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Deriving Model Metrics from Meta Models

Nebras Nassar1, Thorsten Arendt1, Gabriele Taentzer1

Abstract: The use of model-based software development has become more and more popular be-
cause it aims to increase the quality of software development. Therefore, the number and the size of
model instances are cumulatively growing and software quality and quality assurance consequently
lead back to the quality and quality assurance of the involved models. For model quality assurance,
several quality aspects can be checked by the use of dedicated metrics. However, when using a
domain specific modeling language, the manual creation of metrics for each specific domain is a
repetitive and tedious process. In this paper, we present an approach to derive basic model metrics
for any given modeling language by defining metric patterns typed by the corresponding meta-meta
model. We discuss several concrete patterns and present an Eclipse-based tool which automates the
process of basic model metrics derivation, generation, and calculation.

Keywords: Model metrics, metric patterns, quality assurance, Eclipse Modeling Framework.

1 Introduction

The paradigm of model-based software development (MBSD) has become more and more

popular since it promises an increase in the efficiency and quality of software development.

In this paradigm, models play an increasingly important role and become primary artifacts

in the software development process. In particular, this is true for model-driven software

development (MDD) [SVC06] where models are used directly for automatic code and

test generation, respectively. Furthermore, the use of domain specific modeling languages

(DSMLs) [BCW12] is a promising trend in modern software development processes to

overcome the drawbacks concerned with the universality and the broad scope of general-

purpose languages like the Unified Modeling Language (UML) [UML].

Since software models play an increasingly important role, software quality and quality

assurance consequently lead back to the quality and quality assurance of the involved

models. In [Ar11, Ar14], we introduced a structured syntax-oriented process for quality

assurance of software models that can be adapted to project-specific and domain-specific

needs according to a dedicated quality model (QM). The approach concentrates on quality

aspects to be checked on the abstract model syntax and is based on quality assurance

techniques model metrics, smells, and refactorings well-known from literature.

Metrics are useful to obtain quantitative information about software development pro-

cesses and artifacts. Metrics for measuring the success of modeling and analysis has always

been a challenge, especially in the area of enterprise modeling where very large models are

in practical use. They can be used to analyze model quality, especially to find anomalies in
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models, and to estimate project costs. To measure quality aspects (e.g., model complexity)

of DSMLs, basic model metrics are needed such as: total number of model elements of a

specific type, number and average number of model elements of a specific type owned by a

model element, number of incoming (outgoing) links of a specific type to (from) a model

element, and average number of incoming (outgoing) links of a specific type per model

element within the entire model. More really domain-specific metrics can be composed

from already defined ones.

For evaluating quality issues we adopt the Goal-Question-Metrics approach (GQM) that

is widely used and has been well established in practice [Va02]. Figure 1 illustrates the

steps of the GQM process described as follows: 1. To measure the quality of a model, the

first step is to define a measurement goal such as model comprehensibility [MDN09]. 2.

Questions should be defined to support data interpretation towards a measurement goal.

For example, the following question could be derived since a complex model is hard to

understand: How complex is a model wrt. the number of its elements? 3. Metrics should

be defined that help to provide all the quantitative information to answer the questions in

a satisfactory way. A way to measure complexity is to use the metric cyclomatic complex-

ity defined as number of links − number of elements + 2 [Mc76, Mc82] wrt. a control

flow graph. To define model metrics for a given domain, the following tasks should be

done: (a) find out (basic and complex) metrics needed to collect the related quantitative

information and define them, (b) find and derive the corresponding domain metrics wrt.

the definitions by analyzing and understanding the given domain structure, (c) identify the

specification of each derived metric, and (d) find out which domain information is needed

for specifying and implementing the derived metrics. 4. Once this information is identi-

fied, the corresponding code and artifacts of metrics calculation have to be developed for

each derived metrics. 5. Implemented metrics can be used to analyze specific models. 6.

After the defined metrics have been measured, sufficient information should be available

to answer the questions. A cyclomatic complexity of 10, for example, points to a pretty

complex control flow which might be hard to understand.

1. Define

Goal

2. Define

Questions

3. Define

Metrics

4. Implement

Metrics

5. Measure

Metrics Results

6. Interpret

Results

Basic Metrics and Complex Metrics

Fig. 1: GQM process

Considering a DSML being either a completely new language or a changed one due to

evolution steps [HW14], its language and tool designers have to offer enough tool support

for convenient domain-specific modeling processes. Specifying and defining metrics for

a DSML by hand is time-consuming and error-prone. Although the definition and imple-

mentation of metrics cannot be automated completely, new ways are interesting to reduce

the manual effort as much as possible. An approach and corresponding tool support for

automatically deriving basic metrics from any given modeling language definition seems

to be promising. Automatically deriving basic metrics, the effort of specifying and imple-

menting model metrics would be reduced to composing basic metrics in a suitable way.

Considering again the GQM process in Figure 1, Steps 1, 2 and 6 would remain manually,

while 3 - 5 would be largely tool-supported.
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The contributions of this paper are the followings:

• An approach to derive basic model metrics for any given modeling language (DSML

or GPML 2) being defined by a meta-model. The approach is especially useful for

DSMLs to support the development of useful model metrics.

• An Eclipse-based tool to automate the definition of basic metrics for any given do-

main. The outcome of the tool is a high-level tool specification as an Eclipse plug-in

which comprises the specification of the derived metrics, and code generation for

metrics calculation, reporting and composition. (Steps 3 - 5 in Figure 1). The gen-

erated plug-in is used as input to EMF Refactor [Ref] for metrics calculation and

composition.

Generating basic domain-specific metrics from a given meta-model helps us to concentrate

on those metrics that really demand domain-specific knowledge. Our generation approach

does not stop at trivial metrics but can also incorporate more complex ones such as the

cyclomatic complexity and LCOM (Lack of cohesion of methods), or the definition of

model queries. We illustrate our approach by using a DSML for simple Petri nets and

discuss selected metrics patterns which are useful to derive basic metrics for this domain.

Moreover, we present an implementation of the approach based on the Eclipse Modeling

Framework (EMF) [EMF, St08] and EMF Refactor. To demonstrate the applicability and

usefulness of the approach, we present an example application of this implementation on

the UML class model domain.

The paper is structured as follows: The following section presents an example modeling

scenario motivating our work. In Section 3, we present our approach for deriving basic

model metrics in detail. Selected metrics patterns and their application on the example

scenario are discussed in Section 4. After presenting the Eclipse-based tool prototype in

Section 5, we demonstrate the applicability and usefulness of the approach in Section 6.

Section 7 compares to related work and Section 8 concludes the paper.

2 Running Example: Basic Metrics for Petri Nets

In this section, we motivate our work by using an example Petri net scenario. We first de-

scribe the corresponding Petri net meta model. Thereafter, we discuss several basic metrics

which can be used to analyze concrete Petri nets, i.e., instance models of this meta model.

Figure 2 shows the meta model of a Petri net language. A Petri net is composed of sev-

eral places and transitions. Arcs between places and transitions are explicit: PTArc and

TPArc are respectively representing place-to-transition arcs and transition-to-place ones.

Arcs are annotated with weight. Each transition has at least one input place and one out-

put place. Places can have an arbitrary number of incoming and outgoing arcs. In order to

model dynamic aspects, places need to be marked with tokens. Figure 3 shows an example

Petri net instance modeling some specific dynamic behavior. The Petri net consists of four

2 Here, GPML refers to any general-purpose modelling language.
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Fig. 2: Petri net meta model

places (P1 to P4), two transitions (T1 and T2) and altogether seven arcs connecting these

elements. Please note that we omit arc weights and inscriptions for simplicity reasons.

Fig. 3: Example Petri net instance

We present an example of the GQM process applied on the Petri net DSML as follows: Let

the quality goal be the comprehensibility of Petri net models, one derived question is: How

complex is a model wrt. the number of its elements (places and transitions)? A suitable

metric to answer this question is the cyclomatic complexity defined as number of

tparcs and ptarcs − number of places and transitions + 2. Applying this metric to the

given Petri net instance (in Figure 3), the result is 3. Hence, there are only 3 independent

paths and the given model is easy to understand and maintain.

To define metrics for analyzing models such as the cyclomatic complexity, some basic

metrics are useful [Ch95, SJM92], e.g., metrics which simply count elements of specific

types (like number of transitions in the Petri net, number of places in the Petri net and

number of arcs in the Petri net). These basic metrics may be composed using arithmetic

expressions to define the desired metrics.

When analyzing basic metrics such as the ones which calculate average values (like av-

erage number of outgoing (or incoming) arcs of all transitions in the Petri net), we ob-

serve that the structure of how they are specified is generic to some extent. The informa-

tion needed can be obtained from three classes in the meta model (in our case PetriNet,

Transition, and TPArc) where the first two classes are connected by a containment refer-

ence (transition) and the latter two classes are connected by a non-containment reference

(postArc). In the following, we identify recurring patterns in meta models that are useful

to derive basic model metrics.
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3 Approach

Considering tool support for domain specific modeling, we are faced with the dilemma

that we have to set up the tooling for metric calculation for each domain specific modeling

language, even for basic metrics. And if the DSML has changed due to some evolution

steps (e.g., the evolution of the Petri net meta model as described in [HW14]), its tooling

has to be adapted. Therefore, we address the following research problem throughout this

paper:

How can the information, stored in a meta model, be used to automate the

process of creating tool support for calculating basic metrics on corresponding

instance models?

As we have seen in the preceding section, some basic metrics are defined for the Petri net

domain such as Number of transitions in the Petri net and Number of tokens in the Petri

net. These metrics could be abstractly described as Number of instances of type X in an

instance of type Y. Moreover, we observe that several kinds of metrics can be derived by

the same (or at least similar) abstract description. This abstract description can be used

to specify basic metrics for any given domain by using the concrete domain data like the

name of the corresponding domain element, e.g., Transition, PetriNet, and Token.

So, our approach is to design several metrics patterns (i.e., structural descriptions) which

can represent the abstract description structure of several kinds of domain-specific metrics.

Domains are usually defined by a domain-specific language, more specifically by a meta

model. Therefore, the metrics patterns have to be typed by the meta-meta model so that

the patterns can be applied over any given domain (meta-model) to find and derive the

correspondences (the pattern matches). These correspondences within a specific domain

hold the concrete domain data needed to define, specify and generate basic domain-specific

metrics. These metrics are executable on instance models. In the following, we present the

process for defining a new metrics pattern and deriving basic metrics from this pattern for

a concrete meta model.

1. First, we design a pattern over the meta-meta model. This pattern consists, e.g., of

two nodes and a containment relation in between as shown in Figure 4.

Fig. 4: A simple example of a metrics pattern

2. Then, the pattern can be applied to a concrete domain in order to find and retrieve all

the pattern matches (correspondences) whose structures are instances of the pattern

structure. For the Petri net example presented in Section 2, the following pattern

matches are found:

• Node PetriNet, Node Place and a containment relation named place.
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• Node PetriNet, Node Transition and a containment relation named transition.

• Node Place, Node Token and a containment relation named token.

3. From each pattern match we now derive one or more basic model metrics. The

following Petri net metrics can be derived from the matches described above:

• Number of places in a selected Petri net.

• Number of transitions in a selected Petri net.

• Number of tokens in a selected place.

Using the data of the pattern matches we can define and specify the model metrics

for the given domain. Thereafter, an existing tool for metrics calculation on DSML

instance models may be extended.

Our approach helps to easily produce the ”boilerplate” information of metrics specifica-

tion. Having basic domain-specific metrics at hand, metrics and queries which require real

domain-specific knowledge can be specified on top of those.

To sum up, metrics patterns are designed independent of concrete DSMLs. These pat-

terns can be used to find and derive basic domain-specific metrics. Using the data of the

retrieved pattern matches, we can derive basic domain-specific metrics and specify them

in an appropriate query language like OCL. Furthermore, the corresponding code can be

also generated in order to calculate metric values of concrete instance model. Figure 5

illustrates our approach.

Metrics Patterns

on meta-meta model

Patterns Matches

on any domain meta

model

Concrete Metrics

on instances

- Deriving several basicmetrics

- Defining and specifying the derived

basic modelmetrics for the domain

- Generating the corresponding code

- Calculating the metrics on instance

models

- Designing metrics patterns on

meta-meta model

- Analyzing any domains by applying

the patterns

- Finding and retrieving many pattern

matches and managing their data

Fig. 5: The general approach to derive basic model metrics

Specifying thresholds to interpret metric results, however, is out of scope of this work due

to individual interpretation opportunities depending on the modeling language, the model-

ing purpose, and the quality aspect considered by the measurement, respectively [Ar14].
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4 Metrics Patterns

We developed 20 metrics patterns typed by Ecore, the meta-meta model of EMF [EMF,

St08] representing the reference implementation of the Essential MOF (EMOF) standard

for defining meta models using simple concepts [MOF]. The patterns are divided into four

groups depending on the number of the EReference nodes in each pattern. In this section,

we firstly present two selected patterns in detail: the simplest pattern and a more complex

one. Finally, we give an overview about the remaining patterns.

4.1 Selected Metrics Patterns

Each metrics pattern can be used to describe the abstract structure of at least one kind of

metrics. In summary, the 20 metrics patterns can derive altogether 42 kinds of basic model

metrics. In the following descriptions of two selected patterns, the term concrete pattern

refers to an instance of the basic metrics pattern.

Example for a simple metrics pattern

Figure 6 shows a simple concrete pattern (in concrete syntax) matched to the Petri net

domain. It simply consists of one single class (Place) and can be used to derive and spec-

ify metric Number of places in the model. Now, our goal is to find all concrete patterns

(matches) which have the same structure so that we can derive metrics that have the same

abstract form. The pattern can be any class such as Place as shown in Figure 6.

Fig. 6: A node-related pattern Fig. 7: Metrics pattern

Figure 7 shows the corresponding pattern (in abstract syntax) typed by Ecore. It consists

of only one node of type standard EClass in order to represent non-abstract classes. 3 Ap-

plying this pattern to the Petri net domain, several concrete pattern matches exist as, e.g.,

Transition, Token, PTArc and TPArc. Each match can be used to specify a concrete metric.

Example metrics for the Petri net domain are: number of transitions in the model, number

of tokens in the model, number of place-to-transition arcs in the model, and number of

transition-to-place arcs in the model.

As a result, this pattern can be used to find and derive domain metrics which have the

following abstract description:

Number of all instances of type X in the model.

Here, X represents the name of any matched class from any given domain with respect to

the applied pattern.

3 Here, standard EClass means, that meta attributes abstract and interface are set to false.
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Example for a more complex metrics pattern

Figure 8 shows a more elaborated concrete pattern (in concrete syntax) matched to the

Petri net domain. It consists of class PetriNet connected by a containment relation named

transition to class Transition which is in turn connected to class TPArc (the referenced

class) by a non-containment relation named postArc.

Fig. 8: An edge-related pattern Fig. 9: Metrics pattern

This concrete pattern can be used to derive and specify the following concrete metrics:

• Number of all outgoing arcs of all transitions in a selected Petri net.

• Average number of outgoing arcs of all transitions in a selected Petri net.

Again, we want to find all concrete pattern matches for a given domain. Any concrete pat-

tern must consist of three classes with one containment relation and one non-containment

relation between these classes. Figure 9 shows the corresponding pattern (in abstract syn-

tax), again typed by Ecore. The pattern consists of altogether five nodes. The nodes on

the left are of type standard EClass (see above). Here, the top-left node is used to infer a

container class, the middle-left node is used to infer a contained class , and the bottom-left

node is used to infer a referenced class. The other nodes are of type EReference. Here, the

containment attribute of the top-right node is set to true whereas the containment attribute

of the other one is set to false. This means that the top-right node is used to infer the con-

tainment relation between the corresponding matched classes whereas the bottom-right

node is used to infer the non-containment one.

As a result, this pattern can be used to find and derive metrics which have the following

two abstract descriptions:

Number of all instances of type X referenced by all instances of type Y in a selected

instance of type Z.

Average number of all instances of type X which are referenced by all instances of type Y

in a selected instance of type Z.

Here, X represents the name of the matched referenced class, Y is the name of the matched

contained class and Z is the name of the matched container class.
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4.2 Metrics Pattern Groups

As mentioned above, we developed 20 metrics patterns which are separated into four

groups depending on the number of EReference nodes in each pattern. In the following,

we present an overview about the patterns in these groups and the kind of metrics which

can be derived.

Group “Single node pattern” The first group contains only one pattern which consists of

only one node of the type EClass to derive the atomic metrics (see Figure 7).

Group “One-edge patterns” The second group consists of seven patterns where each one

contains one EReference node and several nodes of type EClass. These patterns can be

used to derive the following kinds of metrics: average, percentage, sum or total number

of instances of a specific type in or for a selected instance. Please note that some patterns

are designed to support inheritance in order to match child classes of classes, abstract

classes or interfaces. For example, some patterns can derive the following kind of metrics:

number of instances of a child type in a selected instance. Concrete examples are: number

of transition-place arcs in a selected Petri net, number of place-transition arcs in a selected

Petri net, and total number of all arcs in a selected Petri net (the sum of both metrics

mentioned before).

Group “Two-edge patterns” The third group also consists of seven patterns. Here, each

pattern contains two EReference nodes and several nodes of type EClass. These patterns

can be used to derive the same kinds of metrics provided by group 2 as well as more com-

plex ones. For example, a pattern is designed using two EReference nodes which have the

same source standard EClass and the same target standard EClass node. The containment

attribute of one EReference node is set to true whereas the containment attribute of the

other one is set to false. This pattern can derive the following kind of metrics: Number of

“part”-instances in a selected “whole”-instance so that they have the same specific role

specified by non-containment reference. Some patterns of this group are designed to match

child classes of different pattern nodes such as the child classes of the whole part node, the

direct-part node or of both. The pattern in Figure 9 belongs to this group.

Further more-edge patterns can be defined in the similar way. We assume that our current

patterns may be matched often over any given domain because their structures are vital and

cardinally needed for representing several parts of any meta-model structure. Additionally,

some metrics derived by more-edge patterns could be defined by composing metrics de-

rived by less-edge patterns.

Group “Composed patterns” The last group consists of five patterns for deriving more

complex metrics respectively more specific ones. It contains some patterns for deriving

metrics used to calculate the sum (average, percentage) of the number of different kinds of

instances having the same whole instance as for example total number of transitions and

places in a selected Petri net. The patterns can also be used to derive metrics like average

number of places with respect to the number of transitions in a selected Petri net. However,

these kinds of metrics may not make sense for each domain.
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So far, we defined 20 metrics patterns to derive 42 different kinds of metrics. However, we

do not claim that this list is complete. Furthermore, the existing patterns could be used to

produce further kinds of metrics. The 42 kinds of metrics are only some suggested ones.

We can also think of combining several kinds of metrics. Additionally, we can also use the

approach to design further metrics patterns by using, as an example, a different number of

nodes and relations with different attributes values. Additionally, we can design patterns

for producing metrics used to inquiry on attributes values of nodes.

5 Tooling

In this section, we present the Nas tool that we developed to automate the process of model

basic metrics creation, i.e., metrics derivation and specification for any given domain, and

to automatically generate a high-level tool specification as an Eclipse plugin thereafter.

The entire tooling is based on the Eclipse Modeling Framework (EMF) [EMF, St08].

Nas Tool We developed an Eclipse-based tool, called Nas Tool, which uses metrics pat-

terns to automatically find matches and to automatically derive, specify and generate basic

metrics of any given domain modeled in Ecore thereafter. The metrics patterns are de-

signed by Henshin [Ar10, Hen], a model transformation engine for EMF based on graph

transformation concepts, as pattern-based rules. Each rule mimics the EMF abstract syntax

of a structure to be matched in a given meta-model. During the pattern matching process,

an isomorphic mapping from EMF node and edge symbols in the pattern to actual nodes

and edges in the meta-model is computed. The Nas tool can be easily applied: The only

input is a meta model in Ecore. The outcome of the Nas tool is a high-level tool specifi-

cation as an Eclipse plug-in which comprises the following: A specification tool support

for model metrics containing already a number of basic metrics specified by OCL being

derived from the meta model. This tool support can be used to define further model met-

rics as compositions of existing ones. An application tool support for model metrics which

can be used to calculate the defined metrics on concrete domain-specific models. The gen-

erated plug-in is used as input to EMF Refactor which is an Eclipse tool that supports

metrics calculation, reporting and composition. Figure 10 depicts the use of the Nas tool

in combination with EMF Refactor.

Nas Tool

Metrics Derivation

Metrics Specification

Metrics Generation

EMF Refactor

Metrics Calculation

Metrics Reporting

Metrics Composition

Meta-

model

Metrics Plugin

Fig. 10: The use of the Nas tool in combination with EMF Refactor

In addition, the Nas tool provides a view component for statistical information about de-

rived metrics: It shows the number of pattern matches, the number of derived metrics for

each applied pattern and the total number of matches and metrics.
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Consequently, the Nas tool provides the following features:

• Automation: Creating (i.e. deriving, specifying and generating) basic model metrics

automatically. Thus, the design and implementation time for each generated metrics

is reduced.

• Abstraction: The Nas tool can be used to define and implement basic model metrics

for any domain-specific language.

• Simplicity: The tool is easy to use, i.e., the user does have not to know about the

metrics definitions, meta model structure and query languages.

• Extendability: The tool is extensible, i.e., it provides the ability to add further metrics

patterns.

More information about the Nas tool, especially about its installation and the provided

patterns, can be found at the accompanying web site of this paper [Nas].

6 Application Case

In this section, we demonstrate metrics generated by the Nas tool and compare them

to the metrics provided by EMF Refactor [Ref] for a simple class modeling language

(SCM) [AT13]. SCM represents the class diagram part of UML but it is much more sim-

pler since it omits concepts like operations and association classes. Figure 11 shows the

SCM meta model specified in Ecore.

Fig. 11: The SCM meta model

The SCM metrics provided by EMF Refactor are manually specified and implemented us-

ing different perspectives and technologies like Henshin, OCL and Java. However, when
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running the Nas tool on the SCM meta model, 127 basic metrics are automatically gener-

ated using only a few mouse clicks. 14 patterns are matched over the SCM model and some

of them can generate several kinds of metrics. The 127 metrics are derived by altogether

72 matches of these metrics patterns. The number of pattern matches will be different from

one domain to another one but we are convinced that the first six patterns (see [Nas]) have

a high possibility to be matched over most given domains because the structure of each

pattern of them could be considered as a simple basic structure.

After analyzing the SCM metrics provided by EMF Refactor, we found out that those

metrics can be abstractly represented by 9 different metrics patterns. 6 of them are common

with the patterns of the Nas tool whereas the other three patterns are too specific to the

SCM model. The total number of the created metrics from these common patterns is 12 in

EMF Refactor and 52 from the Nas tool.

Table 1 presents the SCM metrics provided by EMF Refactor and shows whether the met-

rics can be directly generated by the current version of the Nas tool, whether it can be

defined by combining two generated metrics, or whether it cannot be generated. 12 out of

19 SCM metrics provided by EMF Refactor are also generated by the Nas tool. In addition,

three metrics (i.e., 14, 15 and 17) are combinations of generated basic metrics. Hence, they

profit from the Nas tool. We only need to combine two generated metrics using a mathe-

matical operation, namely the division operation, like the metric called Average number of

attributes in concrete classes.

In the following, we discuss the uncovered metrics: Metrics 2 and 18 could be derived

by adding further metrics patterns, e.g., metric 2 can be derived by adding a pattern which

takes incoming references into account. This metrics pattern shall be included into a future

version of the Nas tool. Metrics 8 and 16 are too specific to the SCM model in the sense

that they check a specific attributes value of the SCM model, e.g., if attribute isAbstract of

ScmClass is set. In the future, we intend to consider ratio metrics for attribute values that

are boolean or enumerations with literals.

The SCM metrics provided by EMF Refactor do not contain all the basic metrics of all

SCM elements like the derived metrics from pattern 1, e.g., number of all comments in the

model. The metrics in EMF Refactor are created using several different technologies and

the process of creation took its time whereas creating the 127 SCM metrics generated by

the Nas tool requires only a few mouse clicks. Please note that the non-covered metrics can

be generated by adding new patterns or by extending some existing ones in the Nas tool.

To summarize, the most of our selected patterns are matched with the SCM meta model

and more than 78.5% of the metrics provided so far can be generated by the Nas tool or

composed from generated ones.

Considering SDMetrics [SDM], a tool dedicated to the calculation of UML metrics, 96

metrics are provided by that tool, all specified by hand. We show that over 80% of them

can be generated by the current version of the Nas tool or composed from generated ones.

The rest of metrics could also be derived if the existence patterns were extended or new

metrics patterns were added. More information about this comparison can be found at the

web site of this paper [Nas].
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Id Metrics description State

1 Number of direct children covered

2 Number of external attributes with class type not covered

3 Number of outgoing associations covered

4 Number of incoming associations covered

5 Number of associated classes covered

6 Number of redefining attributes covered

7 Total number of classes in the package covered

8 Number of abstract classes in the package not covered

9 Number of concrete classes in the package covered

10 Number of associations in the package covered

11 Total number of attributes in concrete classes covered

12 Number of owned attributes in concrete classes covered

13 Number of inherited attributes in concrete classes covered

14 Average number of attributes in concrete classes combination

15 Average number of associations per concrete class combination

16 Ratio of the number of abstract classes not covered

17 Ratio of the number of inherited attributes combination

18 Number of equal attributes with other classes not covered

19 Total number of model elements covered

Tab. 1: The SCM metrics provided by EMF Refactor [AT13, Ref]

7 Related Work

To the best of our knowledge there is no directly related work on deriving model metrics

from the corresponding meta model specification of a DSML. However, in this section, we

discuss several topics being related to our work to some extent.

Model metrics. The problem of measuring the quality of models has been approached in

several ways. Most of the presented metrics measure the quality of UML models. A survey

of metrics applicable to UML models can be found in [GPC05]. Furthermore, in [La06,

MP07], some general observations on managing quality, defining and reusing metrics for

UML models are drawn.

The existing tool support for model metrics calculation is mainly aiming at UML and

EMF modeling. Considering UML modeling, metrics calculation tools are integrated in

standard UML CASE tools such as the IBM Rational Software Architect [RSA] and Mag-

icDraw [MD]. A tool for UML metrics calculation is SDMetrics [SDM] (see above).

Related work in the context of quality metrics for meta models can be categorized into two

groups: Firstly, work that deals with quality on the meta level, i.e., on meta models. Sec-

ondly, approaches that address quality on the instance level, i.e., on models. In [MA07],

quality dimensions for MDD are derived. In [BV10], a taxonomy of meta model quality
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attributes is presented. Both works use metrics to analyze the quality of the meta model in-

stead of corresponding instance models. In [Vé06], a repository for meta models, models,

and transformations is presented. The authors transfer metrics that were designed for class

diagrams to meta models and apply them to contents of the repository. However, these

works do not address the opposite direction to use structural information that is implicitly

given in the meta model to derive basic metrics for instance models.

Metric definition and generation approaches. The closest relation to our work is pre-

sented in [YA14]. Here, the authors present a quality measurement framework for defining

quality metrics at the meta model to measure the quality of conforming instance models.

However, the motivation of this work is not to derive basic quality metrics like in our

approach, but for evaluating a model by comparing it with a reference model which is

motivated in the context of empirical studies, for example. In [AST10, Ar11, AT13] we

present an EMF Metrics plug-in, as a part of EMF Refactor, supporting specification and

calculation of model metrics for a given meta-model. Here, the derivation and specifica-

tion of each model metric for each given meta-model have to be done manually by users.

That work does not consider the automatic creation of model metrics for DSMLs.

In [Mo11], the authors present a model-driven measurement approach allowing model-

ers to dynamically add measurement capabilities to a DSML. The core of this work is to

develop a metric specification meta model which enables to declare metric specifications

as instance models. A metric specification model is taken as input to a prototype gen-

erator which outputs a full-fledge measurement software integrated into Eclipse. In this

approach, the user should manually declare the metrics as instance models for each given

meta model, whereas in our approach, the declaration of metrics will be automatically

derived and specified from any given meta model.

In [Al09], the authors produce source-code representations of object-oriented applica-

tions. The generated representations should conform to a meta model that represents object-

oriented languages such as Java and C++. A metric declarative language is developed to

add new metrics without modifying the code of the framework. The metrics are executed

on the generated representations. In that approach, the metric descriptions are declared

concerning the object-oriented meta model, whereas in our approach, we derive metrics

from any given meta model using characteristic patterns typed by Ecore (a meta-meta

model) and using metrics descriptions.

8 Conclusion

In this paper we presented an approach for deriving basic metrics from the meta-model

of a given domain-specific modeling language. In our work, 20 patterns are designed and

described to derive metrics from any domain (meta-model) based on Ecore. The patterns

are typed by the meta-meta model of EMF. Each pattern can be used to produce one or

several kinds of basic model metrics.

We developed the Nas tool which takes the meta-model of any domain-specific language

to automatically derive, specify and generate basic metrics based on the Eclipse technol-
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ogy [Nas]. The use of the Nas tool is quite simple, only a few mouse clicks are required to

create the metrics. Furthermore, the tooling provides an extension mechanism to add new

custom metrics patterns. In this context, future work will concentrate on extending the ex-

isting metrics pattern base, supporting other metric kinds and more facilities for default

calculation and compositions of metrics. Furthermore, we intend to figure out a vital set

of metrics to be generated by analyzing, for example, user requirement specifications for

the modeling language, to derive thresholds for the derived metrics, and to conduct further

case studies.
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