
PeeRCR：：A Distributed P2P-Based Reusable
Component Repository System

Dehua Chen1, Ruiqiang Guo1, 2, Jiajin Le1, and Wei Shi1

1 College of Computer Science, University of Donghua,
Shanghai (200051), China

2 College of Mathematics and Information Science,
 Hebei Normal University, Shijiazhuang (050016), China

{lydehua, grq, shiwei_jsj993}@mail.dhu.edu.cn
lejiajin@dhu.edu.cn

Abstract. For software reuse to be successful, a repository for storing and
retrieving reusable components is essential. The traditional component
repositories almost adopt Client/Server mode and offer a centralized authority
on reusable components stored. However, such C/S-based repositories suffer
from several limitations. This paper presents the design and implementation of
an original P2P-based reusable component repository system called PeeRCR
that enables the sharing of reusable component in a large distributed
environment. We build the PeeRCR system using peer-to-peer distributed hash
table protocol. The PeeRCR uses two kinds of index dictionaries (Local
Dictionary and DHT-based Peer Dictionary respectively) together to assist in
processing reusable component queries. We also implement a number of
alternative scheme repositories to evaluate the performance of the PeeRCR. The
experimental results demonstrate the feasibility and effectiveness of the
PeeRCR for sharing reusable components in a large distributed and dynamic
environment.

1 Introduction

Software reuse is considered by the software industry and academia as an efficient
means for improving software development productivity and software product quality
[1]. As a crucial infrastructure for supporting the practice of software reuse,
component repository gains more and more attentions from academia and industries
of software. Basically, the functionalities of component repository are to store,
retrieve and manipulate large amounts of reusable components (e.g., COM, JavaBean
or CORBA) in it. In the past decade, several component repositories have already
been deployed [2], e.g., ALOAF (Asset Library Open Architecture Framework) [3],
REBOOT (Reuse Based on Object Oriented Techniques) Library System [4][5],
Agora [6], JBCL[7] and so on. All these repositories share a common feature: they are
built in the Client/Server mode. In other words, as far as such C/S repositories are
concerned, all reusable components are stored, retrieved and manipulated in a
centralized way. However, such centrally authorized component repositories suffer

93

from some limitations. First, it is hard for these repositories to achieve scalability.
However, with component repositories developing and their customers mounting up,
scalability plays a more and more important role. Second, these repositories tend to
suffer from a single point of failure, that is, the bottleneck problem of the server limits
the utility of component repositories. Third, centralized administration on reusable
components is required, which introduces extra cost. Finally, resources at the network
edge are unused and wasted.

To address the above limitations of C/S-based component repositories, this paper
presents the PeeRCR that is an original distributed P2P-based component repository
system for sharing reusable component in a large distributed environment e.g.
Internet. In PeeRCR, we attempt to integrate P2P technology with the research and
practice of component repository for the first time. P2P (Peer-to-peer) technology, a
newly emerging paradigm of IT, is now regarded as a potential technology that could
re-architect a large distributed system such as Internet [8]. Unlike Client/Server mode,
in a typical P2P application, all the nodes or peers (e.g. PC over the Internet) share
their resources and services by direct exchange between them without any centralized
authority. These nodes act as both consumers and providers of data and/or services.
Any survey on P2P research and applications shows a lot of desirable features of P2P
technology such as pure decentralization, scalability, robustness, autonomy , data
availability, easy adaptation, efficient and complex query searching. Following
Napster [9], many new P2P file sharing systems keep on emerging in recent years,
e.g., Gnutella [10], CAN [11], Chord [12] and Pastry [13]. However, the sharing files
in all these P2P systems are mainly confined to mu sic files, video, images or
documents, e.g., Napster allows sharing of Mp3 music files. It is nature to expect that
reusable components can be shared in the P2P environment as well. To our best
knowledge, there is not any P2P system for sharing reusable components among peer
nodes in a large distributed environment. However, it is extremely demanded, because
in the predictable future, with the rapid growth of software reuse, it is expected that
many academic, commercial, governmental and software producing organizations and
even vast software developing fans would like to share their reusable components on
Internet. Such a large amount of reusable components distributed over the Internet
means wealth to any developer.

In this paper, we outline the design and implementation of PeeRCR for storing,
retrieving and manipulating substantive reusable components resided at the network
edges. The PeeRCR has several key features including:

First, in the PeeRCR, each peer node has installed a component repository
management system that supports flexible component retrieval and manipulates
components locally.

Second, the PeeRCR supports efficient query routing of reusable component. We
adopt indices services (Local Dictionary and DHT-based Peer Dictionary
respectively) strategy for assisting in processing user query of component.

Third, PeeRCR handles dynamic and ad hoc P2P environment efficiently.
To evaluate the performance of the PeerCR, we conduct our experiments on a

cluster of 30 PCs with PentiumⅣ 1.8GHz to 1.4GHz CPU. Our experiment results
show the feasibility and effectiveness of the PeerCR for sharing reusable components
in a large distributed environment.

94

The rest of this paper is organized as follows. In section 2, we summarize briefly
some preliminary knowledge including multi-faceted classification scheme, multi-
faceted component retrieval and Distributed Hash Tables. Section 3 presents the
details of the design of the PeeRCR. Section 4 outlines the method for processing user
queries of components using indices services. In Section 5, the ability to adapt the
system evolution of the PeeRCR is discussed. Section 6 presents our experimental
study to evaluate the PeeRCR. Section 7 draws conclusions and presents future
research directions.

2 Preliminaries

In the PeeRCR, we employ multi-faceted classification scheme for classifying
reusable components, and adopt correspondingly multi-faceted component retrieval
strategy. Thus, in this section, we first introduce briefly some background knowledge
about these two aspects. We will also briefly describe distributed hash tables
technique by which the PeeRCR is constructed.

2.1 Multi-Faceted Classification Scheme

Though there have been different definitions of reusable components [14][15][16], the
common features reusable components share are that raw reusable components are
independently deployed piece of executed software; they are always encapsulated in
the form of binary; they have a/several published interface(s). Because of the
encapsulation of raw reusable components, they express little information for direct
retrieval. The general solution is to classify/categorize raw components into various
groups based on component characteristics. Then the users can search for appropriate
components from the component repository according to one or more characteristics.
In the last decade, the researches have resulted in a number of proposed methods to
classify reusable artifacts. The mostly-utilized methods are those taken from library
science including enumerated [17], keyword [18], faceted [19], and hypertext [20]. Of
these, faceted classification gains more attentions than others since it presents an
approach to classify reusable components based on some facet-term pair [19]. In
faceted classification scheme, the essential is to predefine a collection of terms, also
called as Vocabulary, for each facet by human experts. Notice that faceted
classification method does not rely on complete partition of an entire object area;
instead, it relies on synthesizing the subject area to identify a set of facet for
describing components [19]. For a given vocabulary, the terms of vocabulary may be
organized in hierarchical structure. The structural relationship of terms is a loose form
of generalization/specialization relationship. Figure 2.1 illustrates two facets:
‘application domain’ (Fig. 2.1a) and ‘Function’ (Fig 2.1b), and their vocabulary
hierarchy. For a given reusable component, we assign it with terms from the
vocabulary of specific facet. The term assignment is referred to as classification.

In the PeeRCR, we predefine five facets: ‘ApplicationDomain’, ‘Functionality’,
‘Role’, ‘ApplicationEnvironment’, ‘Representation’, and their vocabulary as well.

95

Figure 2.2 illustrates an example of multi-faceted classification for a credit-card
processing component.

Applicat ionDomain

BusinessAdiminstra t ion
ManagementInformat ionSystem

Off iceAutomat ion

Manufactur ing ComputerIntegratedManufatur ingSystem

FlexibleManufactur ingSystem

Education ComputerAidedIns t ruc t ion

Face t V o c a b u l a r y

(a)

Function

DataAcquisition

Filtering

Sampling

Communication
EncodingDecoding

MessagePassing
DataProcessing DataConversion

CommandAndControl

InformationRetrieval

Forecasting

DataBaseInterrogation

QuestionAnswering

DocumentRetrieval

Facet Vocabulary

DecisionSupport

(b)

Fig. 2.1. Hierarchies of terms for the facets: Application Domain and Function

Applicat ionDomain

BusinessAdministration

FinancialTransaction

E-Commercial

BusinessTo
Business

StockTransaction

Function TransactionProcessing

AccountTransfer

AccountSaving

BalanceQuerying

AccountOverdraft

Ro le UserInterface

Representation EJB

Applicat ionEnvironment

Operat ionSystem
Windows

Unix

DataBase
Oracle

SqlServer

BusinessTo
Customer

EnterpriseResourcePlanning

Fig. 2.2. A multi-faceted classification for a credit-card processing component

96

2.2 Multi-Faceted Component Retrieval

By describing and classifying reusable components with the multi-faceted scheme, a
re-user query on reusable components consists of a list of so called Facet-Term Query
(FTQ), considered to be ANDed that means performing intersection operation. Thus,
we call the user query as Facet-Term Querys (FTQs). In its simplest form, each FTQ
consists of a facet, and a list of terms, considered to be Ored that means performing
union operation. In nature, FTQs implement a very simple Boolean Retrieval strategy.
We symbolize FTQs as follows:

FTQs (Query):: =FTQ|FTQ AND Query
FTQ:: = Facet/ListOfTerms
ListOfTerms:: = Term|Term OR ListOfTerms
Example 2.1 Given a user submits a query as follows:
FTQs:: = {FTQ1, FTQ2, FTQ3, FTQ4, FTQ5}
FTQ1::=ApplicationDomain/BusinessAdministration/e-Commercial/B2B;
FTQ2::= ApplicationDomain/Government;
FTQ3::= ApplicationDomain/StockTransaction;
FTQ4::= Function/TransactionProcessing/AccountTransfer;
FTQ5::= Function/GovernAffairProcessing/Statistics.
Assume that the result set of FTQ1 is Set of Component SoC1, SoC2 for FTQ2; SoC3

for FTQ3; SoC4 for FTQ4; SoC5 for FTQ5. Then RoQ (Results of Query):: = {(SoC1

∪SoC2∪SoC3)∩(SoC4∪SoC5)}. It is easy to know that the credit-card processing
component from Figure 2.1 falls into the RoQ.

2.3 Distributed Hash Tables

The DHTs (Distributed Hash Tables) are proposed to efficiently store and retrieve
objects over a large and dynamic distributed P2P environment [11,12,13] without
depending on any centralized authority. DHTs have several desirable characteristics.
First, while there are several implemented systems based on DHT with different
design, they all support two basic hash-table operations: put (key, value) and get
(key). Second, these systems can scale gracefully to a large number of nodes. Third,
the lookup of these systems can be resolved using O(logn) network messages, where
n is the total number of nodes in the system. While the design and implementation of
the PeeRCR does not rely on specific DHT protocol and works well with any form of
DHT system, our choice of Chord protocol [12] that is used as the experimental
underlying circumstance involves the combination of easy-to-avail and popularity.
There have been several successful systems adopting Chord, e.g. Cooperative File
Storage [22]. Chord provides support for just one operation: given a key, it maps the
key onto a node. Depending on the applications using Chord, nodes are responsible
for storing the data object that associated with the key. Chord uses consistent hashing
function to assign each node and key an m-bit identifier [12]. The set of both key and
node identifiers are ordered in an identifier ring modulo 2m, as shown in Figure 2.3. A
key is assigned to the first node (successor node in clockwise direction) whose
identifier is equal to or follows the identifier of the key in the identifier space. Chord

97

protocol allows nodes and keys to insert or delete at any time, while it maintains
efficient lookup using just O(logn) state on each node in the network. Referring to
[12], more detailed description of Chord and its algorithm obtains.

3 System model

Unlike other existing peer-to-peer application systems, the design and implementation
of a P2P-based reusable component repository system involves some new innovative
ideas and is a challenging task due to the distinguishing features of reusable
components. As suggested above, because reusable components are encapsulated in
the form of binary, it is hard to retrieve reusable components directly whereby the
information components carry. Therefore, as suggested in section 2, reusable
components consist essentially of binary-formed artifacts with the accompanying
textual classification documents. The popular measure is to transform the retrieval of
reusable components into querying the textual classification documents.

Conceptually the PeeRCR has arbitrary number of peer nodes, each of which
makes its reusable components available for other peer nodes. Let Pi (1<i<n) denote n
nodes in the network, each of which publishes a set Ci of components available with a
set Di of accompanying multi-faceted classification documents. Let us imagine the
following scenario: At some peer node in the PeeRCR network a user issue a query of
reusable components. According to the query, the PeeRCR shall determine which
nodes contain the relevant components and then contact each relevant node. The naïve
way to processing the user query would be to send the query to each of participating
nodes in the PeeRCR network. However, this method would work for a small number
of peer nodes it certainly does not scale. To improve the scalability, the popular
measure taken in peer-to-peer systems is to introduce indices service that helps to
determine which nodes should receive queries based on query content. In PeeRCR,
two kinds of index dictionaries (Local Dictionary and DHT-based Peer Dictionary

Table 3.2. Peer dictionary for the entire PeeRCR system

KEYWORD PEER ID
FT1 Peer1,1, Peer 1,2,…, Peer 1,k1
FT2 Peer 2,1, Peer 2,2,…, Peer 2,k2
… …
FTm Peer m,1, Peer m,2,…, Peerm,kn

Table 3.1. Local dictionary for each PeeRCR node Pi

KEYWORD COMPONENT ID
FT1 Com1,1, Com1,2,…, Com1,k1
FT2 Com2,1, Com2,2,…, Com2,k2
… …
FTn Comn,1, Comn,2,…, Comn,kn

nodes
keys

N1

N2

N3

Fig. 2.3 The Chord identifier circle

98

respectively) are constructed to assist in processing the user query of reusable
components.

3.1 Local Dictionary

Designing the local dictionary (LD) for each peer node Pi is actually the process of
building an inverted list index [21] over the multi-faceted classification files set Di on
the PeeRCR node. One natural way to construct LD is to map each term pre-assigned
under certain facet for reusable components to the reusable components Ci published
by the node. While this approach would not work well for the query of components
because the users issue the query in the form of FTQs as shown in section 2.2. Hence,
we shall construct LD (as shown in table 3.1) whereby extracting possible facet-term
pairs as so called keywords from the multi-faceted classification document set Di and
indexing each possible facet-term pair (keyword) over the components Ci stored at the
node Pi. In the table 3.1 Comj,k∈Ci refers to the reusable component id which contain
keyword (facet-term pair) FTj in its multi-faceted classification document at the node
Pi, the keywords FTj is required to be written in the form of
facet/term1/term2…/termi where term2 is the specialization of term1. Taking the
credit-card processing component from figure 2.2 as an example, it is easy to deduce
that ApplicationDomain/BusinessAdministration/e-
Commercial/BusinessToBusiness is just a keyword, while
ApplicationDomain/BusinessAdministration/e-Commercial/ is also a keyword.
We can see that the construction process of the keywords from multi-faceted
classification documents is the process of traverse up the hierarchical structure of
multi-facet documents from root to leaf, and can easily deduce that each FTQ in a
query FTQs can be regarded as a keyword. LD is used for selecting reusable
components at the node Pi. Given a FTQs of reusable component with multi FTQ
(keywords), the PeeRCR shall perform intersection or union operation on the
component ids of those keywords to generate the qualified component id list. The
process of querying reusable component will be discussed in section 4 in detail.

3.2 DHT-Based Peer Dictionary

In addition of local dictionary at each PeeRCR node, we construct another kind of
inverted list index, called as peer dictionary (as shown in Table 3.2) that maps facet-
term pair (keyword) to peer nodes in the entire PeeRCR system. In Table 3.2, peerj,k
∈Pi (1<i<n) refers to the peer node id which contains reusable components whose
multi-faceted classification documents hold the keyword FTj. The keywords of Peer
Dictionary are equal to the union set of all keywords published by all PeeRCR nodes.
The reason for our construction of peer dictionary is that using the peer dictionary, a
PeeRCR node’s query engine can efficiently perform the same intersection or union
operation to select the relevant remote peer nodes for sending the query directly to
those nodes that are likely to have the relevant reusable components. Section 4 shall
present how the PeeRCR system uses the peer dictionary.

99

There are three basic designs for routing user query of reusable components by peer
dictionary. The first design is to build central peer dictionary. In this type of design
one or more dedicated servers are used to maintain the complete peer dictionary of the
entire system, and to servicing query routing. This approach is similar to traditional
Client/Server mode and suffers from the problem of scalability. The second design is
to duplicate peer dictionary on each peer node. In this type of design, when a new
node join into the system it downloads the whole peer dictionary from any existing
peer and it can immediately issue any query into the entire system. However, this
approach also suffers from the problem of scalability because maintenance of the peer
dictionary requires O(n2) number of messages for n nodes in the systems. Therefore,
the PeeRCR chooses the third design in which peer dictionary is fully distributed
among peer nodes in the network. The PeeRCR uses DHT mechanism to distribute
peer dictionary in pieces, so called DHT-based peer dictionary (DPD), to each
participating node. The construction of DPD involves two steps. In the first step, for
each keyword in the Peer Dictionary, we use hash function to produce a key value. In
the second phase, the Peer Dictionary is partitioned and distributed among the nodes
in the entire PeeRCR system according to key values. The result of these two steps is
that each node maintains a part of Peer Dictionary, which has/have keywords whose
hash values fall into the node’s responding range and their corresponding peer ids.

4 Processing Reusable Component Queries Using DPD and LD

The principle of FTQs, the basic mechanism of reusable component retrieval method,
has been discussed in Section 2.2. In this section, we shall describe how the PeeRCR
system uses DPD (DHT-based Peer Dictionary) and LD (Local Dictionary) for
querying reusable components in a large distributed environment. Our algorithm for
querying reusable components in the PeeRCR involves two main stages. In its first
stage, the Relevant Peer id List (RPL) for FTQs is determined using DPD; in the
second stage, the results of the first stage direct FTQs to each relevant peer node
which shall return the resulting reusable components back by using LD. We detail
these two stages as follows:

StageⅠ:
* For any query FTQs= {FTQ1,…,FTQk} received by one PeeRCR node e.g. Pj, the

query engine of Pj hash each FTQi, i∈[1..k], to get the node Px, x∈[1..k], which
maintains the DHT-based peer dictionary (DPD) containing the Peer id List (denoted
as PLi) corresponding to FTQi. Notice that as suggested above, FTQi is equal to a
keyword in DPD, therefore the hash FTQi directly is the same as the hash of keyword.

* Px sends back PLi t o Pj. After all peer lists {PL1,...,PLk} corresponding to
{FTQ1,…,FTQk} are received by Pj, The query engine at Pj shall perform intersection
or union operation on {PL1,…,PLk} to result in the Relevant Peer id List (denoted as
RPL=(RPL1,…, RPLn)) of the FTQs.

StageⅡ:
* For each relevant peer node Py in RPL, The submitting peer node Pj sends it

FTQs and waits for the resulting components.

100

* Upon receiving the FTQs, the query engine at Py is responsible for searching for
Local Dictionary (LD) to determine all Component id List {CL1,…,CLk}
corresponding to {FTQ1,…,FTQk}, and then for performing intersection or union
operation on {CL1,…,CLk} to produce the Qualifying Component id List (QCL) of
the FTQs.

* Once the relevant reusable components are found based on the resulting
component id list, Py sends them to submitting node Pj.

Let us consider Example 2.1 again. Figure 4.1 illustrates the two stages of
processing reusable components using DPD and LD. The first stage is shown in
Figure 4.1a, while Figure 4.1b presents the second stage.

Fig. 4.1. Reusable component query example using DPD and LD

5 Evolution of PeeRCR System

P2P network, the infrastructure of the PeeRCR, is a large distributed environment
with dynamic and ad hoc characteristics. In other words, the peer nodes over P2P
network have a short (maybe last for a few hours) and arbitrary (depending on the
node owner) lifetime [23]. Nodes can arrive or depart at will. This section describes
how the PeeRCR system deal with the evolution of network when nodes join, leave
and update their sharable reusable components. As suggested above, Chord protocol
is used as the experimental substrate of the PeeRCR system. Therefore, the evolution
of the PeeRCR system is defined by Chord protocol.

5.1 Arrival of Nodes

In Section 3.1, we have outlined the model of Local Dictionary indexing those
reusable components his owner would like to share to other peer nodes. For each new
arriving node Pn, it is up to the node to construct Local Dictionary LD={FTi, Comi,k}
of reusable components retrieve-able by the nodes already in the PeeRCR system. The
process of node inserting into the PeeRCR system involves three main steps.

Pj

FTQs=(FTQ1,⋯,FTQ4)

Px

(1)FTQ1=ApplicationDomain<B
usinessAdministration><e-
Commercial>

(2)FTQ1 PL1

(1)’FTQ4

(2)’FTQ4 PL4

(a)

1 2

3 4

(3) RPL=(PL PL)
(PL PL)

∪ ∩

∪ Pj

RPL1

RPLn

(1)FTQs (3)QCL1

(1)̀ FTQs

(3)̀ QCLn

(b)

1 1 2 3 4(2) QCL=(CL C L) (CL C L)∪ ∩ ∪

1 n(4)QCL=QCL ... QCL∪ ∪

n 1 2 3 4(2)' QCL=(CL CL) (CL C L)∪ ∩ ∪

101

In the first step, the new arriving node Pn sends join request to any node Pc already
in the PeeRCR system (as shown in Figure 5.1a). Based on the Chord protocol, Pn
finds its successor Ps, in which the DPD {FTj, Peerj,k} stores, in the identifier ring.

Ps

Pc

Join request
Pn

FT1 {Peer1,i}1<i<k1

FT2

FT3

{Peer2,i}1<i<k1

{Peer3,i}1<i<k1

(a)

Ps
Pn

FT1

FT2

FT3

Pn inserts {FTi,Pn}

(b)

Ps Pn

FT1

FT2

FT3

(c)

FT1 {Peer1,i}1<i<k1

FT2

FT3

{Peer2,i}1<i<k1

{Peer3,i}1<i<k1

Fig. 5.1. Node Pn arriving at the PeeRCR system

In the second step, Pn injects each tuple (FTi, Nn) into the PeeRCR system. It is up
to the Chord protocol to determine which nodes receive the tuples (as shown in Figure
5.1 b). Accordingly, the receiving nodes will update its DPD.

In the last step, now that Pn becomes part of the Chord identifier ring, it is the
responsibility of Pn for hosing parts of peer dictionary already in the network. The
Chord protocol assigns DPD containing the keywords FTi for which Pn is the
successor in the identifier ring (as shown in Figure 5.1c).

5.2 Node Departure

When a node departs, the reusable components it stores become unavailable by the
rest of peer nodes in the PeeRCR system. In our implementation of the PeeRCR, two
steps the departing nodes, says Pd, should follows. The first step is to hand over the
DPD resided at the departing node Pd to its successor node according to the Chord
protocol. In the second step, Pd notifies the nodes that hold the peer index of Pd with
the message about its unavailable. To find the nodes that currently maintain the peer
index of Pd, Pd hashes the keywords it inserted into the system during joining to get
the keys.

5.3 Update of Reusable Components at Nodes

Possibly, the peer nodes in the PeeRCR want to add new artifact sharable to other
peers, or to drop components from sharable set. Moreover, they can make
modifications on the reusable components, such as adding or delete interfaces,

102

methods, and attributes of artifacts. All these changes on reusable components
indicate that peer nodes perform the update operations on reusable components. In
this subsection, we discuss how DPD, Local Dictionary evolve when node performs
the update of reusable components. In the PeeRCR system, it is a specification that
any modification on reusable components e.g. additions of interfaces, methods,
attributes is regarded as creation of new reusable components. Therefore, we shall
mainly discuss the two cases: new component inserting and outdated component
deleting. When a peer node inserts new sharable components into the system, it first
updates the Local Dictionary locally, and then sends update request and inject the
peer indices related to new components, then the Chord protocol takes the similar way
as the second step of node arrival (as shown in Figure 5.1b) to determine which nodes
that shall hold the peer index. When a peer node decides to drop components from
sharable lists, it just updates its local dictionary locally, and performs no modification
of DPD for simplicity.

6 Experiments

We have implemented a prototype PeeRCR system with the features discussed in the
previous sections. The entire system is written in Java. After installing the PeeRCR
software, a node will become a PeeRCR node by performing node’s joining operation
discussed in Section 5.1. In this section, we present the res ults of experiments
conducted to evaluate PeeRCR’s performance. Section 6.1 describes the experiment
setup, including the experimental network environment, the reusable component set
and so on. The performance metrics are introduced in Section 6.2. Finally, Section 6.3
analyses the experimental results and evaluates the performance of the PeeRCR.

6.1 Experimental Design

Our experimental environment consists of 30 PCs with Intel PentiumⅣ 1.8GHz to
1.4GHz CPU and 523MB RAM. Each PC runs Windows 2000 operation system. The
PeeRCR system is installed on every node. The machines are fully dedicated when we
are conducting the experiments.

In our experiments, we choose a large amount of classes and a relatively small
number of actual components such as COM, JavaBean as raw component set. The
reasons for such design involve the trade-off between feasibility and effectiveness. In
order to design classes, we choose about 20 familiar application domains, e.g.
mathematics, commerce, finance, business. The number of self-designed classes is
about 1500. And we select 300 classes from Microsoft’s MFC (Microsoft Foundation
Classes), Borland’s VCL (Visual Class Library). The last about 100 raw components
are actual COM, JavaBean components. The entire number of raw component used in
the experiment is about 2000, and each component is accompanied with a 5-facet
classification document described in Section 2.1. All these components are distributed
among 30 nodes over the network to ensure that each node maintains about 80 raw
components. The distribution allows nodes have part of same components.

103

With reusable component retrieval, the gap between problem statement (a
requirement) and solution description (a specification) is not only terminological, but
also conceptual [24]. Therefore, it is necessary to establish a controlled environment
to query reusable components. We pre-design an initial query set of more than 300
FTQs. The subjects randomly pick variable number of FTQs from the set as queries to
submit.

In our experiments, we have also implemented other three different schemes of
reusable component repository, namely, C/S architecture, Gnutella and Completion.
The performance of PeeRCR is compared against these three schemes.
1. C/S architecture - In C/S architecture, we store all about 2000 raw component in

one PC, so called as the Server. Other 29 PCs act as clients to retrieval components
from the Server. For C/S architecture, only Local Dictionary (LD) of these 2000
components are required to construct for the lack of the concept of peer.

2. Gnutella - This network topology has one common point with C/S architecture: no
peer dictionary. In Gnutella, raw components are distribute-stored in peer nodes. It
is required to construct Local Dictionary (LD) for the reusable components it
owns. The Gnutella topology was generated to obey the power laws [25]. On the
average, every node has 4 neighbors. The average distance between any two nodes
in the network is 3.5 hops. In our experiment, we don’t set any TTL on query.

3. Completion - In this scheme, each node holds one copy of the whole peer
dictionary.

4. PeeRCR - In our P2P reusable component repository system, we apply Chord
protocol [12] to partition and distributed the peer dictionary among nodes (as
discussed in Section 3.2).
In addition, we also compare the ability of dealing with system evaluation of

PeeRCR against Completion.

6.2 Performance Metrics

In this section, we present two metrics used to measure the efficiency and
effectiveness of different scheme system. The efficiency deals with the performance
issue, and the effectiveness deals with the quality of results. Two metrics, which are
used to measure both querying speed and querying quality, are defined as follows.
1. Query Response Time - This metric measures the speed of query processing. It is

defined as the time between submission of a query and when the first result is
received.

2. Recall - This metric measures the number of relevant reusable component by a
query to the total number of relevant components in the entire system. Both
numbers are determined offline. We define the relevant component as the retrieved
components with which a developer is able to solve a problem at hand.

6.3 Experimental Results

We conduct a set of experiments for each scheme system. The number of queries of
reusable components submitted by a peer node simultaneously varies from 1 to 10.

104

The queries are all selected randomly from the query pool. Each subject on peer nodes
performs 4 trials for each query group and calculates the average as the experiment
result.

6.3.1 On the Query Response Time
Figure 6.1 shows the average query response time. As shown in figure, with the
number of query submitted simultaneously increasing, the query response time of C/S
and Gnutella mounts up quickly. This is because C/S and Gnutella both suffer from
the scalability problem when a large amount of queries submitted: C/S adopts one
point server strategy, while Gnutella adopts flooding-based routing strategy. On the
other hand, the PeeRCR outperform C/S and Gnutella except for the first few query
groups, and are close to Completion that is the best case since every node has a copy
of the complete peer dictionary.

6.3.2 On the Recall
Figure 6.2 illustrates the recall of component query. As the number of query
submitted simultaneously increases, the recall of C/S and Gnutella drops quickly,
which indicates that a relatively large proportion of queries can’t be successfully
processed. The PeeRCR method returns more relevant results than C/S and Gnutella
because more queries are successfully processed, and is close to Completion method.

6.3.3 On the Effect of Scaling
In addition, we also conduct an experiment to verify the effect of network evolution
on the system performance. We first run 15 PCs as original network, and then add 5
nodes into the network at minute 0, 5, 10. The new peer node has the same number of
reusable components resided at it. At each original PC, the subject submits 5 FTQs
simultaneously, and no FTQs are submitted at new nodes. Figure 6.3 shows the
average query response time of the entire network over the period. From the figure,
we can see that the Completion strategy has the higher peak value because the
message exchange and update of Peer Dictionary among nodes after the joining of

0

20000

40000

60000

80000

100000

1 2 3 4 5 6 7 8 9 10

Number of FTQs submitted simultaneously

Q
ue

ry
 R

es
po

ns
e

T
im

e
(m

s)

C/S
Gnutella
Completion
PeeRCR

Fig. 6.1. Query Response Time

40

60

80

100

1 2 3 4 5 6 7 8 9 10
Number of FTQs submitted simultaneously

R
ec

al
l (

%
)

C/S
Gnutella
PeeRCR
Completion

Fig. 6.2. Query Recall

105

new nodes delay the user queries. The PeeRCR has the lower peak value since Chord
method just has to redistribute some part of DPD to the new nodes according to the
hash function.

20000

25000

30000

35000

40000

45000

50000

0 1 2 3 4 5 6 7 8 9 10

Time (min)

Q
ue

ry
 R

es
po

ns
e

Ti
m

e
(m

s)

Completion
PeeRCR

Fig. 6.3. Query Response Time when network evolution

7 Conclusions and future work

In this paper, we have presented an original distributed P2P-based reusable
component repository system called PeeRCR. In the PeeRCR, raw reusable
components are classified by multi-faceted scheme. In addition, two kinds of indexing
mechanics, Local Dictionary (LD) and Peer Dictionary, are introduced. The PeeRCR
applies Chord protocol to partition and distribute the Peer Dictionary among nodes,
which generates DHT-based Peer Dictionary (DPD). Results from the experiments on
a prototype PeeRCR system demonstrates that our P2P-based reusable component
repository system is a promising distributed and scalable system for sharing reusable
components in a large distributed environment.

Because the PeeRCR makes a tentative study of building a reusable component
repository on P2P network, there are still a lot of jobs remaining for future research.
We plan to extent this work in several directions. First, our current prototype system
only provides simple component retrieval mechanism. We plan to adopt advanced
information retrieval methods for supporting more complex reusable components
query. Second, we plan to further study the strategy of distributing Peer Dictionary to
obtain better performance. Finally, we plan to evaluate the performance of the
PeeRCR with actual reusable components.

References

1. I. Jacobson, M. Griss, P. Jansson: Software Reuse: Architecture, Process and
Organization for Business Success. Addison-Wesley, MA (1997).

106

2. A. Mili, R. Mili, R.T. Mittermeir: A Survey of Software Reuse Libraries. In: W. Frakes
(ed.): Systematic Software Reuse (1998) 317~347.

3. STARS Technique Committee: Asset Library Open Architecture Framework (Version
1.2). Information Technology Report, STARS-TC-04041/001/02 (1992).

4. G. Sindre, R. Conradi, E. Karlsson: The REBOOT Approach to Software Reuse. Journal
of Systems and Software, Vol. 30 (1995) 201~212.

5. J.M. Morel, J. Faget: The REBOOT Environment. In proceeding of 2nd International
Workshop on Software Reusability (1993) 80~88.

6. R.C. Seacord, S.A. Hissam, K.C. Wallnau: Agora: a Search Engine for Software
Components. Technical Report, CMU/SEI-98-TR-011 (1998).

7. K. Li, L. Guo, H. Mei, F. Yang: An Overview of JB (Jade Bird) Component Library
System JBCL. In proceeding of the 24th International Conference TOOLS Asia, (1997).

8. W.S. Ng, B.C. Ooi, K.L. Tan, A.Y. Zhou: PeerDB: A P2P-Based System for Distributed
Data Sharing. In Proceedings of the 19th International Conference on Data Engineering
(2003).

9. Napster. http://www.napster.com.
10. Gnutella. http:// www.gnutella.com.
11. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker: A scalable Content

Addressable Networks. ACM SIGCOM (2001).
12. I. Stoica, R. Karger, M.F. Kaashoek, and H. Balakrishnan: Chord: A scalable peer-to-peer

lookup service for internet applications. In Proceeding of SIGCOMM, 2001.
13. A. Rowstron, P. Druschel: Pastry: Scalable, Distributed Object Location and Routing for

Large-Scale Peer-to-Peer Systems. In proceeding of 18 th IFIP/ACM Intl. Conf. on
Distributed Systems Platforms, 2001.

14. C. Szyperski: Component Software, Addison-Wesley. 1998.
15. Bachman, et al: Technical Concepts of Component-Based Software Engineering.

Technical Report, CMU/SEI-2000-TR-008, 2000.
16. K.C. Wallnau, S.A. Zahedi, R.C. Seacort: Building Systems from Commercial

Components. Addison-Wesley, 2002.
17. W.B. Frake, T. Pole: An Empirical Study of Representation Methods for Reusable

Software Components. IEEE Transactions on Software Engineering, 1994, 20(8):
617~630.

18. T. Isakowita, R. J. Kauffman: Supporting Search for Reusable Software Objects. IEEE
Transaction on Software Engineering, 1996, 22(6): 407~423.

19. R. Prieto-Diaz, P. Freeman: Classifying Software for reusability. IEEE Software Journal
(1987): 6~16.

20. J. Sametinger. Software engineering with reusable components. Springer-Verlag, 1997.
21. G. Salton, M.J. McGill: Introduction to Modern Information Retrieval. McGraw Hill,

New York, 1983.
22. F. Dabek, M.F. Kaashock, D. Karger, R. Morris, I. Stoica: Wide-Area Cooperative

Storage with CFS, SOSP2001.
23. P. Ganesan, M. Bawa, H. Garcia-Molina: Online Balancing of Range-Partitioned Data

with Application to Peer-to-Peer Systems. In proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004: 444~455.

24. H. Mill, E. Ah-Ki, R. Godin, H. Mchieck: An Experiment in Software Component
Retrieval. Information and Software Technology, 2003, 45(10):1~17.

25. C.R. Palmer, J.G. Steffan: Generating Network Topologies That Obey Power Laws. IEEE
Globecom2000, 2000.

107

