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Abstract:
HHblits is a bioinformatics application for finding proteins with common ances-

tors. To achieve more sensitivity, the protein sequences of the query are not compared
directly against the database protein sequences, but rather their Hidden Markov Mod-
els are compared. Thus, HHblits is very time-consuming and therefore needs to be
accelerated. A multi-FPGA system such as the Convey HC-1 is a promising candi-
date to achieve acceleration. We present the design and implementation of a parallel
coprocessor on the Convey HC-1 to accelerate HHblits after analyzing the application
toward acceleration candidates. We achieve a speedup of 117.5× against a sequential
implementation for FPGA-suitable data sizes per kernel and negligible speedup for the
entire uniprot20 protein database against an optimized SSE implementation.

1 Introduction

HMM-HMM-based lightning-fast iterative sequence search (HHblits [RBHS12]) is a bioin-

formatics application for finding sequences that have common ancestors. Such sequences

are called homologous sequences. Homology search is a very time-consuming task due to

the large amount of available data. It can be supported from algorithmic side by employ-

ing heuristics, such as comparing Hidden Markov Models (HMMs) [Edd98] instead of

comparing the protein sequences directly. HMMs model multiple-sequence alignments or

single sequences with regard to their structure. The Viterbi algorithm [Vit67] is used on an

HMM to determine whether it can generate a given sequence. Exploiting special hardware

can deliver substantial benefit. For example, the Viterbi algorithm can be accelerated by

use of FPGAs [OSJM06]. Further, Farrar proposed an SSE implementation [Far07] of the

Smith-Waterman algorithm [SW81] for direct sequence comparison.

The Convey HC-1 is an FPGA-extended heterogeneous high-performance system where

a dual-core x86 host processor is coupled via Front-Side Bus (FSB) with a multi-FPGA

coprocessor that possesses an aggregate memory bandwidth of up to 80 GB/s to its copro-

cessor memory. Some biological applications are already implemented on the Convey HC-
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1. There is support for the BLAST algorithm [Con10] and also for the Smith-Waterman

algorithm [VKC12]. Besides, an HC-1 design for creating deBruijn graphs supports as-

sembly of sequences [ZB08]. We analyze the tool HHblits with regard to its structure,

runtime and suitable candidates for acceleration and develop a highly parallel hardware

architecture for the Convey HC-1 that provides massive speedup compared to sequential

execution per kernel (117.5×) and performs slightly better than SSE even for the entire

uniprot20 database (1.07×).

In Section 2, we describe the tool HHblits together with state of the art in accelerating

sequence comparisons and then analyse the tool further. Upon the gained knowledge,

we develop an architecture in Section 3 to accelerate HHblits with the Convey HC-1.

We present the evaluation of our design in Section 4 and finally summarize our work in

Section 5, also giving an outlook over future work.

2 The Application HHblits

The tool HMM-HMM-based lightning-fast iterative sequence search (HHblits) finds ho-

mologous sequences in a special large protein database [RBHS12]. Two protein sequences

are homologous if both protein sequences have a common ancestor. Databases used for

HHblits contain Hidden Markov Models (HMMs). HMMs cluster multiple sequences

from available protein databases like uniprot when they are similar to each other. They

can reflect this similarity through delete, insert and match states. For a consensus column

of the clustered sequences, the match state models the probability for the occurrence of an

amino acid at this position. Additionally, an HMM models transition probabilities from

one state to another. Plan7 describes a structure for HMMs [Edd98]. Goal of HHblits is

finding homologous sequences in a database for a given query sequence in order to draw

inferences on its properties.

2.1 Application Flow and Structure

First, HHblits creates a query-HMM (cf. Figure 1, step 1) for the given query sequence.

In HHblits, the query-HMM is approximated to a simplified sequence profile (step 2) for

prefiltering the database in order to avoid later unprofitable CPU-intensive Viterbi searches

on the processor (step 5 of HHblits), much like an accelerated version of HMMER [SB09],

which is accomplished by either patterns or profiles. A profile is a matrix with probabilities

for every character at each position in the sequence. By prefiltering the database using

profiles, a speedup of 20× with almost full sensitivity is achievable in comparison to the

unfiltered HMMER.

For the prefiltering (step 3), HHblits uses adapted versions of the accelerated Smith-

Waterman SSE implementation [Far07]. The Smith-Waterman algorithm is a dynamic pro-

gramming algorithm for calculating a local similarity score between two sequences [SW81].

The first step in the prefilter (step 3.1) is to calculate a locally ungapped similarity score
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Figure 1: HMM-HMM-based lightning-fast iterative sequence search

of the query profile against each entry in the clustered database. These entries consist of

an HMM and, in addition, an approximated sequence to this HMM. In the second pre-

filter step (step 3.2), a locally gapped score is calculated for all sequences with a previ-

ously calculated ungapped score higher than a threshold. For prefiltering, an FPGA can

compute a simplified Viterbi algorithm, which also restricts the range for finding optimal

Viterbi scores, thereby achieving an overall speedup of up to 182× against the original

HMMER [EMdJ12].

For all HMMs whose corresponding sequence has passed (step 4) both steps of the pre-

filter, the application calculates a score applying the Viterbi algorithm (step 5). Given

two HMMs instead of a sequence and an HMM, their modified Viterbi algorithm [Sö05]

calculates the series of states that has the maximum score. If this calculated score is

higher than a given threshold then this HMM is homologous to the query-HMM. Some

approaches use MPI to accelerate HMMER by parallelizing the Viterbi calculations, e.g.

MPI-HMMER [WQC06], and HSP-HMMER achieves due to better load balancing a

speedup of 100× over MPI-HMMER [RHZ09]. GPGPUs pose another technique for

accelerating the Viterbi algorithm for HMMER. The ClawHMMER approach [HHH05]

implements a streaming architecture on a commercial graphics card to calculate several

Viterbi comparisons in a parallel manner, being limited by programming model and avail-

able bandwidth only. A pipelined implementation for the compute-intensive Viterbi algo-

rithm on an FPGA [OSJM06] achieved a speedup of 220× over unaccelerated HMMER.

But this implementation only supports the Viterbi search for a simplified Plan7 HMM,

whereas in a fully supported Plan7 HMM, only one element of the result matrix can be cal-

culated at once. Therefore, another approach is to calculate several Viterbi searches on an

FPGA in parallel resulting in a speedup of 182× against unaccelerated HMMER [OYS08].

Finally in step 6, all HMMs whose score passed the threshold in step 5 are realigned in

order to update the query-HMM. Then, for the next iteration the query-HMM is updated
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based on the information from all homologous HMMs and the query-HMM itself.

2.2 Runtime behavior

With a given query sequence and a clustered protein database called uniprot20, we ana-

lyzed the runtime profile of HHblits on the Intel Xeon 5138 in the Convey HC-1 using

gprof. The results of this profiling are shown in Table 1. HHblits spends about 62.58 % of

the entire computation time for one iteration in the function ungapped sse score, and also

most of the time for two iterations. Because of these results we investigated approaches

for accelerating this function. A closer look at the function revealed that only 7.178 GB

of data were processed per second, although the Xeon processor runs at 2.13 GHz and

hence with SSE could in theory process 16 bytes * 2.13 GHz = 34.08 GB/s. Therefore,

the bottleneck lies in transferring data to the processor (to be processed in the SSE unit).

The limiting factor for transferring data should be the available bandwidth of the Front-

Side Bus (FSB) interface of 8.512 GB/s. Our approach is hence accelerating the function

ungapped sse score by exploiting the higher memory bandwidth available for the copro-

cessor on the Convey HC-1 The coprocessor has roughly ten times more bandwidth than

the FSB interface, which is distributed over 16 DIMMs that are accessed via eight Memory

Controllers (MCs) with two ports each running at 150 MHz.

Function 1 Iteration 2 Iterations 4 Iterations
Time Calls Time Calls Time Calls

ungapped sse. 62.58% 49.77s 3129234 52.52% 99.69s 6258468 11.08% 200.83s 12516936

CalculatePost. 12.10% 9.62s 2155 7.09% 13.46s 3017 1.18% 21.32s 4741

Hit::Viterbi 6.37% 5.07s 601 19.63% 37.27s 3778 64.79% 1174.64s 83760

swStripedByte 3.72% 2.96s 77921 3.88% 7.37s 191721 1.10% 19.90s 452762

Other 15.23% 16.88% 21.85%

Table 1: Profiling HHblits over one, two and four iterations on an Intel Xeon 5138

2.3 Function ungapped sse score

To get a clue of how we can design an architecture for the function ungapped sse score, we

had a closer look at its implementation. This function calculates a locally ungapped score

for the query profile and a sequence from the database. To calculate this score, a simplified

version of the Smith-Waterman algorithm is used. Each element in the result matrix is

only calculated depending on the left diagonal neighbor in the matrix. SSE instructions

are used to calculate the elements of the result matrix. Hence, the function works on 16-

byte blocks. A nested loop processes these 16-byte blocks. The outer loop iterates over all

elements of the sequence. In this outer loop, for each element in the sequence an address

is calculated to access a distinct line in the profile. The inner loop iterates over all 16-byte

blocks of a column in the result matrix. For each block, the previously calculated left
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diagonal neighbor 16-byte block is added to the corresponding block in the profile. Then

an offset is subtracted from each score in the block. The 16 maximum scores are kept

in a 16-byte variable. Using a striped representation of the profile, internal dependencies

between elements are removed [Far07]. Thereby, only the first block in a line depends on

the last block of the previous line. At the end of the function, the maximum byte value in

the 16-byte variable is calculated. This is the calculated locally ungapped score.

A user-programmable FPGA on the coprocessor of the Convey HC-1 can access 16 times

8 bytes per cycle from the coprocessor memory, potentially processing 8 times more data

per cycle. Moreover, four such FPGAs are available. Thereby, 512-byte blocks could be

processed per cycle. For determining the maximum, special reduction circuitry can be

integrated.

3 Calculating the Ungapped Score on an FPGA

The Convey HC-1 coprocessor consists of four application engines (AEs) (user FPGAs)

that can be reconfigured by a user. A hardware developer creates an FPGA design by

use of the Convey Personality Development Kit (PDK), specifying the functionality in a

hardware description language such as VHDL. The interfaces to the Convey environment,

such as memory controllers and further control processors, are all provided within the

PDK. The Xilinx tools are then used to create bitstreams for the FPGAs. Normally, the

same bitstream is configured on each AE. With the four AEs, we can exploit coarse-grained

task-level parallelism and calculate scores for four sequences with the same query profile

in parallel.

Instead of using the SSE implementation for calculating the ungapped score within HH-

blits, we employ the FPGA-based coprocessor. First, data needs to be written to coproces-

sor memory. Then, the coprocessor can be started via specific Convey-supplied function

calls that also care for configuring the FPGAs. Through these calls, the coprocessor also

gets all required parameters for processing. These parameters are the address of the profile,

the address of the sequence, the length of the sequence and an offset for calculating the

score. Before processing the data, the FPGAs must begin fetching data from coprocessor

memory and store them in FPGA-internal memories.

To exploit all the available bandwidth, we use Binary Interleave Mode for the Convey

memory architecture. We therefore had to extend the original profile to align lines on 512-

byte boundaries because in binary interleave mode, only one of the 8 Memory Controllers

(MCs) has access to a certain 64-byte region of the coprocessor memory.

3.1 FPGA Design for the Convey HC-1

Our AE design for calculating the locally ungapped score exploits fined-grained data-level

parallelism. Up to 128 entries of the result matrix are calculated in parallel per AE. All

internal units are initialized by a controller and each unit is controlled by the data flow.
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Figure 2: Parallel architecture with 8 processing units (PUs) for evaluating the ungapped score
between a profile and a sequence on one FPGA

The AE design depicted in Figure 2 calculates the maximum locally ungapped score in a

pipeline. Before this calculation of the score begins, the whole sequence is loaded over 8

respectively 16 ports of the memory controllers via the Read Order Queues (ROQs) to the

internal storage for a sequence of the database. These queues are required to reorder the

incoming data according to their request order. With the loaded sequence, we calculate for

each element in this sequence the address to request the appropriate line of the profile. So

the controller starts to stream all needed lines of the profile into the ROQs.

When each ROQ gets data from the profile line, the 8 respectively 16 processing units

(PUs) start to calculate the entries of the result matrix, which will be described in the next

paragraph. The multi-port line buffer needs to store both the previous and the current line

of the result matrix because the previous line is required for calculating the current line.

Whenever the processing units produce valid data, the reduction circuit begins searching

the local maximum of the freshly calculated 64 respectively 128 elements of the matrix in

a pipelined fashion in the reduction circuit, employing a binary-tree-like approach. In the

first step, two calculated entries are compared at a time and the greater one is forwarded

to the next stage. Same is done in this next stage. Finally, only one value is left. In the last

stage, this value is compared against the global maximum. In case the local maximum is

greater, this value becomes the next global maximum. So the reduction circuit pipeline has

7 respectively 8 pipeline stages. When all entries of the result matrix have been calculated,

the global maximum value is returned to the host system via the AEG register file.

Figure 3 shows how each PU calculates 8 entries of the result matrix in parallel. First, for

each byte from the profile data, the corresponding byte of the previously calculated line

is added. Then an offset is subtracted from this result. Both calculations are done with

saturated arithmetic together in one cycle. The resulting 8 byte values are forwarded to the

reduction unit and stored in the line buffer.
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Figure 3: Parallel structure of one processing unit (PU)

After we designed and implemented the architecture, we looked at the consumption of the

resources on the FPGA of an application engine. As can be seen from the results given in

Table 2, we have implemented a design that does not need many of the resources available

on the FPGA. In addition, the coprocessor is clocked with only 150 MHz, so there is much

room available for further extensions that will still meet timing.

Resource 8 PUs 16 PUs

Slices 21406 / 41% 25701 / 49%

Registers 52478 / 25% 68002 / 32%

LUTs 53133 / 25% 70432 / 33%

BRAMS 58 / 20% 74 / 25%

Max. freq. 201.014 MHz 198.196 MHz

Table 2: Resource usage of our Convey HC-1 FPGA design

4 Evaluation

First we measured the average kernel execution time for calculating one ungapped score

for different implementations (see Table 3). For our implementation, we had to adapt the

original source code of the tool HHblits. We adapted the profile in the source code to 512-

byte boundaries. Our focus is on accelerating the adapted version, but we also compare

our results with the original implementation. We measured the computation time over 30

runs for a sequential and an SSE version calculating the ungapped score.

sequential SSE Convey HC-1
original adapted original adapted 1 AE 4 AEs

512.7 μs 607.2 μs 16.1 μs 18.9 μs 31.8 μs 11.8 μs

Table 3: Average kernel execution times over entire uniprot20 database
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We achieved a speedup of 512.7/31.8 = 16.1× with one AE including 16 processing units

against the sequential implementation using the original profile, while the design with 8

PUs performed only a little worse. So in later steps, we will use the 16-PU design to

calculate the scores. Also did we achieve a speedup over the SSE implementation on one

core of 16.1/11.8 = 1.4× using all four application engines.

After that we looked at how the computation time depends on the length of the sequence.

So we equally distributed the sequences according to their length and calculated the aver-

age time for each sequence scope (see Figure 4). Our design using 16 processing units is

faster than the SSE implementation for sequences with a length over 3499 bytes. As can

be seen from Table 4, for greater sequences the performance of the FPGA design is much

better (371/311.9 = 1.2) than that of the SSE version. The best results are achievable

when using all four application engines of the coprocessor (371/91.3 = 4.1). Moreover,

the overhead incurred on the Convey HC-1 when executing in parallel is very low as 4

AEs speed up computation by 311.9/91.3 = 3.4, hence an efficiency of 3.4/4 = 0.85,

although parallel execution is done in bunches of four sequences each and hence depends

on the longest sequence.
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Figure 4: Average kernel execution times over varying sequence lengths with adapted profiles

sequential SSE Convey HC-1
1 AE 4 AEs

10731.9 μs 371 μs 311.9 μs 91.3 μs

Table 4: Average kernel execution times for sequences greater than 3499 bytes from the database
uniprot20
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We also investigated which method is useful for copying sequence data and profile data to

coprocessor memory. We determined that for small data it is useful to copy data with

the C library function memcpy. For large data, the special Convey-provided function

cny cp memcpy is more useful. After having applied this knowledge, we measured com-

putation time of the entire application HHblits for the whole database and the database

without short sequences (see Table 5). For the latter, we used cny cp memcpy.

sequential SSE Convey HC-1
1 AE 4 AEs

orig. database 2343.02 s 97.0 s 155.8 s 91.0 s

long-sequence database 64.7 s 22.4 s 22.0 s 21.7 s

Table 5: Computation time of HHblits compiled with cnyCC and activated -O3 flag

We compiled HHblits with the compiler cnyCC and with activated -O3 flag. But as we

could not compile SSE instructions with cnyCC, we compiled these instructions with g++

and linked them against the other object files. So we achieve a speedup with four appli-

cation engines of 1.03× - 1.07× against the SSE implementation and of 3.0× - 25.5×
against the sequential version of HHblits.

5 Conclusions and Future Work

We presented a coprocessor design for supporting the application HHblits on FPGAs. Af-

ter carefully analyzing the application, we developed a design for the multi-FPGA sys-

tem Convey HC-1 that seems very appropriate due to its high memory bandwidth for the

FPGA-based coprocessor. For longer sequences, our design performs well with a speedup

of 4.1× against SSE per kernel execution and of even 117.5× against a sequential im-

plementation. We already achieved some negligible speedup using all four application

engines for the entire application and whole uniprot20 database. According to Amdahl’s

law, only a speedup of 2.289× is achievable for HHblits on the Convey HC-1 when accel-

erating the computation of the ungapped score that consumes about 62.58% of the appli-

cation time and when assuming a bandwidth-limited speedup of 10 for this part. We didn’t

yield this speedup yet because the used protein database includes lots of shorter sequences

that do not allow fully exploiting the available memory bandwidth on the coprocessor.

Accordingly, our focus is now to accelerate comparison with such shorter sequences. Our

implementation saved resources on the FPGA, so we can additionally outsource other parts

of HHblits, such as the second step of prefiltering. We will investigate which data order-

ing can achieve the best throughput on the Convey HC-1. Also will we work on further

minimizing data transfer.
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