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Abstract: Conventional speaker identification systems are already field-proven with
respect to recognition accuracy. Since any biometric identification requires exhaus-
tive 1 : N comparisons for identifying a biometric probe, comparison time frequently
dominates the overall computational workload, preventing the system from being ex-
ecuted in real-time. In this paper we propose a computational efficient two-stage
speaker identification system based on Gaussian Mixture Model and Universal Back-
ground Model. Binarized voice biometric templates are utilized to pre-screen a large
database and thereby reduce the required amount of full comparisons to a fraction of
the total. Experimental evaluations demonstrate that the proposed system is capable
of significantly accelerating the response-time of the system and, at the same time,
identification performance is maintained, confirming the soundness of the scheme.

1 Introduction

Biometrics represent a rapidly evolving field of research and large-scale biometric sys-

tems are already deployed in commercial and governmental applications [JRP04, JFR08].

Since biometric data does not have any predefined sorting order, large-scale biometric

identification systems have to compare a biometric probe to an entire database of biomet-

ric instances (gallery). The computational requirement of this comparison scheme, which

is referred to as 1 : N system (the probe is compared to N stored instances), highly de-

pends on comparison speed as well as on the number of instances stored in the database,

i.e. real-time identification represents a challenging task. Focusing on biometric identi-

fication different mechanisms have been proposed in order to reduce the response time

of the system. Indexing techniques have been proposed for different biometric charac-

teristics, e.g. in [JPDG08, MPCG05]. However, throughout literature these techniques

have been evaluated on rather small dataset, leaving scalability doubtable. In addition,

serial combinations have been proposed, pre-pending computationally efficient algorithms

to conventional identification systems in order to extract a subset of candidates, e.g. for

iris based on binary feature vectors in [GRC09].

A binary representation of biometric features offers two major advantages: firstly a more
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compact storage of biometric templates and secondly a rapid comparison of biometric

templates. Binary biometric templates facilitate comparison of thousands of templates per

second, per single CPU core, i.e. even if binary representations of biometric data may

cause a loss of information (and, thus, cause a decrease in biometric performance) these

are suitable to be applied for pre-screening purposes in biometric identification systems.

That is, compressed binary templates can be applied to carry out 1 : N comparisons while

more sophisticated comparators are employed to compare according subsets of original

templates. While different binarization methods have been suggest for voice biometric

data, e.g. in [AB10, BBMA11], to our knowledge, no serial combinations based on binary

voice templates have been considered so far.

The contribution of the present paper is twofold: (1) a scalable binarization technique

for voice biometric data based on Gaussian Mixture Model (GMM) and Universal Back-

ground Model (UBM) is presented. (2) Obtained binary templates are utilized to efficiently

perform 1 : N comparisons and return a short-list of top candidates in a speaker identifi-

cation system. Implementing a serial combination of feature representations and accord-

ing comparators in a single-instance scenario, computational effort required for biometric

identification is significantly reduced. On a database which comprises voice samples of

339 subjects a speed-up of more than 95% is achieved, maintaining identification rates of

the original system.

The remainder of this paper is organized as follows: in Sect. 2 the underlying GMM-

UBM-based voice recognition system is described and in Sect. 3 the proposed two-stage

identification system is introduced. Subsequently, experimental evaluations are presented

in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 GMM-UBM Voice Recognition System

In past years numerous approaches to speaker authentication have been proposed: for a

detailed review on existing literature the reader is referred to [KL10, LVH+11]. The de-

scribed system, which is considered a representative state-of-the-art speaker authentication

system, is adapted in order to obtain a binary representation of voice data. Given a bio-

metric observation O a total number of K feature vectors ok [t] of length T are obtained

in the feature extraction process, with k = 1, . . . ,K and t = 1, . . . , T . Feature vectors are

modelled as a realization of a GMM by adapting the means of the UBM to the estimated

means for the speaker using MAP adaptation. The GMM of a subject u is represented

as the supervector ξ(u) containing the mean vectors for each Gaussian distribution in the

model.

In the binarization step, which builds upon a technique which has been similarly ap-

plied to on-line signatures [RMACC12], the supervector is binarized by comparing ξ(u)

component-wise against a modelled large population with a supervector µ. Then, the latter

vector is used as a feature-based biometric template and applied to perform identification.

In the following subsection the employed feature extraction and the corresponding bina-

rization technique, which are depicted as part of Fig. 1, are described in detail.
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Figure 1: Flowchart enrolment and a single authentication of the proposed binarization scheme based
on a GMM-UBM speaker identification system.

2.1 Feature Extraction

In order to extract features from an acquired speech signal the signal has to be decomposed

into its frequency components using the FFT [RB76] at a window function of 20-30 ms

size, thus, receiving one feature vector per window. As previously mentioned, several

methods to extract features from the resulting magnitude spectrum have been suggested,

e.g. LPC [MZR96] or PLP [SVC93], however, MFCC have shown to be powerful and

difficult to improve upon in practice [Rey94, KL10].

We obtain 12 coefficients and the Log-energy value for each frame and the first and second-

order derivative, i.e. in total we obtain a feature vector with 39 components per frame.

The obtained vectors are further processed by cepstral mean subtraction as well as feature

warping [PS01].

In order to derive an individual speaker model GMM from the general UBM, we only adapt

the means of the UBM using the MAP adaptation. The UBM Λ represents a stochastic

model containing a finite mixture of multivariate Gaussian components. Assume that E

biometric observations O
(u)e, e = 1, . . . , E of a user u are available during enrolment.

We let the a posteriori probability for the component i, with i = 1, . . . , I , of Λ be,

P (i|xT ,Λ) =
wig(xT |µi,

∑
i)∑J

j=1 wjg(xT |µj ,
∑

j)
, (1)

where wi represents the mixture weights, µi the means, xT the training vectors for the de-

sired model, and g(xT |µi,
∑

i) the component’s Gaussian density. Further, for the training

vectors xT , we compute the Maximum-Likelihood for the mean parameters as,

Ei(xT ) =
1

ni

J∑

j=1

Pr (i|xj ,Λ)xj , with weight ni =
J∑

j=1

Pr (i|xj ,Λ) . (2)

The user’s model is then characterized by the MAP adapted means µ̂i(xT ) as,

µ̂i(xT ) = αiEi(xT ) + (1−αi)µi, (3)
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where αi are fixed relevance factors [YLML12]. The adapted means are then combined

to form the supervector ξu (biometric template) for user u

ξ(u) = [µ̂1, µ̂2, . . . , µ̂I ] , (4)

where I defines the number of components in the UBM. The MAP adaptation can also be

performed for a single biometric observation.

2.2 Binary Template Generation

Our goal is to generate a binary representation of the extracted voice template. As men-

tioned earlier, a binary representation allows the reduction of storage as well as a linear

acceleration of identification speed in a large scale biometric system. In order to create a

binary vector from the user’s template we compare the derived supervector from the UBM

against the inter-class mean of a large population µ. The population µ has to be estimated

during a training phase of the system, i.e. µ represents a fixed system parameter.

At the time of enrolment of user u we record a number of E observations and process them

by applying the MAP adaptation to derive the vectors ξ(u)e with Z coefficients (Z = 39I).

The mean vector d(u) is defined as,

d
(u) =

1

E

E∑

e=1

ξ(u)e, (5)

such that the binary representation b
(u) can be estimated as,

b
(u)[z] =

{
0, if d(u)[z] < µ[z]

1, if d(u)[z] ≥ µ[z]
z = 1, . . . , Z. (6)

Since ξ(u) can be obtained by a single biometric observation it is possible to directly gen-

erate a binary representation b
(u) from a probe. Moreover, it may be required to generate

binarized templates of a pre-defined size v, that comprise only bits exhibiting the high-

est possible discriminativity. According fixed-length binary vectors can be obtained by

estimating the reliability measures ϕ(u)[z],

ϕ(u) [z] =

∣∣d(u) [z]− µ [z]
∣∣

σ(u) [z]
, (7)

with the variance of the z-th feature estimated during the enrolment of user u defined as,

(σ(u)[z])2 =
1

E − 1

E∑

e=1

(ξ(u)e[z]− d
(u)[z])2. (8)

This measure assigns greater relevance to those features which lie further away from the

population’s mean than others. The v most discriminative features (largest values) are

then indexed by storing a bit mask pointing at these values which is referred to as relevant

projection RP
(u), i.e. this bit mask contains 1s at positions of the v most discriminative

features.
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(ũ)
b
(u)

Database
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Figure 2: Basic operation mode of the proposed two-stage speaker identification system based on
universal background models.

3 Two-stage Identification System

The proposed two-stage speaker identification system is depicted in Fig. 2 and comprises

two components: pre-screening and template comparison. During pre-screening a com-

putationally efficient Hamming distance-based comparator is applied to extracted binary

templates in order to return a short-list of top candidates, which most likely match the

presented probe. Subsequently, the original templates of the short-list candidates are con-

sidered for the more complex comparison of the original system. Both steps are described

in detail in the following subsections.

3.1 Pre-screening

Comparisons between binary biometric probes and gallery templates are implemented by

the simple Boolean exclusive-OR operator (XOR) applied to a pair of binary vectors,

masked (AND’ed) by the relevant projection of the gallery template. The XOR operator

⊕ detects disagreements between any corresponding pair of bits while the AND operator

∩ ensures that only most discriminative bits (with respect to the gallery template) are con-

sidered. For a binary template b
(u) of user u, a gallery template b

(ũ) of user ũ and the

corresponding relevant projection RP
(ũ) we compute the fractional Hamming distance

(HD) as a measure of the dissimilarity,

HD(b(u),b(ũ)) =
||(b(u) ⊕ b

(ũ)) ∩RP
(ũ)||

v
, (9)
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where v is equal to the norm of RP
(ũ), v = ||RP

(ũ)||.

The computational efficient HD-based comparator is utilized to pre-screen the entire database.

For this purpose N pair-wise comparisons are performed, where N is the number of users

registered with the identification system, resulting in a vector S of dissimilarity scores

s = HD . Subsequently, scores in S are sorted in descending order to obtain the set

S
′ = {s1, s2, . . . , sN |∀i, j, i < j : si ≤ sj , }. Finally, the top-l candidates, i.e. the

candidates which the first l scores in S
′ point at, are returned.

3.2 Template Comparison

Based on the short-list returned in the pre-screening stage the probe is compared against a

total number of l original gallery templates. The comparison score between the probe of

user u and a gallery template of user ũ is defined as the LLR of the user’s GMM Λ
ũ and

the UBM Λ, which is defined as,

LLR(O(u),Λũ,Λ) =
∑

i

log
(
P (i|x,Λũ)

)
− log

(
P (i|x,Λ)

)
, (10)

where Λ
ũ represents the GMM of user ũ, Λ is the UBM, wi are the mixture weights, µi

the means, and x the feature vectors extracted from O
(u). The a posteriori probability for

each component i = 1, . . . , I of Λ is defined analogue to Eq. 1,

P (i|x,Λ) =
wig(x|µi,

∑
i)∑J

j=1 wjg(x|µj ,
∑

j)
. (11)

The LLR is a test of the hypothesis Hu, u is the target speaker, and the anti-hypothesis Hu,

u is not the target speaker. The resulting score can then be used as an ordering criterion by

assuming that a higher score is more likely to be a genuine trial than an impostor trial.

3.3 Workload Reduction

Without the loss of generality, any serial combination of a conventional biometric identi-

fication system and a computationally more efficient system gains a linear speed up, with

respect to the amount of comparisons performed. Assuming that a total number of N sub-

jects are registered with the traditional identification system, the workload W for a single

biometric identification can be defined by,

W = N(Tc + tε) + δ, (12)

where Tc represent the computational cost of a single comparison of the probe to a gallery

instance, tε represents secondary computational costs, e.g. file access, and δ comprises

all one-time secondary costs, e.g. sorting of scores or feature extraction performed on the

acquired voice sample.
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The proposed two-stage system reduces the overall workload to W ′,

W ′ = Ntc + lTc + δ′, (13)

where tc is the computational cost of a single more efficient comparison, tc C Tc, and

l is the number of top-candidates returned by the pre-screening process. Assuming that

secondary computational costs are comparable, δ ≃ δ′, the overall computational cost is

reduced, i.e. W ′ < W , if,

tc < Tc(1−
l

N
), (14)

which is most likely the case for a computationally efficient pre-screening and small num-

bers of l, as will be demonstrated in conducted experiments. Even in case, δ C δ′, one-

time costs become negligible for large numbers of N . That is, additional costs required for

the proposed two-stage system, e.g. the MAP adaptation process, only slightly influence

the response time of the identification system.

4 Experimental Evaluation

In the following subsection we define the experimental setup and compare the performance

of the original identification system to the proposed two-stage scheme, with respect to

biometric performance (identification rates) as well as time consumption.

4.1 Experimental Setup

Experiments are carried out on a text-independent digit-corpus database which comprises

voice samples of a total number of 339 subjects. For each subject in the database at least

32 voice samples of length 3,000ms-5,000ms are available. The samples contain three to

five spoken digits. At the time of enrolment 30 samples are used to generate the according

models for a user. The remaining samples are applied in the identification process.

Performance is estimated in terms of (true-positive) identification rate (IR). In accordance

with ISO/IEC IS 19795-1 [ISO06] the IR is the proportion of identification transactions by

subjects enrolled in the system in which the subject’s correct identifier is the one returned.

In experiments, identification is performed in the closed-set scenario returning the rank-1

(R-1) candidate as the identified subject (without applying a specific decision threshold).

By analogy, R-2 defines the proportion where the rank-1 or the rank-2 candidate represent

the correct subject, and so forth. The CMC illustrates the progression of the identification

rate with respect to the number of false positives.

151



Table 1: Identification rates of the original UBM/GMM system compared to different configurations
of the pure proposed binarization.

I = 64 Original v = 1024 v = 1512 v = 1768 no RP

R-1 72.0% 68.7% 71.3% 72.0% 67.4%

R-2 73.1% 77.2% 77.8% 77.6% 76.1%

R-5 75.1% 85.7% 85.9% 86.2% 85.1%

R-10 78.9% 91.6% 91.9% 91.6% 90.6%

I = 128 Original v = 1768 v = 2512 v = 3096 no RP

R-1 78.2% 72.9% 73.7% 72.9% 69.9%

R-2 79.0% 79.3% 81.1% 80.0% 78.9%

R-5 79.7% 86.9% 88.2% 87.6% 86.4%

R-10 84.3% 92.6% 92.8% 92.3% 91.7%

I = 256 Original v = 1768 v = 2512 v = 3096 no RP

R-1 82.8% 67.5% 68.0% 70.0% 67.4%

R-2 83.1% 75.0% 76.6% 76.8% 75.0%

R-5 83.4% 83.2% 85.4% 86.4% 85.7%

R-10 87.6% 89.2% 92.2% 92.6% 92.9%

4.2 Performance Evaluation

Table 1 summarizes identification rates obtained for different configurations of the GMM-

UBM-based system as well as the binarization technique (rates where the binarization

scheme outperforms the original one are marked in bold). In case no random projection is

applied, the total amount of bits compared is Z = 39I . We did not consider models with

more than I = 256 components, as for more components, e.g. I = 512, the response time

of identification processes did not turn out to be practical for the original system, even for

the applied database of limited size. Time consumption during operational testing caused

significant delay in analysis of the resulting performance and optimizations. As can be ob-

served from Table 1 the original system clearly outperforms the sole binarized system with

respect to the R-1 identification rate. However, for the R-2 rate the binarization scheme

already achieves comparable biometric performance and for R-5 and R-10 rates it even

gains accuracy across different configurations. That is, the proposed binarization tech-

nique is highly suitable for pre-screening purposes. The CMCs of the best configuration

of the original system (I = 256) and the presented binarization method utilizing different

relevant projections are plotted in Fig. 4.1. As can be seen, for increasing rank values

all configurations quickly outperform the original system. Further, the number of incor-

porated bits within the binarization scheme can be significantly reduced without a loss of

accuracy. In several cases a reduction of the amount of applied bits to the v most discrim-

inative ones even gains biometric performance. For example, for I = 64 the v = 1768
most relevant bits yield a R-1 rate of 72.0% compared to a R-1 rate of 67.4% if no RP,

i.e. v = 2496, is applied (see first row of Table 1).
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Figure 3: CMC curve for the original system and configurations of the binarized system and R-1
rates for configurations of the two-stage identification system for I = 256.

For different configurations, short-list sizes and adequate relevant projections, the R-1

rates of the proposed two-stage identification system (I = 256) are plotted in Fig. 4.1. Ta-

ble 2 summarizes obtained rates for different numbers of components, accordingly (rates

where the two-stage scheme outperforms the original one are marked bold). Obviously,

large values of l improve the biometric performance while convergence is reached rela-

tively quickly, e.g. employing a number of I = 64 components returning more than 15

candidates does not yield any improvement. For the vast majority of configurations the

presented approach clearly enhances the biometric performance of the underlying system

which obtains R-1 identification rates of 72.0%, 78.2%, and 82.8% for a number of I = 64,

128, and 256 components, respectively (cf. Table 1).

Experiments have been performed on a system consisting of an Intel Core i7-37770 CPU

with 3.4 GHz and 32 GB RAM, running CentOS 6.3 x86 64. Comparisons were not par-
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Table 2: R-1 rates for different configurations of the proposed two-stage identification system.

I = 64 v = 1024 v = 1512 v = 1768 no RP

l = 5 73.9% 73.4% 73.7% 73.5%

l = 10 74.1% 74.3% 74.0% 73.6%

l = 15 74.0% 74.9% 74.4% 73.8%

l = 30 73.6% 73.6% 73.8% 73.4%

l = 50 73.4% 73.5% 73.4% 73.5%

I = 128 v = 1768 v = 2512 v = 3096 no RP

l = 5 78.3% 79.3% 78.6% 77.8%

l = 10 79.5% 79.8% 79.5% 79.1%

l = 15 79.7% 80.1% 80.2% 79.9%

l = 30 80.2% 80.0% 80.3% 79.8%

l = 50 80.1% 80.2% 80.2% 79.9%

I = 256 v = 1768 v = 2512 v = 3096 no RP

l = 5 78.3% 80.1% 80.7% 80.1%

l = 10 81.5% 83.0% 83.4% 83.9%

l = 15 82.7% 83.7% 84.3% 84.4%

l = 30 84.0% 84.2% 84.7% 84.5%

l = 50 85.0% 85.1% 85.1% 84.6%

allelized during time consumption tests. While optimized biometric identification systems

make use of parallel distributed data processing, this difference is irrelevant since we aim

at comparing the two types of techniques based on same configurations and report speed-

up in percentage, since absolute values of identification speed directly relate to the size of

the dataset. For the applied dataset of 339 users the obtained overall speed-ups for differ-

ent sizes of l are summarized in Table 3. As can be seen, computational performance is

significantly improved achieving speed-ups up to 98%. As expected, a natural trade-off

between computational performance and biometric performance (accuracy) is yielded (cf.

Table 2). A pair-wise comparison within the original system takes on average 42.1 ms.

The HD score between two binary templates is estimated in approximately 0.007 ms. Ad-

ditional one-time computational cost for the MAP adaptation requires 62.4 ms on average.

As previously mentioned, secondary computational cost, e.g. file access, are inevitable

for both, the original system as well as the proposed two-stage scheme, which limits the

overall performance gain. Furthermore, it becomes clear that, in contrast to the presented

experiments, theoretical analysis, which estimate the amount of required operations of al-

gorithm complexity, may cloud the picture of the actual speed-up. As can be observed

from Table 3, with increasing length of the top-l list the overall speed-up decreases. How-

ever, with increasing database size computational performance is further gained, i.e. for a

simulated workload of N = 3, 000 users and a pre-screening short-list of l = 100 candi-

dates a speed-up of 96% is obtained. That is, the proposed approach is expected to achieve

even more performance gain for large-scale databases where speaker identification still

represents a critical issue.
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Table 3: Average speed-up across different component and short-list sizes.

List size l 5 10 15 30 50 75 100

Speed-up 98.0% 96.5% 95.1% 90.6% 84.7% 77.4% 70.0%

5 Conclusion

In this work we proposed a two-stage speaker identification system based on UBM. It has

been demonstrated that the incorporation of a binarization technique enables a compu-

tationally efficient pre-screening of the database returning a short-list of top-candidates,

which significantly reduces the computational workload of the entire system. The pro-

posed approach is generic and an integration into existing systems is feasible at negligible

cost (binary templates are stored efficiently). In contrast to hardware-oriented speed-up so-

lutions, e.g. spreading the recognition workload across a set of processors, the presented

scheme represents, to our knowledge, the first low-cost software solution for performing

speaker identification on large-scale voice databases.

Future work will comprise applying binary voice templates within biometric template pro-

tection schemes [RU11] in order to protect the privacy of registered users.
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