for the given views
we obtain a new defining query for the integrated view.

Pragmatically, we may therefore follow the framework in [LS00]. In a nutshell, we first
“clean” the given schemata by removing name conflicts, then add inter-schema constraints,
which leads to a single constrained schema, i.e. just the union of the given ones. To
this schema we then apply formal transformation rules, which will finally take us to an
integrated schema that is either equivalent to the union of the given ones or dominates this.
As we deal with extended views, the transformation rules for media type integration have
to extend the view integration rules in a way that effects on operations and cohesion are
covered as well. In this paper we will develop these extensions.

The transformation rules can be used as well for view cooperation [Th00], which provides
an alternative to view integration in which the integrated view is only virtual. That is
the constituating views are kept and exchange functions are designed to provide the same
functionality as if the views were integrated. In addition, media type cooperation may
contribute to realising cooperative tasks in WISs.

We start in Section 2 with a look at published work on the topic of this paper. In Section
3 we briefly present media types and discuss the integration and cooperation problem in
general. In Section 4 we present our pragmatic method for integration and cooperation as
well as the transformation rules that are needed for the method. We conclude with a short
summary.

2 Related Work

The work on view integration in [KC94, LNE89, SP94] is based on the Entity-Relationship
model. Larson et al. [LNE89] consider containment, equivalence and overlap relations be-
tween attributes and types that are defined by looking at “real world objects”. Equivalence
between types gives rise to their integration, containment defines a hierarchy with one su-
pertype and one subtype, and overlapping gives rise to new common supertype. The work
by Spaccapietra and Parent [SP94] considers also relationships, paths and disjointness re-
lations betwen types. The work by Koh et al. [KC94] provides additional restructuring
rules for the addition or removal of attributes, generalization and specialization, and the
introduction of surrogate attributes for types.

The work by Biskup and Convent in [BC86] is based on the relational data model with

140



functional, inclusion and exclusion dependencies. The method is based on the definition
of integration conditions, which can be equality, containment, disjointness or selection
conditions. Transformations are applied aiming at the elimination of disturbing integration
conditions. In the same way as our work it is based on a solid theory. On the other hand,
it has never been applied to large systems in practice. The approach by Sciore et al. in
[SSR94] investigates conversion functions on the basis of contexts added to values. These
contexts provide properties to enable the semantic comparability of values.

The work by Lehmann and Schewe [LS00] assumes that the given schemata are defined on
the basis of the higher-order Entity-Relationship model (HERM) [Th00] which is known
to provide enough expressiveness such that schemata existing in practice can be easily
represented in HERM. The work relies on the notions of equivalence and dominance as
defined for HERM in [Th00].

The design and development of WISs has attracted a lot of attention. The ARANEUS
framework in [AGS98] emphasises that conceptual modelling of web information systems
should approach a problem triplet consisting of content, navigation and presentation. This
leads to modelling databases, hypertext structures and page layout. OOHDM [SR98] is
quite similar to ARANEUS, but its origins are not in the area of databases but in hyper-
text and it explicitly refers to an object oriented approach. OOHDM emphasises an object
layer, hypermedia components, i.e. links, and an interface layer. The work in [GPS93]
also starts from hypertext design. The work introduces “authoring in the large”, i.e., the
conceptual modelling of information elements and navigation, and uses this to categorise
different types of links. Another similar approach is WebML [CFB+03], which empha-
sises a multi-level architecture for the data-driven generation of WIS, thus takes the view
aspect into account. Furthermore, it emphasises structures, derivation and composition,
i.e. views, navigation and presentation, thus addresses the same problem triplet as the
ARANEUS framework.

Our own work on WIS design combines a usage-oriented storyboarding methodology
[TD01] and the content- and functionality-oriented theory of media types [FKST00, ST04],
which are embedded in an integrated co-design methodology based on an abstraction layer
model [ST05].

3 Web Information Systems

A web information system (WIS) is a database-backed information system that is realized
and distributed over the web with user access via web browsers. Information is made
available via pages including a navigation structure between them and to sites outside the
system. Furthermore, there should also be operations to retrieve data from the system or
to update the underlying database(s).

The methodology for WIS design in [ST01, ST05] emphasises abstraction layers and the
co-design of structure, operations and interfaces. As WISs are open systems in the sense
that everyone who has access to the web may turn up as a user, their design requires a
clear picture of the intended users and their behaviour. This includes knowledge about

141



the used access channels and end-devices. At a high level of abstraction this first leads
to storyboarding, an activity that addresses the design of underlying application stories.
Storyboarding first describes a story space by scenes and actions on these scenes. Fur-
thermore, it describes the actors in these scenes, i.e. groups of users of the WIS. Actor
modelling leads to roles, profiles, goals, preferences, obligations and rights. Finally, the
actors are linked to the story space by the means of tasks.

Further on in the development process the scenes in the story space have to be adequately
supported. For this the methodology focusses on media types, which cover extended views,
adaptivity and hierarchies. In a nutshell, a media type is an extended view on some un-
derlying database schema. These views are built in a way that they capture the complex
content and navigation structure that is to be presented to a user. Adaptivity to users, chan-
nels and end-devices mainly concerns the question, whether all information or only the
most important part of it is to be presented to a user. By specifying on a conceptual level
what these “most important” parts are and which parts have to be kept together we may
then leave the technical realisation of adaptivity to an algorithmic solution. Hierachies
enable the presentation of information at different levels of granularity allowing a user to
switch between these levels. However, we will not deal with hierarchies in this paper.

It is likely that the content that is to be made available to users is modelled, before an
underlying database schema and thus defining queries for media types have been defined.
This leads uanavoidably to a view integration problem. In addition, we have to cope with
the implications for operations and for adaptivity.

3.1 Media Types

At the core of a media type [FKST00, ST05] we have a view that is extended by operations,
which is an idea similar to dialogue types [SS00]. First recall that a view is nothing but a
stored query. For this we assume familiarity with HERM [Th00].

Definition 1 A view V on a HERM schema (S, Σ) consists of a schema SV and a query
qV with a query mapping inst(S, Σ) → inst(SV ).

The addition of operations leads first to the notion of interaction type as defined (in a
simplified form) next.

Definition 2 An interaction type I over a HERM schema (S, Σ) consists of a view VI =
(SI , qI), and a set O of dialogue operations.

Each dialogue operation (d-operation for short) in O consists of

• an operation name op,

• a list of input parameters i1 : D1, . . . , ik : Dk with domain names Di,

• an (optional) output domain Dout,

142



• a subattribute sel of XE , and

• a d-operation body, which is built from usual programming constructs operating on
instances over (S, Σ) and constructs for creating and deleting dialogue objects.

In this definition we permit references (or roles) between the interaction objects of any
type in SI that result from applying the defining query qI to an instance over (S, Σ). This
usually requires qI to be written in a highly expressive query language.

Furthermore, for each interaction object (i, v) in qI(db) we interpret the abstract identifier
i as a surrogate for a URL address. In this way the queries used in interaction types
already define the navigation structure of the WIS. This is a fundamental difference to
work by others as e.g. in [CFB+03], where views are only used to extract data, whereas
the navigation structure is added later on in a separate design step.

Apart from this media types extend interaction types by cohesion in order to enable adap-
tivity. Cohesion introduces a controlled form of information loss exploiting the partial
order ≥ on nested attributes.

Definition 3 If XM is the representing attribute of an interaction type M and sub(XM )
is the set of all nested attributes Y with XM ≥ Y , then a preorder "M on sub(XM )
extending the order ≥ is called a cohesion preorder.

Large elements in sub(XM ) with respect to "M define information to be kept together, if
possible. Clearly, XM is maximal with respect to "M . This enables a controlled form of
information decomposition [ST05]. So we obtain the following (simplified) definition of
a media type.

Definition 4 A media type is an interaction type M together with an cohesion preorder
"M .

See [ST05] for an algorithmic approach to adaptivity based on cohesion preorders. This
algorithm is not relevant for our purposes here. In that article also alternatives to cohesion
preorders, which consist of proximity values, but lead to the same results, are discussed.

3.2 Media Type Integration

As the core of a media type is defined by a view, the core problem of media type integration
is that of view integration. So we start with two views V1 and V2 on a HERM schema
(S, Σ). The result should be a new integrated view V such that SV results from integration
of the schemata SV1 and SV2 , and for each instance db over (S, Σ) the two query results
qV1(db) and qV2(db) together are equivalent to qV (db).

In particular, view integration requires precise notions for schema dominance and equiva-
lence, which we will introduce now.

143



Definition 5 A HERM schema (S �, Σ�) dominates another HERM schema (S, Σ) by
means of the language L (notation: (S, Σ) &L (S �, Σ�)) iff there are mappings f :
inst(S, Σ) → inst(S �, Σ�) and g : inst(S �, Σ�) → inst(S, Σ) both expressed in L such
that the composition g ◦ f is the identity.

If we have (S, Σ) &L (S �, Σ�) as well as (S �, Σ�) &L (S, Σ), we say that the two schemata
are equivalent with respect to L (notation: (S, Σ) ∼=L (S �, Σ�)).

We may obtain different notions of dominance and equivalence. &H and ∼=H refer to the
use of the HERM algebra or equivalently the HERM calculus [Th00] as the language, in
which the transformations f and g are to be expressed. Analogously, &Hext

and ∼=Hext

refer to the use of the extended HERM algebra or the extended HERM calculus [Th00].
Finally, &comp and ∼=comp refer to the use of computable queries [CH80]. In the following
we will always refer to &comp and ∼=comp and therefore drop the index and simply write
& for dominance and ∼= for equivalence.

Now, if the schemata SV1 and SV2 are “cleaned”, we may combine the queries qV1 and
qV2 into one yielding a query mapping inst(S, Σ) → inst(SV1 ∪ SV2) defined by the
query qV1 ∪qV2 . If we simply integrate the schemata SV1 and SV2 into SV according to the
method described above, we obtain an induced mapping f : inst(SV1∪SV2) → inst(SV ).
As we deal with computable queries, f is the query mapping of some computable query
qf . Taking qV = qf ◦ (qV1 ∪ qV2), V becomes a view over (S, Σ) with schema SV and
defining query qV .

Finally, we have to adapt d-operations and the cohesion preorder.

3.3 Media Type Cooperation

View cooperation [Th00] provides an alternative to view integration in which the integrated
view is only virtual. That is the constituating views are kept and exchange functions are
designed to provide the same functionality as if the views were integrated.

Definition 6 Let Vi = (SVi
, qVi

) (i = 1, 2) be views (on the same or different HERM
schemata). V1 cooperates with V2 iff there are subschemata S �

Vi
of SVi

and functions
f1 : inst(S �

V1
) → inst(S �

V2
) and f2 : inst(S �

V2
) → inst(S �

V1
), such that both f1 ◦ f2 and

f2 ◦ f1 are the identity function.

Basically, view cooperation expresses that part of view V1, exactly the one correspond-
ing to the subschema S �

V1
can be expressed by the part of view V2 corresponding to the

subschema S �
V2

.

Now, if we want to obtain a cooperation between given views V1 and V2, we may simply
apply view integration to them using the same transformation rules. This will result in an
integrated view V = (SV , qV ). With respect to this integrated view both S �

V1
and S �

V2
will

be identified with a subschema S �
V . In particular we obtain functions f �

i : inst(S �
Vi

) →
inst(S �

V ) and g�i : inst(S �
V ) → inst(S �

Vi
)) (i = 1, 2) with g�i ◦ f �

i = id and f �
i ◦ g�i = id.

144



Thus, f1 = g�2 ◦ f �
1 and f2 = g�1 ◦ f �

2 define the view cooperation functions.

Consequently, if the view integration method takes care of operations and cohesion, we
also obtain cooperating media types.

4 A Pragmatic Method for Integration and Cooperation

In this section we address media type integration. The underlying process for HERM
schema integration follows [LS00]. Without loss of generality we assume that we are
given only two media types. Before starting the integration process we assume that these
types have been “cleaned”, i.e. we assume that all name clashes have been removed by
renaming homonyms.

4.1 Integration Process

We only have to describe a process for schema integration, as we already explained how
this can be adapted for view integration and cooperation. The details are then filled by
transformation rules described in the following subsection. In particular, our rules will
deal with extensions to operations and cohesion in order to become applicable to media
types.

1. The first step is the homogenisation of the schemata. This includes the restructur-
ing of the schemata turning attributes into entity types, entity types into relationship
types and vice versa. Furthermore, we add attributes and shift attributes along hi-
erarchies and paths. All these individual paces correspond to the application of
transformation rules. The result of the homogenisation step are schemata (S �

1, Σ
�
1)

and (S �
2, Σ

�
2).

2. The second step consists in adding inter-schema integrity constraints that describe
the semantic relationships between the two schemata. Formally, we obtain another
set of constraints Σ0, and thus the result of this step is a single HERM schema
(S �

1 ∪ S �
2, Σ

�
1 ∪ Σ�

2 ∪ Σ0).

3. Step three considers the integration of types on level 0, 1, etc., i.e. we start with
entity types and level-0-clusters, then proceed with relationship types and clusters
on level 1, then relationship types and clusters on level 2, etc. For each level we in-
tegrate corresponding types or clusters with respect to equality, containment, over-
lap and disjointness conditions. Note that this step is similar to the work done in
[KC94, LNE89, SP94].

4. The fourth step deals with the integration of paths using path inclusion dependen-
cies.

145



5. Finally, we consider remaining integrity constraints such as (path) functional depen-
dencies and join dependencies.

4.2 Transformation Rules

We now describe the transformation rules in detail. All rules will presented in the same
way, i.e. we assume a given HERM schema (S, Σ), but we only indicate parts of it. The
resulting schema will be (Snew, Σnew). The new types in the new schema will be marked
with a subscript new. With these conventions the rules will be self-explaining.

Furthermore, the presence of d-operations and cohesion preorders requires extensions
dealing with the impact of the view integration on the operations and the cohesion pre-
order. We will discuss these rules together with the extensions.

4.2.1 Schema Restructuring.

The first group of rules addresses the aspect of schema restructuring which will be used
in the homogenisation step 1 of our method.

Rule 1 Replace a tuple attribute X(A1, . . . , Am) in an entity or relationship type R by
the attributes A1, . . . , Am. The resulting type Rnew will replace R. For X(A�

1, . . . , A
�
n) ∈

key(R) with Ai ≤ A�
i we obtain A�

1, . . . , A
�
n ∈ key(R�).

In this case, whenever X(A�
1, . . . , A

�
k) (k ≤ m) appears in sel, in the body of a d-operation

or in Y ∈ sub(XM ), replace it by A�
1, . . . , A

�
k.

This rule includes the simple case, where R is an entity type, which could be treated as a
separate rule.

Rule 2 Replace a component r : R� in a relationship type R by lower level components
and attributes. Let the new type be Rnew. For comp(R�) = {r1 : R1, . . . , rn : Rn}
we get comp(Rnew) = comp(R) − {r : R�} ∪ {r(r)

1 : R1, . . . , r
(r)
n : Rn} with new

role names r
(r)
i composed from ri and r and attr(Rnew) = attr(R) ∪ attr(R�). In the

case r : R� ∈ key(R) and key(R�) = {ri1 : Ri1 , . . . , rik
: Rik

, A1, . . . , Am} we obtain

key(Rnew) = key(R) − {r : R�} ∪ {r(r)
i1

: Ri1 , . . . , r
(r)
ik

: Rik
, A1, . . . , Am}, otherwise

we have key(Rnew) = key(R).

In this case, whenever r appears in sel, in the body of a d-operation or in Y ∈ sub(XM ),
replace it by r

(r)
1 , . . . , r

(r)
n .

It is easy to see how to simplify this rule in the case, where R� is an entity type. Again,
this could by formulated by two separate rules.

In the case of the restructuring rules 1 and 2 we can always show that the original schema
and the resulting schema are equivalent. The next rule only guarantees that the resulting
new schema dominates the old one.

146



Rule 3 Replace a key-based inclusion dependency
R�[key(Ri)] ⊆ R[key(R)] by new relationship types R�

new with comp(R�
new) = {r� :

R�, r : R} = key(R�
new) and attr(R�

new) = ∅ together with participation cardinality
constraints
card(R�

new, R) = (0, 1) and card(R�
new, R�) = (1, 1).

There is nothing to add for rule 3, as this introduces a new type, so operations and cohesion
have to be defined for that new type. The last two restructuring rules allow to switch
between attributes and entity types and between entity and relationship types. These rules
4 and 5 guarantee schema equivalence.

Rule 4 Replace an entity type E with A ∈ attr(E) by Enew such that attr(Enew) =
attr(E) − {A} holds. Furthermore, introduce an entity type E�

new with attr(E�
new) =

{A} = key(E�
new) and a new relationship type Rnew with comp(Rnew) = {rnew :

Enew, r�new : E�
new} = key(Rnew) and attr(Rnew) = ∅.

Add the cardinality constraints card(Rnew, Enew) = (1, 1) and card(Rnew, E�
new) =

(1,∞).

In this case, omit A in sel, in the body of a d-operation and in Y ∈ sub(XM ), whenever
it appears.

Rule 5 Replace an relationship type R with comp(R) = {r1 : R1, . . . , rn : Rn} and the
cardinality constraints
card(R, Ri) = (xi, yi) by a new entity type Enew with
attr(Enew) = attr(R) = key(Enew) and n new relationship types Ri,new with
comp(Ri,new) = {ri : Ri, r : Enew} = key(Ri,new) and attr(Ri,new) = ∅. Replace the
cardinality constraints by
card(Ri,new, Ri) = (1, yi) and card(Ri,new, Enew) = (1,∞).

In this case, omit r1, . . . , rn in sel, in the body of a d-operation and in Y ∈ sub(XM ),
whenever it appears.

In the case of rule 5 explicit knowledge of the key of R allows to sharpen the cardinality
constraints.

4.2.2 Shifting Attributes.

The second group of rules deals with the shifting of attributes. This will also be used in
the homogenisation step 1 of our method. Rule 6 allows to shift a synonymous attribute
occurring in two subtypes, i.e. whenever tuples agree on the key they also agree on that
attribute, to be shifted to a supertype. This rule leads to a dominating schema. Conversely,
rule 7 allows to shift an attribute from a supertype to subtypes, in which case schema
equivalence can be verified.

Rule 6 For comp(Ri) = {ri : R} and Ai ∈ attr(Ri) − key(Ri) (i = 1, 2) together with
the constraint

∀t, t�.t[key(R1)] = t�[key(R2)] ⇒ t[A1] = t�[A2]

147



replace the types R, R1 and R2 such that attr(Rnew) = attr(R)∪ {Ai}, comp(Ri,new) =
{ri : Rnew} and
attr(Ri,new) = attr(Ri) − {Ai} hold.

In this case, omit Ai in sel, in the body of a d-operation and in Y ∈ sub(XM ) associated
with Ri,new, whenever it appears.

Rule 7 For comp(Ri) = {ri : R} (i = 1, . . . , n) and A ∈ attr(R) − key(R) together
with the constraint ∀t ∈ R.∃t� ∈ Ri.t

�[ri] = t replace the types such that
attr(Rnew) = attr(R)−{A}, comp(Ri,new) = {ri : Rnew} and attr(Ri,new) = attr(Ri)∪
{A} hold.

In this case, omit Ai in sel, in the body of a d-operation and in Y ∈ sub(XM ) associated
with Rnew, whenever it appears.

Note that the last two rules have no effect on Rnew or Ri,new, as the extension of opera-
tions and the cohesion preorder has to be defined for these new types.

The next two rules 8 and 9 concern the reorganisation of paths and the shifting of attributes
along paths. In both cases we obtain a dominating schema. Rule 8 could be split into two
rules dealing separately with binary and unary relationship types Rn.

Rule 8 For a path P ≡ R1−· · ·−Rn and a relationship type R with rn : Rn ∈ comp(R)
together with path cardinality constraints

card(P, R1) ≤ (1, 1) ≤ card(P, Rn)

replace R such that comp(Rnew) = comp(R) − {rn : Rn} ∪ {r1,new : R1} with a new
role r1,new holds.

In this case, replace rn by r1,new in sel, in the body of a d-operation and in Y ∈ sub(XM )
associated with Rnew.

Rule 9 For a path P ≡ R1−· · ·−Rn with A ∈ attr(Rn) and path cardinality constraints

card(P, R1) ≤ (1, 1) ≤ card(P, Rn)

replace R1, Rn such that attr(R1,new) = attr(R1)∪{A} and attr(Rn,new) = attr(Rn)−
{A} hold.

In this case, omit A in sel, in the body of a d-operation and in Y ∈ sub(XM ) associated
with Rn,new.

4.2.3 Schema Extension.

The third group of rules deal with the schema extensions. This either concerns new
attributes, new subtypes or the simplification of hierarchies. These rules are needed in
step 1 of our method. For this group of rules only rules 10 and 13 give rise to reasonable
extension rules for media types, but they do not affect the operations.

148



Rule 10 Add a new attribute A to the type R, i.e.
attr(Rnew) = attr(R)∪{A}. In addition, the new attribute may be used to extend the key,
i.e. we may have key(Rnew) = key(R) ∪ {A}.

In this case, add A to all Y ∈ sub(XM ) associated with Rnew and extend the now flawed
cohesion preorder.

If the new attribute A introduced by rule 10 does not become a key attribute, we obtain a
dominating schema.

The next two rules allow to introduce a new subtype via selection or projection on non-
key-attributes. In both cases we have schema equivalence.

Rule 11 For a type R introduce a new relationship type R�
new with comp(R�

new) = {r :
R} = key(R�

new) and add a constraint R�
new = σϕ(R) for some selection formula ϕ.

Rule 12 For a type R and attributes A1, . . . , An ∈ attr(R) such that there are no Bi ∈
key(R) with Ai ≤ Bi introduce a new relationship type R�

new with comp(R�
new) =

{r : R} = key(R�
new) and attr(R�

new) = {A1, . . . , An}, and add a constraint R�
new =

πA1,...,An
(R).

The last rule 13 in this group allows to simplify hierarchies.

Rule 13 Replace types R, R1, . . . , Rn with comp(Ri) = {ri : R} = key(Ri) and
card(R, Ri) = (0, 1) (i = 1, . . . , n) by a new type Rnew with comp(Rnew) = comp(R),

attr(Rnew) = attr(R) ∪
n�

i=1

attr(Ri) and key(Rnew) = key(R).

In this case, define the cartesian product of the cohesion preorders and extend the resulting
flawed cohesion preorder.

4.2.4 Type Integration.

The fourth group of rules deals with the integration of types in step 3 of our method. Rule
14 considers the equality case, rule 15 considers the containment case, and rule 16 covers
the overlap case. Note that these transformation rules cover the core of the approaches
in [KC94, SP94, LNE89]. For this group of rules, however, no reasonable extensions for
media types can be defined, as we deal with new types.

Rule 14 If R1 and R2 are types with key(R1) = key(R2) and we have the constraint
R1[key(R1) ∪ X] = f(R2[key(R2) ∪ Y ]) for some X ⊆ comp(R1) ∪ attr(R1), Y ⊆
comp(R2) ∪ attr(R2) and a bijective mapping f , then replace these types by Rnew with
comp(Rnew) = comp(R1) ∪ (comp(R2) − Y − key(R2)), attr(Rnew) = attr(R1) ∪
(attr(R2) − Y − key(R2)) ∪ {D} and key(Rnew) = key(R1) ∪ {D} and an optional new
distinguishing attribute D.

149



Rule 15 If R1 and R2 are types with key(R1) = key(R2) and the constraint R2[key(R2)∪
Y ] ⊆ f(R1[key(R1) ∪ X] holds for some X ⊆ comp(R1) ∪ attr(R1), Y ⊆ comp(R2) ∪
attr(R2) and a bijective mapping f , then replace R1 by R1,new with comp(R1,new) =
comp(R1), attr(Rnew) =
attr(R1) ∪ {D} and key(Rnew) = key(R1) ∪ {D} and an optional new distinguishing
attribute D. Furthermore, replace R2 by R2,new with comp(R2,new){rnew : R1,new} ∪
comp(R2) − Y − key(R2), attr(R2,new) = attr(R2) − Y − key(R2) and key(R2,new) =
{rnew : R1,new}.

Rule 16 Let R1 and R2 are types with key(R1) = key(R2) such that for X ⊆ comp(R1)∪
attr(R1), Y ⊆ comp(R2) ∪ attr(R2) and a bijective mapping f the constraints

R2[key(R2) ∪ Y ] ⊆ f(R1[key(R1) ∪ X] ,

R2[key(R2) ∪ Y ] ⊇ f(R1[key(R1) ∪ X] and

R2[key(R2) ∪ Y ] ∩ f(R1[key(R1) ∪ X] = ∅

are not satisfied. Then replace R1 by R1,new with comp(R1,new){r1,new : Rnew} ∪
comp(R1) − X − key(R1), attr(R1,new) = attr(R1) − X − key(R1) and key(R1,new)
= {r1,new : Rnew}, replace R2 by R2,new with comp(R2,new){rnew : R1,new} ∪
comp(R2) − Y − key(R2), attr(R2,new) = attr(R2) − Y − key(R2) and key(R2,new)
= {rnew : R1,new} and introduce a new type Rnew with comp(Rnew) = comp(R1)
∪comp(R2), attr(Rnew) = attr(R1) ∪ attr(R2) ∪ {D} and key(Rnew) = key(R1) ∪{D}
and an optional new distinguishing attribute D.

The rules 14-16 could each be split into several rules depending on f being the identity or
not and the necessity to introduce D or not. In all cases we obtain dominance.

Rule 17 considers the case of a selection condition, in which case schema equivalence
holds.

Rule 17 If R and R� are types with comp(R�)∪attr(R�) = Z ⊆ comp(R)∪attr(R) such
that the constraint R� = σϕ(πZ(R)) holds for some selection condition ϕ, then omit R�.

4.2.5 Handling Integrity Constraints.

The fifth group of rules to be applied in step 4 of our method concerns transformations
originating from path inclusion constraints. Rule 18 allows us to change a relationship
type. This rule leads to equivalent schemata. Rule 19 allows to introduce a relationship
type and a join dependency. Finally, rule 20 handles a condition under which a relationship
type may be omitted. Both rules 19 and 20 guarantee dominance.

Rule 18 If there are paths P ≡ R1 −R −R2 and P � ≡ R2 −R� −R3 with comp(R) =
{r1 : R1, r2 : R2} and comp(R�) = {r3 : R3, r

�
2 : R2} such that the constraint P [R2] ⊆

P �[R2] holds, then replace R in such a way that comp(Rnew) = {r1 : R1, rnew : R�},
attr(Rnew) = attr(R) and key(Rnew) = key(R) − {r2 : R2} ∪ {rnew : R�} hold.

150



In this case, replace r2 by rnew in sel, in the body of a d-operation and in Y ∈ sub(XM ),
whenever it appears.

Rule 19 If there are paths P ≡ R1 −R −R2 and P � ≡ R2 −R� −R3 with comp(R) =
{r1 : R1, r2 : R2} and comp(R�) = {r3 : R3, r

�
2 : R2} such that the constraint P [R2] =

P �[R2] holds, then replace R and R� by Rnew such that comp(Rnew) = {r1 : R1, r2,new :
R2, r3 : R3}, attr(Rnew) = attr(R)∪ attr(R�) and key(Rnew) = (key(R)−{r2 : R2})∪
(key(R�) − {r�2 : R2}) ∪ {r2,new : R2} hold. Add the join dependency
Rnew[r1, r2,new] 54 Rnew[r2,new, r3] ⊆ Rnew[r1, r2,new, r3].

In this case, replace r2 by r2,new in sel, in the body of a d-operation and in Y ∈ sub(XM ),
whenever it appears.

Rule 20 If there are paths P ≡ R1 − R2 − · · · − Rn and P � ≡ R1 − R − Rn with
comp(R) = {r1 : R1, rn : Rn} such that the constraint P [R1, Rn] = P �[R1, Rn] holds,
then omit R.

The final group of transformation rules 21-24 permits to handle remaining constraints
such as functional dependencies, path functional dependencies, and join dependencies.
All these constraints are described in detail in [Th00]. The rules refer to step 5 of our
method.

Rule 21 handles vertical decomposition in the presence of a functional dependency. Rule
22 allows to simplify a key in the presence of a path functional dependency. Rule 23
introduces a new entity type in the presence of a path functional dependency. Finally, rule
24 replaces a multi-ary relationship type by binary relationship types in the presence of a
join dependency. The four rules lead to dominating schemata.

Rule 21 If a functional dependency X → A with a generalized subset X of attr(E) and
an attribute A ∈ attr(E) − X holds on an entity type E, but X → key(E) does not hold,
then remove A from attr(E) and add a new entity type E�

new with attr(E�
new) = X ∪{A}

and key(E�
new) = X .

In this case, remove A in sel, in the body of a d-operation and in Y ∈ sub(XM ), whenever
it appears.

The last three rules have no extensions for media types.

Rule 22 For a path P ≡ R1 −R −R2 with comp(R) = {r1 : R1, r2 : R2} such that the
path functional dependency X → key(R2) holds for a generalized subset X of attr(R1)
replace key(R) by {r1 : R1}.

Rule 23 For a path P ≡ R1−· · ·−Rn such that the path functional dependency X → A
holds for a generalized subset X of attr(R1) and A ∈ attr(Rn) add a new entity type
Enew with attr(Enew) = X ∪ {A} and key(Enew) = X .

Rule 24 If R is an n-ary relationship type with comp(R) = {r1 : R1, . . . , rn : Rn} and
attr(R) = ∅ such that the join dependency R[r1, r2] 54 · · · 54 R[r1, rn] ⊆ R[r1, . . . , rn]

151



holds, then replace R by n new relationship types R1,new, . . . , Rn,new with comp(Ri,new) =
{r1 : R1, ri : Ri} = key(Ri,new) and attr(Ri,new) = ∅.

5 Conclusion

In this paper we applied schema and view integration and cooperation to web information
systems. The key concept is that of a media type, which is a view extended by operations
and cohesion in order to facilitate adaptivity.

We presented a method for media type integration following the framework in [LS00], i.e.
we first “clean” the schemata of the given types by removing name conflicts, then we add
inter-schema constraints, and to this schema we then apply formal transformation rules.
The transformation and augmentation rules are correct in the sense that they will always
result in a new view that is equivalent to the original one or dominates it. Furthermore,
most of the transformation rules require additional attention for the operations and cohe-
sion. In addition, media type cooperation may contribute to realising cooperative tasks in
WISs.

References

[AGS98] Atzeni, P., Gupta, A., und Sarawagi, S.: Design and maintenance of data-intensive web-
sites. In: Proceeding EDBT’98. volume 1377 of LNCS. pp. 436–450. Springer-Verlag.
Berlin. 1998.

[BC86] Biskup, J. und Convent, B.: A formal view integration method. In: Proceedings of the
1986 ACM SIGMOD International Conference on Management of Data. pp. 398–407.
Association for Computing Machinery. 1986.

[CFB+03] Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., und Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann. San Francisco. 2003.

[CH80] Chandra, A. und Harel, D.: Computable queries for relational data bases. Journal of
Computer and System Sciences. 21. 1980.

[FKST00] Feyer, T., Kao, O., Schewe, K.-D., und Thalheim, B.: Design of data-intensive web-
based information services. In: Li, Q., Ozsuyoglu, Z. M., Wagner, R., Kambayashi,
Y., und Zhang, Y. (Eds.), Proceedings of the 1st International Conference on Web In-
formation Systems Engineering (WISE 2000). pp. 462–467. IEEE Computer Society.
2000.

[FST98] Feyer, T., Schewe, K.-D., und Thalheim, B.: Conceptual modelling and development of
information services. In: Ling, T. und Ram, S. (Eds.), Conceptual Modeling – ER’98.
volume 1507 of LNCS. pp. 7–20. Springer-Verlag. Berlin. 1998.

[GPS93] Garzotto, F., Paolini, P., und Schwabe, D.: HDM - a model-based approach to hypertext
application design. ACM ToIS. 11(1):1–26. 1993.

152



[KC94] Koh, J. und Chen, A.: Integration of heterogeneous object schemas. In: Elmasri, R.,
Kouramajian, V., und Thalheim, B. (Eds.), Entity-Relationship Approach - ER’93. vol-
ume 823 of LNCS. pp. 297–314. Springer-Verlag. 1994.

[LG99] Ludäscher, B. und Gupta, A.: Modeling interactive web sources for information media-
tion. In: Chen, P. P.-S. (Ed.), Advances in Conceptual Modeling. volume 1727 of LNCS.
pp. 225–238. Springer-Verlag. 1999.

[LNE89] Larson, J., Navathe, S. B., und Elmasri, R.: A theory of attribute equivalence in
databases with application to schema integration. IEEE Transactions on Software Engi-
neering. 15(4):449–463. 1989.

[LS00] Lehmann, T. und Schewe, K.-D.: A pragmatic method for the integration of higher-order
Entity-Relationship schemata. In: Laender, A. H. F., Liddle, S. W., und Storey, V. C.
(Eds.), Conceptual Modeling - ER 2000. volume 1920 of LNCS. pp. 37–51. Springer-
Verlag. 2000.

[SP94] Spaccapietra, S. und Parent, C.: View integration – a step forward in solving structural
conflicts. IEEE Transactions on Knowledge and Data Engineering. 6(2):258–274. 1994.

[SR98] Schwabe, D. und Rossi, G.: An object oriented approach to web-based application
design. TAPOS. 4(4):207–225. 1998.

[SS00] Schewe, K.-D. und Schewe, B.: Integrating database and dialogue design. Knowledge
and Information Systems. 2(1):1–32. 2000.

[SSR94] Sciore, E., Siegel, M., und Rosenthal, A.: Using semantic values to facilitate inter-
operability among heterogeneous information systems. ACM TODS. 19(2):254–290.
1994.

[ST01] Schewe, K.-D. und Thalheim, B.: Modeling interaction and media objects. In:
Bouzeghoub, M., Kedad, Z., und Métais, E. (Eds.), Natural Language Processing and
Information Systems: 5th International Conference on Applications of Natural Lan-
guage to Information Systems, NLDB 2000. volume 1959 of LNCS. pp. 313–324.
Springer-Verlag. Berlin. 2001.

[ST04] Schewe, K.-D. und Thalheim, B.: Structural media types in the development of data-
intensive web information systems. In: Taniar, D. und Rahayu, W. (Eds.), Web Informa-
tion Systems. pp. 34–70. IDEA Group. 2004.

[ST05] Schewe, K.-D. und Thalheim, B.: Conceptual modelling of web information systems.
Data & Knowledge Engineering. 2005. to appear.

[TD01] Thalheim, B. und Düsterhöft, A.: SiteLang: Conceptual modeling of internet sites. In:
et al., H. S. K. (Ed.), Conceptual Modeling – ER 2001. volume 2224 of LNCS. pp.
179–192. Springer-Verlag. Berlin. 2001.

[Th00] Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer-Verlag. 2000.

153




