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Abstract: The calibration of complex models of biological systems requires numer-
ical simulation and optimization procedures to infer undetermined parameters and fit
measured data. The optimization step typically employs heuristic global optimization
algorithms, but due to measurement noise and the many degrees of freedom, it is not
guaranteed that the identified single optimum is also the most meaningful parame-
ter set. Multimodal optimization allows for identifying multiple optima in parallel.
We consider high-dimensional benchmark functions and a realistic metabolic network
model from systems biology to compare evolutionary and swarm-based multimodal
methods. We show that an extended swarm based niching algorithm is able to find
a considerable set of solutions in parallel, which have significantly more explanatory
power. As an outline of the information gain, the variations in the set of high-quality
solutions are contrasted to a state-of-the-art global sensitivity analysis.

1 Introduction

The parameter estimation for mathematical models of biological systems is a demanding
task. For complex systems of differential equations, for example, usually there is hardly
any previous knowledge on the required model type and its parameterization. Often, nu-
merical simulation and heuristic optimization of the measurement fit is the only way of
infering a parameter set that reproduces the measured data and thus the only way of judg-
ing the model’s ability to represent the measurements. [Ban08]

This approach brings with it certain ambiguities due to measurement noise and system
complexity, which not only means that the target function is non-convex (multimodal)
but also entails the existence of distinct parameter sets fitting the data with a very similar
quality. This renders the assumption that global optimization methods find the vicinity of
the global optimum very quickly [BCPB+08, RFEB06] rather challengeable. Moreover,
the local optima may be so similar that they can hardly be discriminated with respect to
biological significance—a fact usually ignored in parameter estimation, where mostly ar-
tificial data and low-scale noise are used. One way of delivering more evidence on model
properties and biological importance lies in model sensitivity [STCR04]. On the one hand,
it is usually observed that biological systems are relatively robust towards small changes,
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e.g., in concentration of substances involved in a biochemical reaction system. On the
other hand, there may be single parameter changes that disturb the system significantly
more than others, and if a mathematical model was able to predict these sensitivities, it
would increase its biological relevance. This motivates the idea to not only search for one
optimum but for a set of different high-quality solutions, to compare them and test for
common dependencies and sensitivities. This can be achieved by multimodal optimization
(MMO) methods [SD06], which, however, are often developed on simple benchmarks. We
thus perform preliminary tests on difficult benchmarks before tackling the computationally
much more expensive application. The target system, a metabolic network of the industri-
ally important Corynebacterium glutamicum, has been modeled using Generalized Mass
Action Kinetics (GMAK) and examined by unimodal optimization [DKZ+09]. In the
work at hand, MMO is applied to find sets of high-quality local optima of the biochemical
model. We contrast the parameter distribution of identified optima with a global sensitivity
analysis to show how, thereby, possibly new biological implications can be drawn.

2 Heuristic Multimodal Optimization

Researchers often face nonlinear, non-convex problems the derivative of which is infea-
sible to compute. In these cases, modern stochastic metaheuristic optimization methods
are an apt choice, because they have a higher chance to locate the global optimum com-
pared to classical local search methods [Ban08]. This is mostly because, instead of only
looking at a single possible solution at a time, a whole set (“population”) is processed,
which converges on the global optimum with higher probability. Two particularly success-
ful optimization techniques are biologically inspired. In Evolutionary Algorithms (EAs),
candidate solutions in Rn are assigned a quality measure, and better ones are selected, re-
combined and mutated hoping to produce better individuals from good ones. In Particle
Swarm Optimization (PSO), a candidate solution x ∈ Rn (“particle”) is assigned a “ve-
locity” vector. x is accelerated towards (i) the best position the particle itself has come
across so far (ph) and (ii) the best position in a particle neighborhood (pn). Formally:
vi(t +1) = ωvi(t)+φ1r1(pn

i −xi)+φ2r2(ph
i −xi) for all vector components i, where ω and

φ1/2 are control parameters, while r1/2 ∼ U(0,1) provide for randomization. A compre-
hensive introduction to EAs and PSO is given in [Eng02].

For multimodal optimization specifically, the population diversity is boosted to allow mul-
tiple optima to be occupied in parallel. Early methods such as sharing, crowding or clear-
ing [SD06, Mah95] accomplish this by punishing similarity within the EA population.
Recent approaches emphasize niching by explicitely forming sub-populations, e.g., us-
ing clustering in EA [SSUZ03] or sub-swarm-formation in PSO [BEvdB03]. The sub-
populations are to cumulate around local optima in a self-organizing way, while a diverse
main-population may keep exploring the search space. Current works often report swarm
methods to be superior to other methods [BEvdB03, ÖY07], which fail especially in higher
dimensions [SD06] and in lower dimensions may be outperformed by simple multi-start
Hill-Climbing (HC) [SSUZ03]. As swarm-based methods showed to be more promising
on the target model than traditional methods [DKZ+09], such as HC or Genetic Algo-
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Name Function Domain Parameters

fM6(gx) = 1− sin(30x3
1)sin(25 x2

2x1) [0,1]2

fM10(gx) = 1− 1
n

n

∑
i=1

[1− sin6(5πxi)] [0,1]n

fSR(gx) =
n

∑
i=1

(z2
i −10cos(2πzi)+10) [−5,5]n gz =gx−go for shifted optimum go

fM13(gx) = cn−
n

∑
i=1

xisin
,|xi| [−512.03,511.97]n c = 418.9829

Table 1: Preliminary benchmark functions.

rithms (GA), we concentrate on swarm-based niching in comparison to clustering EAs.

Typically, an MM approach introduces new parameters to the optimization procedure.
The Clustering-Based Niching EA (CBNEA, [SSUZ03]) performs density-based cluster-
ing with a strategy parameter σ on the population. Since the selection drives the population
towards areas of better fitness, it is expected that clusters form around local optima. Each
cluster is decoupled from the main population and evolved with an Evolution Strategy (ES)
or a GA to identify a local optimum. We employ CBNES with σ = 0.1 and a (µ,λ)-ES with
µ
λ = 3

10 , simple uniform step-size mutation (pm = 1) and one-point-crossover (pc = 0.5).
The real-valued CBNGA only differs in the selection method, which is tournament selec-
tion on groups of four instead of elitistic ES-selection, so its selective pressure is lower.

The NichePSO algorithm [EvL07] forms niches by looking for particles having a fitness
standard deviation σ below a threshold δ for k iterations. Any such particle forms a sub-
swarm with its closest neighbor, and they are again decoupled from the main swarm. To
allow for distributed sub-swarm formation, the neighborhood attraction is deactivated in
the main swarm (φ1 = 1.2, φ2 = 0), whereas sub-swarm particles are fully connected.
The inertness factor ω is linearly decreased, and sub-swarms are merged if they overlap.
In [ÖY07], a maximum merge distance is introduced to avoid too large sub-swarms, a
problem of the original NichePSO. ANPSO is a further extension which adaptively sets the
allowed sub-swarm radius to the average of each particle’s distance to its closest neighbor
[BL06]. ANPSO also reintroduces neighborhood attraction for the main swarm (φ2 = 0.6)
to enforce global search.

We extend the niching PSO variants by a deactivation strategy [SSUZ03]: when a sub-
swarm converges, its best position is stored and the particles are reinitialized. Similar to
sub-swarm creation, we deactivate a sub-swarm if all its particles have a fitness standard
deviation below a threshold εdeact for k iterations. We set εdeact = δ (δ = 10−4 in NichePSO
[EvL07]). Deactivation enhances exploration and allows the algorithm to identify more
optima than the initial swarm size.

Conclusively, we test the following algorithms with a population size of 200: NichePSO
with standard parameters, enhanced NichePSO (NPSO*, [EvL07]), ANPSO with stan-
dard parameters [BL06], and an ANPSO variant which employs the SPSO-strategy for the
main-swarm using the adaptive swarm-size parameter defined by ANPSO (ANPSO*). The
ANPSO* strategy parameters are set to φ1 = 1.2, φ2 = 1.2, and ω = 0.73.
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Figure 1: Number of optima identified and their average fitness for fM6 (left) and fM10 (right).

3 Preliminary Evaluation

We selected 5 diverse, multimodal functions to delineate some characteristics of the MM
methods, listed in Tab. 1. fM6 is 2-dimensional and has 33 local optima which are un-
evenly spaced, whereas fM10 has 5n optima of equal fitness distributed evenly;we set n = 5.
fSR (shifted Rastrigin’s) has numerous local optima in a global basin of attraction. fM13
(Schwefel’s sine root) has numerous local optima and no global basin of attraction. For the
latter two we test n ∈ {10,30}. All functions are treated as minimization problems with
the solution at f (gx∗) = 0. To measure optimization performance, we look at the number
of known optima found with several accuracy thresholds θi and the average fitness of the
optima. Specifically, we compare θ ∈ {0.05,0.01, 0.005,0.001,0.0001} and expect that
fewer optima are found with decreasing θ corresponding to increasing accuracy.

For fSR and fM13 we did not presume knowledge of local optima. The performance cri-
teria for fSR/ fM13 are based on post processing: the suggested solutions are clustered and
the best representative of each cluster Ci is interpreted as candidate solution ci. Each ci
is refined using a Nelder-Mead-Simplex (NMS) local search started in the close neighbor-
hood of ci. In case the NMS converges without moving away by more than θ from ci,
the candidate is classified as being locally optimal. The number of solutions found in this
way gives a relative measure on how well algorithms converge on a specific benchmark.
Additionally, we look at the average fitness of the suggested solutions without regarding
convergence state, because for difficult functions, often no close convergence is reached.

Benchmark Results: For each MMO method under consideration, we averaged the re-
sults of 25 runs à 5,000 ·n evaluations. Figures 1-2 show the number of optima found (left
axis, more is better) and their average fitness (right axis, less is better), for each method
and the five different thresholds. As can be seen in Fig. 1, NichePSO tends to find more
optima than the CBN and ANPSO methods, but with worse fitness values. For fSR the
quality delivered by NichePSO is hardly acceptable.

CBN and ANPSO usually reach better fitness and higher accuracy than NichePSO, which
invests equally in both good and bad optima. This, too, can be attributed to the absence of
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Figure 2: fSR (top) and fM13 (bottom) in 10-D (left) and 30-D (right).

a main swarm for global search in NichePSO. To rate the statistical significance, we per-
formed Student’s t-tests on all pairs of algorithms testing the null hypotheses that, for each
benchmark and threshold, they (i) find the same number of optima and (ii) reach the same
fitness quality. For a condensed comparison, we scored +1(−1) for the superior (inferior)
algorithm whenever that hypothesis could be significantly rejected at a 5% level. Table 2
shows the summed-up scores for the number of optima (left) and the fitness quality (right).
A positive number k in line Ai and column A j means that algorithm Ai was significantly
better than algorithm A j in k more cases than the other way around. The tests support the
conclusions that the CBN variants find slightly fewer optima than NPSO with better fitness
values. Also, ANPSO* finds more optima than ANPSO, whereas both find significantly
fewer optima than the other algorithms with better fitness values.

For the more difficult benchmarks fSR and fM13, some algorithms do not find any optimum
with certain accuracies θi, which can be seen from missing fitness bars, e.g., for ANPSO
on fSR-30-D and θ∈{0.005,0.001,0.0001}. Yet this is not equal to bad performance when
looking beyond the convergence state. For Tab. 3, the resulting populations were clustered,
a cluster’s best particle interpreted as local solution, and their average number, mean and
minimum fitness values are displayed. Since on fSR/M13, CBNES was outperformed by
CBNGA, and NPSO* performed very similar to NPSO, those are omitted.

The comparison indicates that, although ANPSO does not converge closely on the local
optima resulting in fewer identified optima in Fig. 2, it produces good fitness values across
the sub-swarms. As can be expected, NichePSO is competitive on fM13, but not on fSR,
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CG CE NP NP* AP AP* CG CE NP NP* AP AP*

CBNGA 0 -7 -7 -4 21 15 0 15 12 14 -11 -4
CBNES 7 0 -1 -1 26 17 -15 0 13 11 -14 -7
NPSO 7 1 0 0 18 16 -12 -13 0 -1 -17 -9
NPSO* 4 1 0 0 19 20 -14 -11 1 0 -17 -10
ANPSO -21 -26 -18 -19 0 -2 11 14 17 17 0 10
ANPSO* -15 -17 -16 -20 2 0 4 7 9 10 -10 0

Table 2: Significance scores regarding No. optima found (left) and fitness (right).

Avg. #Opt Avg. Mean Fit. Avg. Min. Fit.
Algorithm 10D 30D 10D 30D 10D 30D

fSR HC-100 100.00 100.0 80.25 351.4 42.52 207.8
CBNGA 185.60 255.7 39.60 219.2 6.12 50.2
NPSO 100.60 101.4 100.70 380.7 23.90 187.2
ANPSO 17.76 123.1 92.17 221.6 12.33 57.8
ANPSO* 15.72 17.0 48.38 269.1 11.69 100.2

fM13 HC-100 100.00 100.0 2082.9 7838.0 1175.7 4110.6
CBNGA 102.36 120.4 1407.2 5926.4 569.2 3785.1
NPSO 100.00 100.2 1614.1 4966.6 660.0 3231.8
ANPSO 76.08 170.3 1265.4 5935.7 612.7 3081.3
ANPSO* 40.80 51.1 1067.1 5285.4 417.0 2693.4

Table 3: Clustered results on fSR and fM13 in 10 / 30 dimensions.

whose global basin of attraction suits the global search components of CBN and ANPSO.

4 The Metabolic Network

Figure 3 shows the reaction pathway of the valine (Val) and leucine (Leu) biosynthesis in
C. glutamicum according to [DKZ+09]. The metabolic pathway starts with the formation
of 2-ketoisovalerate (KIV) from pyruvate (Pyr) in three reaction steps [CFF+08]. At the
KIV node the pathway branches: Two parallel reactions produce Val and one forms 2-iso-
propylmalate (2-IPM), the starting substance for the Leu production. Both Val and Leu
can be used for biomass production or secreted into the culture medium—the industrially
interesting outcome. Val and Leu inhibit their production rates in four feedback loops.
The competition of both products for the secretory protein is modeled by inhibition: Val
inhibits the secretion of Leu and vice versa. Additionally, Val inhibits reactions R1−3
while Leu inhibits R7 (Tab. 4). The fast reaction 2-IPM −−ab−− 3-IPM is assumed to process
in equilibrium and combined with 3-IPM+NAD+ −−→ 2-I3OS+NADH2 and (2S)-2-iso-
propyl-3-oxosuccinate (2-I3OS) −−→ 2-ketoisocaproate (KIC) +CO2, which only depend
on the concentration of 2-IPM, introducing the symbol IPM for both derivates.
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Reaction Parameters Reaction Parameters
(fw/bw/ihb) (fw/bw/ihb)

R1 2 Pyr −−ab−− AcLac+CO2 p0, p10, p18 R2 AcLac+NADPH2 −−ab−− DHIV+NADP+ p1, p11, p19

R3 DHIV −−ab−− KIV+H2O p2, p12, p20 R4 KIV+Gln −−ab−− Val+αKG p3, p13, −
R5 KIV+Ala −−ab−− Val+Pyr p4, p14, − R6 Val −−→ Valext p5, − , p21

R7 KIV+AcCoA −−ab−− IPM+CoA p6, p15, p22 R8 IPM+NAD+ −−ab−− KIC+NADH2 +CO2 p7, p16, −
R9 KIC+Gln −−ab−− Leu+αKG p8, p17, − R10 Leu −−→ Leuext p9, − , p23

Table 4: The reaction system. All except R6 and R10 are modeled reversibly [DKZ+09]. We refer
to Dihydroxy-isovalerate as DHIV, Acetyl-CoA as AcCoa, Acetolactate as AcLac, α-Ketoglutaric
Acid as αKG; cf. Sec. 4.
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Figure 3: Val/Leu synthesis model [DKZ+09].

Algo- Avg. Best
rithm #Opt #Opt fit.
MSHC 0 0.0 36.13
CBNGA 2 0.4 22.88
NPSO* 3 0.6 22.68
ANPSO* 110 22.0 21.05

Figure 4: No. of interesting optima
found (GMAKr model).

In an experiment by Magnus et al., a glucose shock was caused after a starvation period to
a C. glutamicum culture [MHOT06]. Over a time span of 25s, 47 samples were taken for
13 metabolites on the pathway, which serve as target system output in the optimization.
While Magnus et al. used LinLog kinetics, we model the system based on a reversible
Generalized Mass Action Kinetics formulation (GMAKr) [DKZ+09]. Table 4 outlines
the component reactions, of which all but R6 and R10—the secretion out of the cell—
are considered to be reversible. Conclusively, there are 24 velocity (forward/backward)
and inhibition factors to be optimized with respect to how well the measured data can be
reproduced by the GMAK model. Due to the strong backwards coupling in the network
and necessary numerical integration, the model is computationally expensive and highly
nonlinear. Moreover, a noticeable ratio of possible parameters are unstable, which is why
they are initialized around velocity values typically observed.

Results on the Metabolic Network: The benchmark evaluation in Sec. 3 shows that
ANPSO tends to find fewer optima of higher quality compared to NPSO and CBN meth-
ods, especially for the complex 30-D fM13 function (Tab. 3). We therefore assume ANPSO
to locate multiple high-quality solutions for C. glutamicum’s Val/Leu synthesis network.

We allow a number of 500 individuals for 500,000 evaluations per run with 5 runs per

Kronfeld et al. 197



algorithm. Global optimization reaches fitness values near 20−23, so we define a fitness
threshold of Θ = 25 below which solutions are said to be interesting. Tab. 4 lists the
number of such solutions found in 5 runs for the multi-start hill-climber (MSHC), CBNGA
and the swarm-based variants. All population-based approaches clearly outperform the
hill-climber, yet only ANPSO* identifies a noticeable number of distinct optima per run.
The relatively bad performance of CBNGA compared to the benchmarks is consistent with
earlier results on the considered system [DKZ+09]. The performance difference between
NichePSO and ANPSO suggests that the local solutions of the target function lie within
larger areas of relatively good fitness values which can be exploited by ANPSO.

It should be noted that earlier studies reached better single fitness values using global opti-
mization, e.g., RSE 20.334 [DKZ+09]. However, due to the measurement noise, the single
optimal parameter set for a deterministic model will hardly be the most biologically plau-
sible one—it might even be a “phantom optimum” resulting from numerical inaccuracies.
A large set of high-quality solutions contains more information and is a basis for anal-
yses of properties hard to handle during optimization. For example, biological systems
are known to be stable: they operate within steady-states to which they return after small
perturbations [HS96, pp. 40–52]. Thermodynamic validity as well as global or local sen-
sitivity indices can also be regarded for the fitted parameter sets. An exemplary analysis
follows in the next section. Compared to [DKZ+09], we demonstrate that a multimodal
optimization approach delivers a set of high-quality solutions at a remarkably lower com-
putational cost, since multiple high-quality solutions can be identified within single runs,
while global optimizers are designed to converge on a single solution.

Parameter Distribution: Fig. 5 (a) shows the variations within a set of 21 interesting
solutions found in one ANPSO* run. They are contrasted with an Extended Fourier Am-
plitude Sensitivity Test (EFAST) on the target function (Fig. 5 (b)). Several correlations
are obvious: some parameters of low sensitivity, such as p5 and p11, vary over several
orders of magnitude in the set of optimized solutions, while others with a very high total
effect such as p3, p8, and p13 receive very similar values. The sensitivity analysis implies
that of parameters p3 and p4, which correspond to the parallel reactions R4 and R5, p3
shows much higher sensitivity. The variations in the high-quality solutions are very small
for p3 and larger for p4, leading to the conclusion that R4 is dominant among the two.

More interesting observations come up from variations in the optimized set that seem
unexpected from the global sensitivities: While p1 and p15 have a very similar total effect,
p1 has a considerably larger variance in the optimized set. This indicates that reaction
R7, of which p15 is the backwards velocity parameter, is as important as expected from
the global sensitivity analysis, while R2 at the entrance of the production cycle is less
sensitive for biologically relevant parameters. Yet comparing p4 and p5, both of which
exhibit very low global sensitivity, depicts that p5 varies over a much larger scale than
p4 in the optimized set. This indicates that R5, of which p4 is the forward velocity, is
of more relative importance than R6. Looking back at Tab. 4 and Fig. 3 this turns out to
be plausible, as R5 consumes the central KIV which is a key substance at the crossing of
the network, while R6—and with it p5—“only” affects the transport of Val out of the cell,
having no recurrent effects on the system.
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Figure 5: Parameter value distribution (a) and sensitivity total effect per parameter (b).

5 Conclusion

Multimodal optimization techniques aim at finding several local optima of an unknown tar-
get function in parallel. As they are usually developed on low-dimensional benchmarks,
we looked at a set of current methods and benchmarked them on high-dimensional func-
tions, finding that clustering EA approaches as well as the adaptive swarm-based approach
ANPSO are able to find multiple solutions with sensible fitness values, where an adapted
version, ANPSO*, was especially successful on the most complex benchmark function.
The standard NichePSO approach lacks a globally searching main swarm and is mostly
unable to compete on functions with many local optima on large-scale basins of attraction.
The subsequent application on a GMAK model of a metabolic network representing the
Leu/Val-synthesis of C. glutamicum showed that ANPSO* finds a considerable number of
distinct high-quality solutions in parallel, while CBN and NichePSO widely fail. This can
be attributed to the rather exploitative nature of ANPSO. Since default GA and ES strate-
gies showed to be inferior to swarm-methods on the GMAK model earlier [DKZ+09],
the success of ANPSO over the CBNEA variants is consistent. The analysis of parameter
variations of a set of local optima compared to a global sensitivity analysis allowed several
interesting interpretations which indicate that multimodal optimization can be a useful tool
for assessing the results of heuristic parameter estimation in systems biology.
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