
Use of high- and low-level

languages in a real-time system

J. STENSON

Plessey Radar, The P/essey Co, England

lntroduction

This paper discusses briefly some of the argu
ments for and against the use of high-level
languages in a real-time system. Then it goes on
to describe the results of efforts made by the
Plessey Company to use a high-level language in
parts of a real-time operating system.

lt is hoped that our experience will be interest
ing to everyone who is looking at the use of high
level languages in real-time systems.

1. For and against the use of a high-level language

Consideration of whether to use a high-level
language rather than a low-level one is influenced
by the following factors:

1. Writing in a high-level language is much
quicker.

2. Coding errors are less frequent.
3. Testing is often much quicker at the off-line

stage.
4. Documentation is sometimes simpler.
5. Handover of the program is easier -

whether between programmers or to the
customer.

6. Even an efficient high-level language
usually needs more space and more run
time than a lower-level one.

7. If obscure bugs are found on line, the pro
grammer will probably have to look at the
machine code instructions to trace them,
and this is easier from a low-level
language than a high-level one.

A balance has to be reached between speed of
program production, achieved by using a high
level language, and efficiency of code, achieved
by using a low-level one. This is a very difficult
decision because programmer time is always
expensive, and any means of reducing it is worth
while, but time and core space in most real-time
systems are precious.

The solution may be to make high-level
languages more efficient, so the object code they
produce is nearly as good as a programmer can
write. Or it may be to improve low-level
languages to incorporate some of the features of

high-level ones. Either or both of these improve
ments may be made.

When the decision between high- and low-level
languages had to be taken we had time-scales to
meet and limited space and time in the system.
The rest of the paper shows how we decided
between high and low languages, and the results
of our choice.

2. Brief system description

This system is a multicomputer Air Traffic Con
trol project. The computers are of two main
types, and not all have access to the same
facilities - for example, some have access to
magnetic tape decks, some do not. All the com
puters can communicate with a common store in
which the data base is held.

Each computer receives one interrupt at
regular intervals, and from this interrupt all the
system timing is derived, although there are
other significant times, e.g. radar scan time and
data link time, which have to be observed.

The system can be considered as having two
parts, a 'foundation ', which would be nearly the
same whatever the system were used for, and
'application software ', which is concerned only
with the air traffic control functions of the
system.

The 'foundation' consists of an operating
system providing scheduling, communications,
peripheral handling, reconfiguration, fault
detection and location. Parts of this have been
implemented during the past year, and it is from
this implementation that the following information
has been drawn.

3. The operating system

The operating system contains programs which
perform the following functions:

1. Schedule tasks in every computer in
system.

2. Provide communication between the compu
ters in system and the common store.

3. Handle peripheral equipment - teleprinters,

57

punches and readers, magnetic tapes. Also
the 'control panel ' , which is hardware
device controlling the configuration of the
system.

4 . Control and information service to the
operator. This program is known as The
Director .

5. Detect faults .
6. Load programs .
7 . Aid on-line testing.

4. Available languages

fu this system we use two types of computer, the
XL4, a double address machine, and the XL6, a
single address, less powerful computer . For the
XL4 we have a high-level language, MINICORAL,
a subset of CORAL, and XAL, an assembler.
For the XL6 we have XAL only.

MINICORAL can be a very efficient high-level
language. An experienced programmer writing
with store economy in mind can achieve a 1 . 1 : 1
size ratio - we have tried experiments and it can
be done . But, of course, a less experienced pro
grammer can produce much worse results than
that ; 2 : 1 is about averag,e . There are very good
off-line testing aids associated with the language,
and this is a great advantage.

XAL is a mnemonic assembler with very good
macro facilities. lt is easy to learn, but there
are fewer off-line testing aids associated with it,
and therefore programs can take longer to debug .
Really experienced XAL programmers have very
little difficulty debugging their programs.

5. Available people

The programming team contained people with a
wide range of programming skill . They ranged
from those with 5 years ' experience to those with
none at all . Our trainee programmers were used
mostly on the MINICORAL programs .

6. Split between high and low-level languages

When we looked at the list of tasks to be
performed (Section 3, 1 - 6) some points were
obvious immediately :

1 . Some programs would have to exist in every
computer in the system (scheduler, com
munication, on-line aids, fault detection) .

2. Some were restricted to only a few compu
ters because of the arrangements of the
hardware (magnetic tape handling , control
panel handling) .

3 . From the nature of their design some pro
grams needed to appear in one (or only a
few) computer only (The Director , Reload) .

A simple split would be to use XAL for programs

58

held in every computer, MINICORAL for those
held in only a few. To a certain extent this was
done but there were a number of weighting factors
to be applied. These were:

4. Any program in the XL6 must be in
assembler.

--

5. Some programs which appear in every com
puter in system have very low priority, and
if their run time is a little bigger than it
need be it may not matter very much, since
the program will only run when there is
spare time anyway .

6 . Some programs which appear in every com
puter are run on rare occasions only in the
operational system. Therefore their space
and time need not be optimised to the same
extent as others.

Starting from the position that we wanted to
use MINICORAL if possible to reduce program
production times we arrived at this split between
MINICORAL and XAL:

MINICORAL

Control Panel Handling

Magnetic Tape
Handling (XL4)
Director (XL4)
Fault Detection
On-Line Aids
Reload using XL4

7. Review of each program

XAL

Scheduler
Communications
Teleprinter Line
Printer
Paper Tape Handling
Magnetic Tape
Handling (XL6)
Director (XL6)

On- Line Aids
Reload from XL6

Each of these programs is considered below. The
arguments for using the particulat language are
given , and where MINICORAL was used the
results are considered . Where XAL was used
less information is included .

There are two areas, Magnetic Tape Handling
and The Director, where comparison between a
MINICORAL and a XAL version of the same pro
gram can be made. lt is not a direct comparison ,
because the MINICORAL versions were for XL4
computers and the XAL for XL6. The XL4 has
more powerful instructions than an XL6, so one
expects to find fewer instructions used in this
computer.

7. 1 Scheduler, communication

These programs were written in XAL because
they are used in every computer in system, and
therefore space is important. They are used con-

stantly in every cycle of work, and therefore time
is important. We considered that any increase of
space or time could not be allowed, and they were
written by skilled assembler code programmers.

7.2 Teleprinter, /ine printer and paper tape handling

These were written in XAL because MINICORAL
does not offer particularly good facilities for this
type of peripheral handling, they were short pro
grams anyway, and some were for the XL6. We
did not spend very long over this decision - peri
pheral handling of this type seems to demand an
assembler code.

7.3 Load

These parts of the load programs housed in an
XL6 were written in assembler code, but where
they were housed in an XL4 they were written in
MINICORAL. 'l'his is because they are used
comparatively rarely in the operational system
(probably less than once every six hours) although
they are heavily used during program develop
ment. lt seems more important in a case like
this to ensure that the program can be maintained
easily and handed on from one programmer to
another than to achieve minimum space or time.
Space bad to be considered, because there is
limited space in the System. The programs did
not occupy an excessive amount of core (0.7 Kin
4 computers of 64 K capacity).

lf we had to make this decision again we would
make the same one. Any program used at a very
low rate is a reasonable vehicle for an experiment
in using high-level languages.

1.4 Contra/ panel handling

The program resides in one computer only in the
system, and is called every cycle. No significant
amount of processing takes place unless the
operator uses the System Control Panel to re
configure the hardware in the system. This should
be a rare occurrence - major reconfigurations
involving computer changes should not occur more
than once in 24 hours, and minor ones should
happen less than once per hour.

In these circumstances no serious penalty in
overheads will be paid at run time if the program
is slightly slower than it need be. lt was, there
fore, written using the MINICORAL compiler.

The program was written by experienced pro
grammers. lt was completed quickly and with
very few unforeseen difficulties. lt operates well
within the time available to it, and whenever the
program has been run it has given satisfactory
results.

This was another area where we feel we made

the right decision. The ease of production and
documentation justified the use of the high-level
language, and no significant time penalty has been
paid.

1.5 Fault detection

This program is scheduled at the end of the lowest
priority list of tasks. lt is called when all other
work has been done, and having been completed
adds itself to the bottom of the list again. Thus if
there is very little work being done in the compu
ter this program is run frequently, but as the
work load builds up so the calls become fewer.

As the program will only be used when the
workload allows it, the time overheads incurred
if it is written in MINICORAL are not serious.
The program resides in every computer in sys
tem, and therefore space is a matter of concern.

Despite the consideration of space the pro
gram was written in MINICORAL to reduce time
scales. The space occupied is more than we
allowed for when the program was designed, and
we are faced now with a need to look through the
program to find ways to reduce the space used.

Nevertheless, the program was ready on time
and it can be used in its present overlarge state
for a few months before the 'applications' pro
grams increase in number and its size becomes
a problem.

This is where the judgement between the two
alternatives is difficult - we did achieve a result
on time, which is important, but the excessive
size of the program is just as relevant.

Summing up, it is apparent that this MINI
CORAL program is less successful than the two
previous ones.

1.6 On-line aids

On-Line Aids will be used most frequently during
the system development stage, at which run time
and space overheads are not particularly signifi
cant. (lt is possible to alter real-time situations
just by using on-line aids, but this situation is
unlikely to be made worse by longer run times.)
The aids will be used occasionally in the opera
tional system, but not often enough to make run
time overheads significant. Like 'fault detection'
(Section 7. 5), they exist in every computer in
system, and space is important.

For reasons of speed of production, allied to
a conviction that MINICORAL should be a good
language for tasks like this, we decided to do two
thirds of the total work in MINICORAL.

The project suffered throughout its life from
changing manpower, and was frequently under
strength. Despite these difficulties it was com
pleted on time: but its size is excessive. We
attribute this to its low staffing level leaving no

59

time for a careful examination of the coding of
each module to ensure that minimum space was
used. Like 'fault detection', we now have to
carry out this examination and reduce the size of
the program.

lt is possible that the same troubles would
have been met if we had elected to write the pro
gram in XAL; in fact, it might have been even
worse.

lt is difficult to tell with this project whether
it would ha ve been better to write in a low-level
language. lt seemed to be a function of the low
manning levels rather than an inherent difficulty
in using a high- level language that caused the
growth in size.

7.7 Magnetic tape handling

Only 2 of the XL4 computers are expected to use
magnetic tape decks at any one time and they will
not be in constant use. This was an obvious place
to use MINICORAL and it has been used very
successfully. At present the XL4 version is esti
mated at 2 K (with 75% completed, so the estimate
should be reliable).

The XL6 version, written in XAL because
there is no other choice, is 2.2 K.

These figures show a very close correlation
between the MINICORAL and XAL versions.

1.8 Director

The Director has two parts, one of which resides
in every computer in system, the other in one
XL4 and XL6 only. The part that occurs in every
computer in system was written in XAL for
economy. The control part, in one XL4 and XL6
computer, runs once every cycle. This means
that size and run time are not critical, although
they cannot be ignored. The program for the XL4
was written in MINICORAL and that for the XL6
in XAL.

The sizes of these programs are: XL4, 2.2 K;
XL6, 3.6 K. This is a very satisfactory result -
XL4 programs should be smaller because the

60

instruction set is more powerful.

8. Conclusion

In this multi-computer system it was possible to
use a high-level language in those areas which
were not common to every computer in the system.
When a high- level language was used in an area
which was common to every computer the results
were less successful, although it is likely that the
fault did not lie with the compiler.

From the experience gained in this system,
designers may well be less sceptical of the
wisdom of using high-level languages in real-time
system than they have been in the past.

Acknowledgements

This paper is based on the work done by Plessey
Programmers in System Implementation with the
help and collaboration of members of the Royal
Radar Establishment at Malvern.

Discussion

Q. You remarked that the most successful pro
grams are those that are run least often. Is this
because these programs are tested less thoroughly?

A. Not quite, but perhaps because they are less
prone to interactions from other debugging, and
errors in them have less far ranging conse
quences.

C. Good programmers want to get all the power
of the machine, so they program in assembler.
But the very best programmers want to get this
in higher level languages.

C. Even when using low level languages we do not
allow our programmers to use 'tricky code '. With
high-level or macro languages one should accept
some overheads and inefficiencies which result
from enforcing programming standards.

	Teil 1_erl
	doc03671820190521095123
	doc03671920190521095137
	doc03672020190521095151
	doc03672120190521095203
	doc03672220190521095218
	doc03672320190521095229
	doc03672420190521095247
	doc03672520190521095301
	doc03672620190521095317

	Teil 2_erl
	doc03672720190521095329
	doc03672820190521095352
	doc03672920190521095404
	doc03673020190521095422
	doc03673120190521095433
	doc03673220190521095449
	doc03673320190521095500
	doc03673420190521095525
	doc03673520190521095537
	doc03673620190521095555

	Teil 3_erl
	doc03673720190521095608
	doc03673820190521095634
	doc03673920190521095646
	doc03674020190521095711
	doc03674120190521095723
	doc03674220190521095742
	doc03674320190521095756
	doc03674420190521095813
	doc03674520190521095828
	doc03674620190521095846

	Teil 4_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 5_erl
	doc03674720190521095859
	doc03674820190521095917
	doc03674920190521095934
	doc03675020190521100000
	doc03675120190521100013
	doc03675220190521100030
	doc03675320190521100048
	doc03675420190521100107
	doc03675520190521100128
	doc03675620190521100146

	Teil 6_erl
	doc03675720190521100207
	doc03675820190521100234
	doc03675920190521100300
	doc03676020190521100318
	doc03676120190521100335
	doc03676220190521100355
	doc03676320190521100412
	doc03676420190521100430
	doc03676520190521100448
	doc03676620190521100506

	Teil 7_erl
	doc03676720190521100532
	doc03676820190521100549
	doc03676920190521100612
	doc03677020190521100629
	doc03677120190521100644
	doc03677220190521100701
	doc03677320190521100724
	doc03677420190521100740
	doc03677520190521100755
	doc03677620190521100811

	Teil 8_erl
	doc03677720190521100826
	doc03677820190521100845
	doc03677920190521100900
	doc03678020190521100916
	doc03678120190521100930
	doc03678220190521100947
	doc03678320190521101001
	doc03678420190521101030
	doc03678520190521101045
	doc03678620190521101109

	Teil 9_erl
	doc03678720190521101126
	doc03678820190521101149
	doc03678920190521101205
	doc03679020190521101221
	doc03679120190521101237
	doc03679220190521101255
	doc03679320190521101312
	doc03679420190521101329
	doc03679520190521101343
	doc03679620190521101404

	Teil 10_erl
	doc03679720190521101417
	doc03679820190521101435
	doc03679920190521101448
	doc03680020190521101506
	doc03680120190521101525
	doc03680220190521101544
	doc03680320190521101601
	doc03680420190521101636
	doc03680520190521101655
	doc03680620190521101714

	Teil 11_erl
	doc03680720190521101727
	doc03680820190521101744
	doc03680920190521101759
	doc03681020190521101817
	doc03681120190521101831
	doc03681220190521101848
	doc03681320190521101902
	doc03681420190521101920
	doc03681520190521101936
	doc03681620190521101954

	Teil 12_erl
	doc03681720190521102010
	doc03681820190521102028
	doc03681920190521102046
	doc03682020190521102100
	doc03682120190521102120
	doc03682220190521102136
	doc03682320190521102152
	doc03682420190521102210
	doc03682520190521102225
	doc03682620190521102247

	Teil 13_erl
	doc03682720190521102312
	doc03682820190521102330
	doc03682920190521102348
	doc03683020190521102408
	doc03683120190521102428
	doc03683220190521102448
	doc03683320190521102506
	doc03683420190521102526
	doc03683520190521102544
	doc03683620190521102603
	doc03683720190521102618
	doc03683820190521102635
	doc03683920190521102655
	doc03684020190521102712
	doc03684120190521102727
	doc03684220190521102748
	doc03684320190521102807
	doc03684420190521102828

