
Using Learning Techniques to Generate System Models for
Online Testing

Edith Werner, Sergei Polonski, Jens Grabowski
Software Engineering for Distributed Systems Group,

Institute for Computer Science, University of Göttingen,
Lotzestr. 16–18, 37083 Göttingen, Germany.

{ewerner,grabowski}@cs.uni-goettingen.de,
spolonski@stud.cs.uni-goettingen.de

Abstract: Today’s software systems are mostly modular and have to be changeable.
However, the testing of such systems becomes difficult, especially when changes are
applied after deployment. One way to passively test such a system is to check whether
the observed traces are accepted by a system model. In this paper, we present a method
to generate a model of the System Under Test from its test cases. We adapt Angluin’s
algorithm for learning finite automata to the special case of learning from traces ob-
tained from test cases and provide the promising results of our experiment.

1 Introduction

Today’s software systems are mostly modular and have to be changeable. The testing of
such systems becomes difficult, especially when changes are applied after deployment.
However, modeling organically grown systems under laboratory conditions is not always
possible, so passive online testing may be the only possible way to assess the deployed
system. To this end, we need an oracle that accepts or rejects the observed behavior, e.g. a
system model that accepts or rejects the observed traces of the System Under Test (SUT).

A promising approach to the reconstruction of system models is to use learning algorithms,
as has been shown for example by [CM96], [HNS03], and [SLG07]. However, all those
approaches rely on the execution of active test cases against the SUT. By contrast, we
suggest an approach to learn a system model from the system’s test cases without probing
the SUT itself. Test cases are almost always available and often more consistent to the
system than any other model. Also, they usually take into account all of the system’s
possible reactions to a stimulus, thereby classifying the anticipated correct reactions as
accepted behavior and the incorrect or unexpected reactions as rejected behavior. Simply
put, we generate a system model for passive testing from the artifacts used in active testing.

The paper is structured as follows. In Section 2 we present the foundations of the learning
algorithm and our adaptation to accept test case traces as input. Then, in Section 3, we dis-
cuss the first results of our approach and give an outlook on further research. In Section 4,
we summarize the paper.

183



2 Learning from Test Cases

The technique of learning finite automata using queries was introduced by Dana An-
gluin [Ang87]. The main idea of the algorithm is to successively discover the states and
transitions of an automaton, further called the target automaton, by querying an oracle,
called teacher. The algorithm uses two types of queries: membership queries discover
whether a given sequence is accepted by the target automaton, equivalence queries ask
whether the learned automaton, called hypothesis automaton, already matches the target
automaton. If the hypothesis automaton differs from the target automaton, the teacher an-
swers by giving a counter-example. The already gathered information is stored in a data
structure called classification tree, which is mainly a binary decision tree whose nodes are
labeled with sequences of the target automaton.

The main flow of the learning algorithm is as follows. The hypothesis automaton is initial-
ized with one state, the start state. A membership query on the empty sequence determines
whether the start state is accepting or not. Subsequently, as long as the hypothesis automa-
ton is not equivalent to the target automaton, the classification tree is updated with help of
the counter-example, i.e. the counter-example is added to the classification tree by creating
a new path in the tree. Then, the classification tree is used to generate a new hypothesis
automaton by using the leaves of the classification tree as states of the automaton and
creating the transitions by asking membership queries on the concatenation of access and
distinguishing strings.

To learn a finite automaton from test cases, the Angluin’s algorithm has to be adapted in
two ways. First, test cases have to be defined in the context of the learning algorithm.
Then, the two query mechanisms of the algorithm, membership queries and equivalence
queries, have to be redefined.

2.1 Test Cases as Inputs

For the purposes of our paper, we will use a test case as the basic concept. A test case t
is a tuple (w, expect(w)) where w is a sequence of inputs and outputs to the software and
expect(w) ∈ {accept, reject} determines whether the test sequence w should be accepted
or rejected by the system. Without loss of generality, we assume that every test case begins
in the start state of the software. In the following, we will denote the input/output sequence
of a given test case by w(t) and similarly the expected test result as expect(w(t)). Since
Angluin’s learning algorithm assumes an automaton without outputs, inputs and outputs
of the software will be equally treated as inputs of the automaton.

An accepting test case t, where expect(w(t)) = accept, maps to a sequence that is ac-
cepted by the target automaton. Accordingly, a rejecting test case, where expect(w(t)) =
reject, maps to a sequence that is not accepted by the target automaton. The collection
of all test cases belonging to the software is called a test suite T S , which contains both
accepting and rejecting test cases.

184



2.2 Adapting the Query Mechanisms

The most important mechanism of the learning algorithm is the membership query, which
determines the acceptability of a certain behavior. In our case, the behavior of the software
and thus also of the target automaton is defined by the test cases. Since the test cases are
our only source of knowledge, we assume that the test cases cover the complete behavior of
the system and thus redefine the membership query as follows: A sequence w is accepted
by the automaton if it matches an accepting test case in the test suite. Assuming a closed
world, we simply state that every behavior that is not explicitly allowed must be erroneous
and therefore has to be rejected, i.e. rejected ≡ ¬accepted. Likewise, the hypothesis
automaton is equivalent to the target automaton, if for every test case in the test suite,
the processing of its test sequence on the automaton is accepted or rejected as specified
by the expected test result. The first test sequence that violates its expected test result
is returned as a counter-example. The remaining parts of the learning algorithm can be
adopted without changes.

3 Experimental Results

The results of our first experiments are promising: it is possible to reproduce an automaton
model from its test cases. For the experiments, we used the state machine of the Initiator
entity of Inres protocol [Hog91]. Since from the plain construction of an automaton we
cannot assess the validity of our approach, we actually started by generating a reference
automaton. From the reference automaton, we generated accepting and rejecting test cases
that we used as inputs to the learning algorithm. In the last step, we reconstructed the
automaton from the test cases by way of the adapted learning algorithm as described in
Section 2. For the Inres protocol, we were able to reconstruct a reference automaton with
six states from a test suite consisting of twelve accepting and three rejecting test cases.

One of the main observations of our experiments is that the closed world assumption is
questionable for several reasons. When constructing the positive test cases, we observed
that it is not enough to cover the transitions of the reference automaton. In case the soft-
ware can behave cyclically, then transition covering test cases will not necessarily unroll
those loops. Then, when a membership query is asked for a path that loops twice, the path
will be rejected on the grounds that there is no test case representing this behavior. A pos-
sible solution to this problem would be a preprocessing of the test suite by a loop detection
algorithm, annotating the possible loops and thus enabling on-the-fly loop unrolling during
the actual learning.

Also, it is arguable whether a test suite can in fact cover the complete behavior. In Sec-
tion 2.2, we assumed a closed world and stated that every behavior that is not explicitly
allowed must be erroneous and therefore has to be rejected. However, since the learning
algorithm is accumulative, i.e. the algorithm can only learn new transitions and states but
never forget them, in the case that an accepting test case was missing the algorithm would
have to be started from scratch. Assuming an open world, a possibility would be to reject

185



only sequences that are matched to a negative test case. The drawback of this option is
that then not all membership queries can be answered, since some sequences cannot be
matched to test cases. Several possible solutions to this question remain to be explored.

Further, we plan to investigate test case generation methods that are based on Unique In-
put/Output Sequence (UIO) or Distinguishing Sequence (DS) with respect to our learning
algorithm. It is most likely that methodically generated test suites will be more analyzable
and therefore easier to expand.

4 Summary

We presented an approach to generate models for online testing by using a learning al-
gorithm that we adapted to learn a behavioral model from test cases. The adaptation was
done in two steps: First, test cases were defined in terms compatible to the algorithm.
Second, the key features of the algorithm, membership and equivalence queries were re-
defined suitably. The adapted algorithm was implemented in a prototypical tool [Pol08].
To evaluate the concept, we then applied the algorithm to an examplary system. The first
experimental results were promising; we were able to reproduce our reference automaton
from the system’s test suite. Finally, we gave an overview on possible optimizations of the
algorithm. In the long term, the learning approach could also be used to assess the quality
of test suites, e.g. by comparing the automaton learned to an existing model and thereby
determine the coverage of the underlying test suite.

References

[Ang87] D. Angluin. Learning Regular Sets from Queries and Counterexamples. Information and
Computation, 75(2):87–106, 1987.

[CM96] D. Carmel and S. Markovich. Learning Models of Intelligent Agents. In Howard Shrobe
and Ted Senator, editors, Proceedings of the Thirteenth National Conference on Artificial
Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference,
Vol. 2, pages 62–67, Menlo Park, California, 1996. AAAI Press.

[HNS03] H. Hungar, O. Niese, and B. Steffen. Domain-Specific Optimization in Automata Learn-
ing. In Warren A. Hunt Jr. and Fabio Somenzi, editors, CAV, volume 2725 of Lecture
Notes in Computer Science, pages 315–327. Springer, 2003.

[Hog91] D. Hogrefe. OSI Formal Specification Case Study: The Inres Protocol and Service.
Technical Report IAM-91-012, University of Berne, Institute for Informatics and Applied
Mathematics, May 1991.

[Pol08] Sergei Polonski. Learning of protocol-based automata. Master’s thesis, Institute for Com-
puter Science, University of Göttingen, Germany, GAUG-ZFI-MSC-2008-09, May 2008.

[SLG07] M. Shahbaz, K. Li, and R. Groz. Learning and Integration of Parameterized Components
Through Testing. In Alexandre Petrenko, Margus Veanes, Jan Tretmans, and Wolfgang
Grieskamp, editors, TestCom/FATES, volume 4581 of Lecture Notes in Computer Science,
pages 319–334. Springer, 2007.

186




