
Optimization of Component Allocations in Middleware

Platforms using Performance Models

Felix Willnecker

fortiss GmbH – An-Institut Technische Universität München

Guerickestr. 25, 80805 München, Germany

willnecker@fortiss.org

Abstract: Distributed enterprise applications are typically implemented as system-of-
systems composed of components and linked via middleware. These systems often
utilize corresponding resources far below available capacity. In order to increase re-
source utilizations the consolidation of components demands several tests on environ-
ments comparable to the production system. Performance models can be used to land-
scape such system architectures and to simulate changes in the component topology or
resource environment without harming production systems. Therefore, this work aims
at extracting performance models from distributed middleware platforms. Based on
these models, an architecture optimizer is built to test different allocation topologies.
Subsequently, the optimized model is simulated and the prediction accuracy of archi-
tecture changes is evaluated in this work. This allows architects to evaluate component
changes and topology variations without a replica of the production system.

1 Motivation and Purpose

Middleware based distributed system-of-systems architectures are state of the art in large

scale enterprise applications [BVD+14]. These systems are composed of components that

can be moved and duplicated from one instance to another using a deployment manage-

ment software [Woo09]. The placement of components is a complicated task that today

is merely assisted by logical topology recommendations [Woo09, KKR11]. These recom-

mendations can work as guidelines but cannot answer the questions on how to size the

target environment for a specific deployment unit and how to optimize the topology to a

certain optimization goal.

Logical topologies utilize the hardware below their possible capacity as the average load of

data centers today is under 25% [PVR12]. Virtualized server environments already reduce

this overprovisioning thus, increasing the hardware utilization [SB10]. However, virtu-

alized server environments limit the optimization opportunities to the granularity level

of single virtual machines. Middleware systems rely on more fine-grained deployment

units, allowing operation engineers and architects to utilize unused capacity more effi-

ciently. Planning and testing such changes in productive environments comprises risks

for the stability. In addition, productive alike test environments and productive systems

have comparable prices. Furthermore, such environments are usually used to capacity by

287



several projects executing load tests.

Simulations on performance models can optimize performance metrics, license, hardware,

and energy costs by evaluating alternative topologies without tests in the productive en-

vironment [KKR11, BVK13]. This thesis extracts performance models from middleware

platforms in order to simulate component allocation optimizations and analyze the impact

of changing or introducing components to this environment. This work investigates the

interfaces of distributed Java EE components to build performance models for middleware

platforms. An optimizer based on this model completes the work of this thesis.

2 Research Questions and Approach

This section provides an overview of the main research questions (RQ) and how this dis-

sertation tries to answer them.

RQ1: Which architecture-level performance model extraction techniques and per-

formance monitoring solutions are applicable for middleware platforms?

Automatic performance model extraction technologies and resource estimation approaches

have been proposed to the scientific community [BVK13] [SCZK14]. The proposed ap-

proaches focus on single applications and partly ignore the distribution aspect of modern

applications. The available model generators disregard the component allocation aspect

and mainly focus on the software components, their resource demands, and relationships.

Research on complete middleware environments including the deployment locations for

distributed systems has not been conducted.

This change of scope requires reconsidering the level of granularity feasible for the per-

formance model generation. Currently available approaches generate fine grained perfor-

mance models and detect component dependencies that are not available through a public

interface [BVK13]. Computing power and a processable complexity level limit the granu-

larity of such performance models. The granularity decision also depends on the entailed

monitoring solutions. Industry as well as scientific solutions are available to monitor mid-

dleware platforms [vHWH12, Gre11].

Selecting an appropriate monitoring solution, choosing the right level of granularity for

the performance models, as well as adapting and extending available performance model

generators are the main challenges for this research question. This work will identify,

evaluate, and synthesize available monitoring solutions and model generators based on a

literature review. Based on this review, we will select applicable monitoring solutions and

conduct a series of controlled experiments according to the Design Science Methodology

using SPEC benchmarks [Hen06]. These experiments identify the combination of moni-

toring and model generator solutions that are best suited for middleware based distributed

systems.

RQ2: Which architecture optimization approaches can be adapted for architecture-

level performance models extracted from middleware platforms?

This research question is settled between the research domains of architecture optimization

and self-adaptive software systems and tries to adapt and extend available optimization

288



algorithms to optimize the component allocations of a productive environment [KKR11,

ST09].

Architecture optimizations have been proposed to improve logical component topologies

and support architecture decisions during design time [KKR11]. Especially component

allocation decisions are a complex and time consuming activity [KKR11]. Unfortunately,

during design time resource demands and the infrastructure hosting the application can

only be estimated. The accuracy of the model as well as the optimization recommendations

depend on these assumptions.

Optimization of running systems is covered in the domain of self-adaptive software sys-

tems [ST09]. These systems act automatically to a certain degree and can react within a

limited set of rules. These rules can include increasing the number of available servers to

compensate an unusually high amount of user requests or detecting security breaches and

close certain system accesses [ST09]. To detect the need of action self-adaptive software

monitors performance data like hardware utilization and network throughput. This data is

used to reason the application’s structure and to react in order to keep the system stable,

reliable, and secure.

Research from the domain of self-adaptive systems as well as from design time archi-

tecture optimizations is leveraged to build component allocation recommendations with

architecture-level performance models. The contribution of this research question is a

component allocation optimizer, which utilizes performance models from the experiment

in RQ1. The optimizer reuses and extends algorithms from the field of architecture op-

timization with performance models extracted from a running system. Subsequently, the

results are compared to improvements that self-adaptive systems can achieve. This com-

parison is conducted as a controlled experiment according to the Design Science Method-

ology and aims to demonstrate an improvement to the available approaches from both

research domains.

RQ3: What is the accuracy of simulated optimization results compared to real system

measurements?

Evaluating the proposed approach requires three steps: Validating the accuracy of the

generated architecture-level performance models, the change prediction capabilities, and

the selected optimization algorithm.

The evaluation of the performance model is conducted by a controlled experiment. Hence,

we generate such a model from a real distributed middleware based application. This

generated model is then used to simulate different load and usage scenarios. The same

scenarios are processed on the real system. When processing such test runs, performance

metrics like throughput, response time or utilization are measured and compared with

the simulation results. The accuracy of the model is assessed based on the error among

simulation results and measurements.

Estimates of the influence of changing components or newly introduced components are

also validated with an experiment. Simulations of these changes are compared with real

changes to the application. The change effect prediction is essential to demonstrate that

architecture changes can be simulated with the generated performance model.

The last step is the evaluation of the optimization. The optimization algorithm calcu-

289



lates alternative component topologies by predicting component allocation changes. The

topologies are optimized in terms of performance metrics, hardware, license, or energy

costs. The optimization algorithm must prove that the proposed component topology im-

proves according to the optimization goal(s).

References

[BVD+14] Andreas Brunnert, Christian Vögele, Alexandru Danciu, Matthias Pfaff, Manuel Mayer,
and Helmut Krcmar. Performance Management Work. Business & Information Systems
Engineering, 6(3):177–179, 2014.

[BVK13] Andreas Brunnert, Christian Vögele, and Helmut Krcmar. Automatic Performance
Model Generation for Java Enterprise Edition (EE) Applications. In Computer Perfor-
mance Engineering, volume 8168 of Lecture Notes in Computer Science, pages 74–88.
Springer Berlin Heidelberg, 2013.

[Gre11] Bernd Greifeneder. Method and system for processing application performance data
ouside of monitored applications to limit overhead caused by monitoring, June 7 2011.
US Patent 7,957,934.

[Hen06] John L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Ar-
chit. News, 34(4):1–17, September 2006.

[KKR11] Anne Koziolek, Heiko Koziolek, and Ralf Reussner. PerOpteryx: Automated Applica-
tion of Tactics in Multi-objective Software Architecture Optimization. In Proceedings
of the Joint ACM SIGSOFT Conference – QoSA and ACM SIGSOFT Symposium – IS-
ARCS on Quality of Software Architectures – QoSA and Architecting Critical Systems
– ISARCS, QoSA-ISARCS ’11, pages 33–42, New York, NY, USA, 2011. ACM.

[PVR12] M. Pawlish, A.S. Varde, and S.A. Robila. Analyzing utilization rates in data centers
for optimizing energy management. In Green Computing Conference (IGCC), 2012
International, pages 1–6, June 2012.

[SB10] B. Speitkamp and M. Bichler. A Mathematical Programming Approach for Server
Consolidation Problems in Virtualized Data Centers. Services Computing, IEEE Trans-
actions on, 3(4):266–278, Oct 2010.

[SCZK14] Simon Spinner, Giuliano Casale, Xiaoyun Zhu, and Samuel Kounev. LibReDE: A
Library for Resource Demand Estimation. In Proceedings of the 5th ACM/SPEC In-
ternational Conference on Performance Engineering, ICPE ’14, pages 227–228, New
York, NY, USA, 2014. ACM.

[ST09] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive Software: Landscape and Re-
search Challenges. ACM Trans. Auton. Adapt. Syst., 4(2):14:1–14:42, May 2009.

[vHWH12] André van Hoorn, Jan Waller, and Wilhelm Hasselbring. Kieker: A Framework for
Application Performance Monitoring and Dynamic Software Analysis. In Proceedings
of the 3rd ACM/SPEC International Conference on Performance Engineering, ICPE
’12, pages 247–248, New York, NY, USA, 2012. ACM.

[Woo09] Bobby Woolf. WebSphere SOA and JEE in Practice, 2009.

290


