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Abstract: The combination of Virtual Reality (VR) and eye tracking allows to analyze how students 

use the presented VR content for learning. Here, we propose a novel approach to analyze eye 

tracking data in VR, even if no access to the VR software source code is given. This proof-of-concept 

leverages image classification methods to identify objects that captured the students' attention in 

VR. The method allows analysis of individual learning strategies and correlate those to individual 

learning outcomes. 
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1 Introduction and Goals 

Virtual Reality allows users to immerse in a completely computer-generated interactive 

experience in real-time. This makes it an ideal technology to let students learn and explore 

in a safe, controllable, reproducible environment. Because of its attractiveness for learning 

and teaching, there is a lot of research to apply VR in education. Especially important are 

studies of the effectiveness of VR implementations and as well as questions on how to 

embed such systems into regular teaching processes.  

Eye tracking is a technology to find spatial focus points of user's vision over time. The 

combination of virtual reality and eye tracking consequently offers benefits to understand 

where users focus their view in a virtual environment. Clay et al. give insight on basic 

principles, limitations and application examples for eye tracking in VR [CKK19]. Rappa 

et al. analyzed papers that incorporated eye tracking in VR learning [Ra22]. Today, several 

VR headsets exist, that have included eye tracking capabilities. The best approach to carry 

out eye tracking studies in VR would be to embed it into the VR software source code for 

maximum flexibility. Unfortunately, most of the commercial VR learning software does 

neither offer eye tracking integration nor provide software source code. Therefore, an 

alternative approach would be helpful for eye tracking analysis in off-the-shelve software. 
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Here, we present a novel approach to analyze eye tracking in off-the-shelve VR software. 

The goal is to use machine learning to identify VR scene objects that the users have looked 

at. This allows teachers or researchers to analyze their student’s gaze behavior in a post-
intervention step. The research was conducted in form of a student project at Anhalt 

University of Applied Sciences in Köthen, Germany. 

2 Data Acquisition 

The data used here was recorded in a previous study [IT22]: Having biomedical curricula 

at our university, we used a biomedical software: ShareCare YOU VR2 is a VR simulation 

to teach and learn the human body, anatomical structures, organs, and their functions 

(Figure 1). In consent with N=20 participants we took video recordings from a Varjo VR-

2 headset during a thirty-minute virtual learning experience.  

 

Figure 1: Screenshot of user’s view in ShareCare YOU VR software. Billboards show a menu and 
additional text on the left and right side. A dock gives access to features at the bottom. The 

currently activated 3D object is visible in the center (here: human heart). 

The study incorporated both a pre- and a post-intervention quiz to assess the participants' 

knowledge of human heart anatomy before and after using the VR learning software. 

Looking at the gained score percentage, exactly those with high/low starting knowledge 

scored a low/high absolute gain in score, corresponding to outcomes of Zinchenko et al. 

[Zi20]. Unfortunately, due to loss of data, not all the 20 participants' data sets were still 

available for our new analysis. Therefore, in the following approach we used only ten data 

sets (IDs 4, 5, 6, 7, 8, 9, 10, 11 ,17, 18) to provide a proof-of-concept. 

                                                           
2 https://store.steampowered.com/app/724590/Sharecare_YOU_VR/  
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3 Method and Implementation 

Data annotation provides the ground truth labels necessary for training and evaluation of 

machine learning models. In our study, we used the annotation tool makesense.ai to 

annotate the images in our dataset. From the existing video recordings, at first, we 

extracted each video frame as image and determined the user’s 2D focus point using the 

existing eye tracking method. Second, we reduced the size of each image to the area 

around the user’s focus point. The annotator has chosen a receptive field of 400x400 

pixels, which provides enough visual information for the classification of the target 

classes. We identified six relevant classes based on the content of the videos: The virtual 

depiction of the human heart, three display types (left/right/main), the dock allowing users 

to control the simulation and the <booting screen= from before application start. 

Each training image was assigned exactly one class, which was determined by the human 

annotator as the most relevant class. In total, we manually annotated 1978 images, 

resulting in a reasonably balanced dataset (see Table 1). While there is some variation in 

the number of samples per class, there are no classes that are significantly over- or under-

represented (as in 1:100, 1:1000 or 1:10000 [CJK04]).  

Class Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Total 

Boot Screen  63 108 68 29 23 29 320 

Left Display 24 70 84 22 36 14 250 

Right Display 119 161 103 72 179 58 692 

Dock 5 23 4 3 27 16 78 

Main Display 19 63 3 19 17 46 167 

Heart 87 98 56 90 68 72 471 

       1978 

Table 1: Frequency of target classes on a per-video (user) level and in total. 

To classify the images in our dataset, we experimented with ResNet models [He16] of 

different sizes. We based our choice on previous work in the field of computer vision, 

which has shown that ResNet architectures are parameter-efficient for comparable image 

classification tasks [Do20]. In all conducted experiments, we initialized our models with 

weights been pre-trained on the ImageNet1k dataset [Ru15] to benefit from robust features 

trained on a large dataset.  

To train our ResNet models, we split our annotated dataset of 1978 images into train, 

validation, and test sets. Since our data comes from videos, we used a leave-one-out 

approach on video level for cross-validation [HTF09]. For each experiment, the training 

set was built from four videos, the validation and test set from one video each. We have 

chosen this approach over the well-established stratified n-fold cross-validation [ZM00] 

because this approach ensured that no frames from the same video were present in both 

the training and test sets. Temporally consecutive frames from the same video are very 

similar to each other, which would lead to an overestimation of our model's generalization 
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ability if frames from the same video would be distributed among train and test sets. In 

total, we conducted 30 independent runs for each of the ResNet variants (18, 34, 50, 101, 

and 152 layers) and evaluated their performance on the held-out test set. After training and 

validating our ResNet models on the annotated dataset, we evaluated their performance 

using Precision, Recall, and F1-Score metrics [CH92] (Table 2). Based on our 

experiments, the ResNet34 model achieved the highest mean F1-Score of 0.9663, closely 

followed by the other models. 

Model Parameters Mean F-Score Min F-Score Max F-Score � 

ResNet18 11M 0.9638 0.8979 0.9830 0.0227 

ResNet34 21M 0.9663 0.9277 0.9906 0.0207 

ResNet50 23M 0.9635 0.8936 0.9843 0.0291 

ResNet101 42M 0.9559 0.8809 0.9872 0.0295 

ResNet152 58M 0.9620 0.8979 0.9872 0.0200 

Table 2: Resulting F-Scores of all ResNet models (evaluated on test sets). 

To gain a deeper understanding of the performance of our models, we analyzed 

misclassifications. Most were due to the presence of multiple objects in a single frame. In 

these cases, the model correctly predicted one of the visible objects, while the human 

annotator defined another object as the dominant and thus, correct one.  

4 ML-based Analysis of the Previous Study Data  

From previous experiments we able to assume that users focus points would not erratically 

jump back and forth between the target classes multiple times per second. Therefore, we 

extracted one frame per second from the VR eye tracking data to obtain a representative 

sample of participants' visual attention during their VR experience. Subsequently, we 

applied our trained ResNet34 model to classify the extracted frames, enabling us to 

identify the participants' focus objects among the object classes. We computed Pearson 

correlation coefficients between knowledge gain, the relative and absolute time spent on 

various classes (Table 3). For that, we excluded participants #4 and #17, because these 

had either a large or a very low previous knowledge. 

Object Class left_display right_display dock main_display heart 

Average Viewing Time 14.4% 37.1% 6.6% 9.9% 32.0% 

Correlation Coefficient -0.72 -0.46 -0.02 0.39 0.72 

Avg. Sec. per Participant 43 110 20 28 91 

Correlation Coefficient -0.30 -0.67 -0.40 -0.11 0.19 

Table 3: Correlations between relative viewing time and gained knowledge (first two rows), 

correlations between absolute viewing time and gained knowledge (last two rows)  



VR, Eye Tracking and ML: Analysis of Learning Outcomes in Off-the-Shelve VR-Software 203 

   

 

 

Figure 2: Gained knowledge (top), relative amount of time spent with a certain object class per 

participant, retrieved using the novel machine learning-based method (bottom). 

Figure 2 illustrates the distribution of attention across the five main object classes. The 

learning experience of the participants and the factors influencing their learning outcomes 

were analyzed, considering various aspects such as individual pre-existing knowledge, the 

use of different displays, and overall learning duration. For most participants, the left 

display exhibited a moderate to strong negative correlation with learning outcomes. This 

suggests that the left display may not have effectively conveyed information. Interactions 

with the 3D VR heart model positively correlated with learning outcomes, ranging from 

mediocre to strong associations. This implies that focusing on the key object of the virtual 

environment was beneficial for understanding of the subject. The absolute duration of 

learning had, at most, a weak influence on learning outcomes. This result emphasizes that 

the quality of the learning experience and engagement with relevant objects may be more 

crucial than the time spent in the virtual environment. 

5 Summary and Discussion 

This study has two main contributions: (1) A machine learning model was developed and 

successfully applied to identify specific gazed-at regions in an off-the-shelve VR software. 

(2) The result of the machine learning analysis was used to examine possible correlations 

between learner’s viewing behaviour and learning outcome. 

We aimed at a proof-of-concept for the method and therefore used a relatively low number 

of data sets and object classes. We found correlations between the knowledge gained and 

time spent on specific VR objects. Future research should aim to replicate these findings 

with a larger and more diverse participant pool to better understand factors influencing 
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learning outcomes. The data used to create the image classification model was taken from 

real study videos. Therefore, the quality of the machine learning training data was not 

optimal. For future analyses, we suggest to first generate training data from a controlled 

dataset, for example by recording in-app videos with only known objects in sight and with 

controlled headset movements. Following our ideas, future research based on eye tracking 

data in off-the-shelve VR software may become easier. 
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