
A Meta-Engineering Approach for Customized

Document-centered Knowledge Acquisition

Jochen Reutelshoefer, Joachim Baumeister and Frank Puppe

Department of Intelligent Systems
University of Würzburg

Am Hubland
97074 Würzburg

reutelshoefer@informatik.uni-wuerzburg.de
joachim.baumeister@denkbares.com
puppe@informatik.uni-wuerzburg.de

Abstract: Enabling domain specialists to formalize domain knowledge using knowl-
edge acquisition tools, also known as direct knowledge acquisition, has been a chal-
lenge in artificial intelligence research for decades. Building custom-tailored knowl-
edge acquisition tools proved to be a convenient method to empower domain spe-
cialists to contribute to knowledge bases directly. Engineering on the meta level, i.e.
building tools that allow to build customized knowledge acquisition tools, is the strat-
egy to reduce implementation costs for the customized tools. In this paper, we present
an approach to build customized knowledge acquisition environments for document-
centered knowledge base authoring. This editing paradigm, being an alternative to
the use of graphical user interfaces, is well suited for the customization approach al-
lowing for knowledge acquisition at low effort for both, the domain specialists and
the knowledge engineers. We present a meta-engineering process coordinating the
customization efforts and a metatool for the system KnowWE enabling efficient meta-
engineering. To illustrate the overall approach we describe a real-world case study in
e-learning in the domain of Ancient History.

1 Introduction

Modeling the knowledge of a specific domain as a computer interpretable knowledge base
to solve knowledge-intense decision problems (e.g., diagnosis tasks) has been a major
research topic in artificial intelligence since decades. The dilemma of this task is that the
specialists of the respective domain are usually not experts in modeling domain knowledge
by means of formal knowledge representations (e.g., rules, logics). On the other hand, the
people qualified in these modeling skills are typically not familiar with the domain. For
manual knowledge acquisition (KA) for knowledge-based systems, we can distinguish the
two major strategies [PG92], direct KA and indirect KA. While in direct KA the domain
experts are creating (at least major parts of) the knowledge base autonomously, the indirect
approach implies that knowledge engineers obtain the knowledge from the domain experts
(e.g., in interview sessions) and then implement it into the knowledge base. As the latter



implies high personnel expenditure also considering long term maintenance, direct KA
appears to be more promising if it can be applied efficiently. There, the key problem is
that domain specialists are not trained in knowledge engineering or in using knowledge
acquisition/modeling tools. Musen et. al at first established the idea of building tools
tailored to the mental models of the domain specialists to overcome this problem:

”The conceptual model thus forms the basis of a language with which both the tool and

the tool’s user can describe the contents of a knowledge base.” [Mus88]

Consequently, if the tool complies to a conceptual model shared by the domain specialists,
using the tool should be easy for them. This involves the specification of such concep-
tual model and a complying user interface/tool. While this approach lowers the barriers
for domain specialists to contribute and makes direct knowledge acquisition more effi-
cient, it implies the costly implementation of the respective custom tailored tools for each
project/domain. A strategy to reduce these development costs is developing (domain inde-
pendent) meta-level tools [EM93], that can generate custom tailored knowledge acquisi-
tion tools from high-level descriptions of the domain and the knowledge acquisition task.
In the following we refer to the specification and implementation task of a custom-tailored
knowledge acquisition tool, possibly including the use of a metatool, as meta (knowledge)

engineering. Until now, meta engineering for knowledge acquisition tools was focused
on graphical user interfaces. However, there is another editing paradigm that can be a
beneficial alternative to the use of graphical user interfaces, which we call the document-

centered knowledge authoring approach. There, the user interacts with the knowledge base
indirectly by editing documents, e.g., by using some basic text editing tool. Segments com-
plying to some predefined syntax are automatically processed and compiled to the formal
model of the knowledge base. In this paper, we apply the meta-engineering approach,
i.e., the creation of custom tailored domain specific user interfaces, to document-centered
authoring. Despite of the formation of a highly customized tool allowing for direct knowl-
edge acquisition, this combination brings along further advantages. First, it allows for
knowledge acquisition activities and tool specification/customization running in parallel.
Furthermore, it enables participation of domain specialists at a diverse range of technical
skills with low contribution barriers. At last, we show that metatools can also be used
effectively in this context to reduce implementation costs of tool customization.

The rest of the paper is structured as follows: In Section 2, we explain the document-
centered knowledge base authoring approach and its benefits in more detail. After that, the
meta-engineering process, applying a stepwise customization of the document-centered
authoring environment according to the current project, is discussed in Section 3. In Sec-
tion 4, we present a real world case study to demonstrate the approach in practice. We
introduce an implementation of the document-centered authoring environment KnowWE

and a corresponding metatool, that allows for domain specific customization at low engi-
neering costs, in Section 5. In Section 6, the approach is compared to related work before
we conclude with a summary and outlook in Section 7.

188 Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe



2 Document-centered Knowledge Base Authoring

In this section, we explain the document-centered authoring approach for knowledge bases
in more detail and point out some of its advantages including its potential for customiza-
tion. Most authoring environments for creating formal knowledge bases offer graphical
user interfaces. There the authors can use input forms, which are organized by menus or
tabs, to enter the knowledge (e.g., Protégé1 [GMF+03], CLASSIKA [PG92]). Document-
centered knowledge base authoring is an alternative authoring paradigm, providing dif-
ferent benefits and challenges with respect to customization. There, the authoring envi-
ronment provides access to a set of documents, that can be modified and extended by the
users, employing some basic text-editing interface. The user can freely structure and edit
these documents basically without being constrained by the tool. To actually create com-
ponents of the formal knowledge base, the user has to comply to a formal syntax provided
by the authoring environment. Statements complying to this syntax are then translated to
the knowledge base as shown in Figure 1. The process of compiling the documents to the
(interpretable format of) the knowledge base decouples the user from this machine read-
able representation of the knowledge. In this way, the documents, that can be structured
according to the users needs, are forming a kind of human-oriented representation layer of
the knowledge. A document-centered authoring environment manages the documents in a
centralized repository and processes all document modifications performed by the users by
updating the knowledge base accordingly. Figure 2 shows an excerpt of an example doc-
ument from a car-fault diagnosis knowledge base using rules. On the top (1) one can see
some informal text content describing the domain. Below (2) a rule syntax is used within
the document. This rule syntax is compiled and the corresponding executable rules are
inserted into the knowledge base after each document modification. The updated version
of the knowledge base is then ready for testing instantly. In the following we refer to such
kind of syntax, together with some translation instruction transforming it to the knowledge
base repository, a (knowledge) markup language. This approach in general can be applied
to any kinds of computer interpretable knowledge representations, as for example various
rule-based or logics-based formalisms. This authoring paradigm is similar to how software
is typically developed since decades. As experienced in software engineering, this method
of authoring strongly depends on good user assistance in terms of feedback and authoring
assistance. Those techniques have successfully been evolved within common program-
ming environments in recent years and similarly can be applied to knowledge authoring.
Being dominant in software engineering, document-centered authoring has not yet been

Figure 1: Structure of the document-centered knowledge authoring paradigm.

1http://protege.standford.edu

A Meta-Engineering Approach for Customized Document-centered Knowledge Acquisition 189



Figure 2: An excerpt of an example document from a car-fault diagnosis knowledge base using rules.

applied in large scale for modeling knowledge bases. Compared to software engineering,
here the challenge is, that knowledge engineering projects usually bring together people
with different backgrounds and strongly differing expertise with respect to the domain
and knowledge engineering. While in software engineering the source documents usually
are only edited by software engineers, the direct knowledge acquisition approach implies
that also domain specialists, often with low technical backgrounds, step into the author
role. In the following, we describe some advantages of using this authoring paradigm for
knowledge base development that we experienced in several projects.

Low Barriers for Basic Contributions The level of the technical skills of the partici-
pating users typically is rather diverse in knowledge engineering projects. Therefore, it is
important to enable low barrier contribution according to the specific level of expertise of
a participant. Editing text documents is a rather simple editing paradigm, when compared
with some complex menu- and form-based user interfaces existing. It allows for basic con-
tributions (e.g., adding informal descriptions, proof reading) without any training of a new
tool or further expertise as most people are already used to read and maintain content as
electronic documents. Being used to these kind of simple contributions without difficulty,
contributors often feel encouraged to explore more complex tasks.

Example-based Authoring While contributions on informal parts of the documents are
possible without training, the actual knowledge base can only be modified by using the

190 Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe



knowledge markup language in a proper way. The idea of example-based learning pro-
poses, that initially knowledge markup statements are inserted into the document base
(either modeling initial parts of the knowledge base or some toy example). If a user can
comprehend the meaning of these statements, he can easily adopt it for himself to express
other knowledge using simple copy/paste&modify. Often only the entity names need to be
exchanged to create new valid knowledge.

Incremental Formalization The process of incremental formalization starts with the
insertion of informal content describing the domain, such as text and figures. This content
is either created by domain specialists or adopted from documents often already existing
in the domain context. At first, it serves as a startup for the formalization process and
later it forms the documentation and context of the knowledge base components. The
incremental formalization process proceeds with the identification of those content parts,
that need to be formalized to form the intended executable knowledge base. After that,
a tentative formalization is made, that is, the selected content is transformed towards the
knowledge markup language. This initial, potentially erroneous or incomplete, formaliza-
tion can then be refined gradually. These distinct steps require different degrees of exper-
tise in the domain, in knowledge engineering, and usage of the respective acquisition tool.
These different kinds of competencies often are distributed heterogeneously. Therefore, a
decomposition of the formalization tasks into distinct steps, possibly involving different
persons on different steps, simplifies the accomplishment of the formalization task. Hence,
the incremental formalization workflow helps different participants to be able to contribute
according to their respective capabilities.

Quality Management Quality management is a crucial and challenging task in the
knowledge base development and maintenance process. Also in the domain of software
engineering the aspect of quality management has been studied for many years. A very
successful set of practices that was established within the last decade, especially in the
context of agile software development [BA04, Mar09], is called Continuous Integration

(CI). According to Fowler2 the main requirements for CI are the use of a code repository,
automated building, automated tests, frequent and timely integration of changes, and easy
access to the latest builds. The main benefits of CI are, that always a valid version of the
system is available for deployment in a productive setting. Further, problems emerging
by changes are recognized very early, making debugging easy and reducing risks of com-
plex change operations. The knowledge base authoring approach described in this paper
allows for straight forward application of CI, as documents can easily be put under version
control in a centralized repository. Hence, by using CI-based development as known from
software engineering, it is possible to continuously guarantee quality and transparency.

Freedom of Structuring The partition of the content in documents can freely be chosen
(including the names of the document). Within one document the order of the paragraphs
and knowledge markups statements is free to the user. Informal support knowledge, e.g.,

2http://martinfowler.com/articles/continuousIntegration.html

A Meta-Engineering Approach for Customized Document-centered Knowledge Acquisition 191



comments and figures, can be inserted at any place and in any style. Further, the docu-
ments can freely be interlinked with others making interrelations of content parts explicit
and improve navigation. The freedom of structuring allows the documents to evolve a
memorable and comprehensible structure, becoming familiar to the authors. In software
engineering, it is known that while working on programming code, the amount of time
spent on reading compared to the amount of time spent on actually editing is more than
ten to one [Mar09] and therefore readability (and comprehensibility) is a focal point. In
document-centered knowledge acquisition complex digital artifacts are created in a simi-
lar way demanding similar cognitive challenges to the authors. Therefore, we also focus
on the aspect of readability in this approach and describe in more detail the degrees of
freedom of the structuring of a document-centered knowledge base affecting that aspect:

1. Support Knowledge: This aspect defines what kind of (informal) domain knowl-
edge is contained in the document corpus and how it is organized. The overall con-
tent should cover all domain knowledge that is relevant for the intended knowledge
base. This information needs to be partitioned into (interlinked) documents. Usually
this is each document treating one sub-topic of the domain. In many cases, already
existing material can be imported as support knowledge in different shapes (e.g.,
texts, tables, images). Often, the structure of existing documents to some extent can
be retained if it is comprehensible and familiar to the domain specialists.

2. Arrangement of formal knowledge: The support knowledge covers the scope
of the necessary domain knowledge in an informal way, only being meaningful for
humans. To actually form an computer interpretable knowledge base, the formal
knowledge (using the markup language) needs to be inserted. While complying to
the given markup language there is still a large degree of freedom how to order and
partition the statements within the documents. For comprehensibility it is reasonable
to interweave these parts topically with the support knowledge. Then the support
knowledge serves as justification and documentation of the formal knowledge.

3. Syntactical structure of the formal knowledge: The users have to use the markup
language supported by the system to effectively create the components of the knowl-
edge base. However, considering the overall project scope, the tool developer can
extend the tool for supporting different knowledge markups, if beneficial for the
use by the knowledge base authors. Knowledge markups can be designed in many
different ways strongly affecting readability, writability, or granularity, possibly in-
corporating peculiarities of the current project or domain.

Freedom in this context means, that in each of these three aspects the document base can
be changed without affecting the compiled version of the knowledge base, as it will con-
tain the same entities. In traditional GUI-based knowledge acquisition environments, the
adjustment to the conceptual model is achieved by a custom design of the graphical user
interface. A document-centered knowledge authoring environment can be customized to-
wards a conceptual model by adjusting the three degrees of freedom discussed above. The
three dimensions can be considered to form a kind of state space as shown in Figure 3,
describing the possible transformations of a document corpus. A particular point in that

192 Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe



Figure 3: The document space allowing for customization along the three degrees of freedom.

space we call a document-centered Knowledge Acquisition Architecture (KAA), determin-
ing the scope and arrangement of the support knowledge (1), the arrangement of the for-
mal knowledge (2) and its syntactical structure (3). A fictive document-based KAA, that
is optimally accessible by the involved domain specialists, considering readability, com-
prehensibility, writability and navigability, is contained in this space, but not necessarily
easy to find. Hence, the identification of the optimal point is the challenge of customized
knowledge acquisition using the document-centered approach.

After all, the document-centered authoring approach also bears some specific challenges
when compared to the GUI-based one, that need to be considered. Those are efficient
authoring assistance, navigation and search, refactoring, and redundancy detection.

3 The Meta-Engineering Process

The identification of an optimal (or at least appropriate) KAA is non-trivial. Therefore,
in this section we introduce a strategy to accomplish this task. We present the meta-
engineering process that helps to explore, specify, implement, and use an appropriate KAA
for a given project. The evolution of the KAA strives to optimize the criteria understand-
ability, maintainability, and acquisition efficiency. We presume, that a general (extensible)
document-centered knowledge authoring tool is initially already existing, which provides
some means of knowledge formalization (markups, testing capabilities). The evolution-
ary process affects both, the document base (content level) and the authoring environment
itself (system level) in parallel. Figure 4 shows the meta-engineering process, compris-
ing the key activities exploration, design, and implementation. After the process has been
initialized by the exploration phase, alternating design and implementation activities are
carried out. The actual knowledge acquisition process runs in parallel. The process is
driven by iterated cooperative sessions involving the knowledge engineers and the domain
specialists. In the following, we describe the phases in more detail:

Exploration phase At the very beginning a small (but representative) subset of the do-
main knowledge is selected. For this part of the domain the knowledge engineers create

A Meta-Engineering Approach for Customized Document-centered Knowledge Acquisition 193



Figure 4: The phases of the document-centered meta-engineering process.

small prototypes according to one (or multiple) ad-hoc defined KAAs using markups al-
ready provided by the tool. The goal of this phase is making the domain specialists famil-
iar with the idea that the subject domain knowledge will be managed as documents with
knowledge markups, that can be modified using the authoring environment. This phase
gives the domain specialists a feeling for document-centered knowledge acquisition, even
though the resulting knowledge base might not be very effective and the initially existing
markups may be not optimal for this task. For the demonstration effect an actually working
toy knowledge base should be created (and played with).

Design phase In the design phase a KAA, tailored to the projects needs, is proposed
based on the experiences made in the exploration phase. This first candidate is the starting
point of the evolutionary refinement driven by the agile process. Changes and extensions
are discussed by domain specialists and knowledge engineers in cooperation. The first
two aspects of the KAA (support knowledge and arrangement of formal knowledge) can
be evolved intuitively by modifying the existing content (e.g., using simple cut&paste or
script-aided) to find a comprehensive organization of the knowledge. However, the speci-
fication of the third aspect (syntactical shape) is playing a key role in document-centered
meta-engineering: The definition of a suitable knowledge markup language for the knowl-
edge to be captured. Such custom knowledge markup needs to satisfy the following re-
quirements: (1) Allow for the unambiguous translation of the captured knowledge base
entity to the executable knowledge repository; (2) Allow for intuitive and simple authoring
and comprehending; (3) Allow for simple and seamless embedding into the informal con-
tent of the documents; The (creative) task of finding the optimal markup is highly project
dependent and has to be performed in close cooperation with the domain specialists. How-
ever, it is reasonable to look for domain specific notations, in the seed of the document cor-
pus and the general subject domain, that can be adapted to a formalizable markup. Further,
general design principles are known for the design of domain specific languages (DSLs)
in software engineering, for example proposed by Spinellis et al. [Spi01] and Karsai et
al. [KKP+09]. According to Fowler [Fow10] the expressiveness of a DSL is a notable
source of errors. Designing DSLs with minimal expressiveness, particularly tailored for a
certain purpose, will reduce error rates and therefore improve overall productivity. Fowler
also emphasizes that well designed DSLs improve communication with domain experts.

After a markup has been designed and verified according to those general design princi-
ples, its applicability should be tested using it on a set of documents of the current content.
While a newly designed markup is still unrecognized by the system, it nevertheless can

194 Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe



be used in the documents to get an impression of its handling, its readability, and its inte-
gration with the content. As this specification and assessment process does not imply any
implementation efforts on system level (yet), multiple candidates of different markups can
be ’tested’ this way easily. If a markup has been assessed as appropriate by the involved
contributors, it can be included into the specification of the project’s KAA.

Implementation phase When a promising candidate for a suitable KAA (or a small
new fragment of it) is specified in the design phase, new features need to be introduced,
typically including parsers and editing assistance for the new markups. However, at any
time the basic functionality of the authoring environment (read, browse, and edit docu-
ments) is provided, independently of the state of implementation of new features. That
way, knowledge acquisition can be continued while the implementation of the markup
processing functionality is not yet completed. A feature by feature approach, as proposed
by many agile software engineering methodologies (e.g., [BA04]), including frequent sys-
tem updates is appropriate for this customization effort. New completed features will be
available after system updates and new markup is automatically applied to the content of
the documents. As a reasonable strategy, at first editing assistance, in particular syntax
check, for new markups should be addressed to facilitate contributions using it. Then,
compilation to the executable knowledge base and code-completion can be added.

Knowledge Acquisition The process of knowledge acquisition itself is not strongly de-
termined by the meta-engineering process. The evolved KAA only describes the content
format of the knowledge but does not specify any details of the acquisition process as it is
suggested by various knowledge acquisition process models that can be found in the liter-
ature. Many of these can be applied in combination with the meta-engineering approach
with only minor adaptation.

The document-centered meta-engineering process allows for knowledge acquisition right
on from project beginning, however with a not yet entirely customized tool. At any time,
content can be contributed and should be inserted according to the most recent version of
the project’s KAA. With the progress of the design and implementation activities a thor-
oughly tailored knowledge engineering environment is evolved, empowering the domain
experts to contribute the relevant knowledge autonomously to a large extend.

The change of the project’s KAA at a medium stage of the project sometimes requires
transformation of the content already existing in the document base at that point. To
support this task efficiently, efficient script-based methods are required to perform that
transformation of the content with respect to structure and syntactical shape.

4 Case Study: Ancient Greek History with HermesWiki

The HermesWiki [RLB+10] is an e-learning platform in the domain of Ancient Greek
History implemented as a semantic wiki. It is developed in cooperation with the Depart-
ment of Ancient History of the University of Würzburg, Germany. The content in general

A Meta-Engineering Approach for Customized Document-centered Knowledge Acquisition 195



comprises four different types of entities: (1) Medium sized essays, each describing an
important topic of the domain as plain text. (2) Important events with date information, a
brief plain text description and (historical) source references. (3) Descriptions of impor-
tant domain concepts (e.g,. persons, cities, islands, habits). (4) Historical sources (German
translations). The goal of the knowledge engineering process was the enhancement from
a standard wiki (allowing for reading, browsing and plain text search) to a semantic wiki
platform providing augmented visualization of the content, interactive features, and se-
mantic navigation and search methods based on a formalized model of the knowledge.

At first, we introduce the current KAA of the HermesWiki platform before the different
phases of the meta-engineering process within this project are discussed:

1. Support knowledge: The HermesWiki gives an overview of all the important con-
cepts of the domain, such as persons, cities and peoples. Each so called glossary concept
is briefly described on a distinct page. However, the most important content parts are the
essays, each covering some important aspect of ancient history by a coherent description.

2. Arrangement of formal relations: The HermesWiki ontology is entirely defined in
the wiki. General terms and relations of classes and properties, e.g., the class hierarchies,
are defined on a few centralized pages containing the vocabulary definitions. Instances
and their interrelations however, are widely distributed over the wiki, being strongly in-
terwoven with the support knowledge according to the domain context. Considering the
glossary concepts, the general attributes, such as birth and death dates of persons or coordi-
nates for locations, are defined on the corresponding wiki page. The time events, forming
the most important entities of the formal knowledge base, technically can be defined on
distinct pages or inline anywhere within the source text of some page (e.g., essay). While
it is reasonable to have own pages for very important events, we also perceived the inline
definition for events of medium/minor importance in the context as practical (as it allows
for very quick definitions). However, an event defined inline later can be easily extracted
to a new page by a refactoring operation.

3. Syntactical Structure: The syntactical shape of the class hierarchy discussed above
is a so called dash tree, that proved to be practical for concise representation and quick
editing abilities. Any term being a dash-tree-child, i.e., follows with an incremented num-
ber of dashes, is defined as a subclass of its parent. Another important (customized) for-
malization aspect of the HermesWiki KAA is the markup for the inline definition of time
events. Figure 5 shows a markup example for the time event Lamian War. The markup
is translated and added to the designed ontology. As the first information the title of the
event (Lamian War) is given, followed by the importance rating defining its relevance for
student exams. In the next line, the timestamp of the event is notated, also including an-
notations for different degrees of uncertainty. Then, introduced by “=>” an optional class
membership definition can be added. Further, the body of the markup follows, consisting
of a (freetext) description of the actual event. The markup concludes with an (optional)
list of historical sources where the event is mentioned, explicitly marked by the keyword

196 Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe



Figure 5: The markup to formalize time events ’inline’ in HermesWiki

“SOURCE:” as the first word of a new line (from Diodor and Pausanias in this example).

In the following, we sketch the progress of the phases of the meta-engineering process:

• Experimental phase: At the beginning of the project different ways of structuring
the content entities (essays, events, concept-descriptions, sources) were discussed.
It became obvious, that the domain concepts (e.g., cities) should be described in-
dependently of the essays referring on them. Describing the concepts in a very
general way on distinct articles allows referencing from different contexts/essays.
As opposed to this, specific events should not necessarily require an own page, but
flexible definition ’inline’ within an article (i.e., essay) proved to be appropriate.

• Design phase: In the design phase at first a simple markup for defining time events,
similar to the one shown in Figure 5, was specified in a workshop together with the
historians. The ability to specify a class membership was not contained in the first
version of the markup used for months. As these memberships then showed to be
required and had to be inserted using the general rdf-turtle-syntax3 additionally, the
time event markup was extended accordingly. For efficient navigation and search a
taxonomy of domain concepts was necessary. To allow for simple and quick mod-
ification of the class hierarchy for the domain experts, we decided for a dash-tree
markup for defining classes and subclass relations.

• Implementation phase: In general, the web application is frequently updated when
features are added or improved. The time event markup was implemented in multi-
ple stages. First, the events only have been recognized and highlighted in the page
view. In the next step its translation to the RDF-store was carried out to make the
knowledge available for automated processing. Recently, the extension for defining
the class membership has been introduced.

• Knowledge acquisition: One advantage of the meta-engineering process is the pos-
sibility to start knowledge acquisition at an intermediate stage when the develop-
ment of the tool is not yet finished. Large parts of the content (i.e., essays, concept
descriptions) could be evolved independently of the current implementation state.
While the design of the KAA is developed in close cooperation of knowledge engi-
neers and domain experts, large parts of the knowledge acquisition and formalization

3http://www.w3.org/TeamSubmission/turtle/

A Meta-Engineering Approach for Customized Document-centered Knowledge Acquisition 197



in this project is in general performed by the domain experts autonomously. How-
ever, axioms and entities describing the terminology of the ontology are developed
in close cooperation.

More details about the HermesWiki ontology and its use cases can be found in [RLB+10].

5 Prototype Implementation

In this section, we introduce the document-centered authoring tool KnowWE [BRP11] and
a corresponding metatool that allows for the implementation new custom-tailored knowl-
edge markups for KnowWE at low engineering costs. KnowWE is based on a standard
wiki engine, providing web-based access and user management for collaborative author-
ing. Every wiki page corresponds to one document of the document-centered approach
and is edited using the well-known and established wiki interface. After each modification
of a wiki page, it is processed and segments complying to the knowledge markup are com-
piled into the knowledge base (if they do not contain errors). Currently, there are markups
and repository connectors implemented for d3web4 and RDFS/OWL. However, this is no
restriction, as the approach is independant of the employed formal knowledge represen-
tation, as new knowledge base repositories can be integrated easily. Figure 2 shows an
example wiki page using some markup for rules in d3web.

The KnowWE Metatool The aim of metatools for knowledge acquisition is to reduce
(software) engineering costs for building customized knowledge acquisition tools. In the
context of document-centered knowledge acquisition, the engineering task requires to im-
plement the custom knowledge markups (DSLs) to be translated to the knowledge base
repository. To allow for efficient and autonomous editing, user assistance, such as syntax
checks, error highlighting, or code-completion, needs to be incorporated. The KnowWE
metatool allows to define new markup by creating a graph-based schema structure using
regular expressions, cardinality constraints, and predefined entity types. Still, the task of
creating a markup language using the KnowWE metatool is non-trivial. However, it is
carried out by a system developer without involving domain specialists or domain knowl-
edge, once a specification of the required markup is given. Being used to the metatool
and the way the schema definition is processed by the KnowWE architecture, developers
can implement new markups very quickly. Figure 6 shows the implementation of the Her-
mesWiki time event markup [RLB+10] within the KnowWE metatool. The expressiveness
with respect to language complexity in principle is restricted using this mechanism. How-
ever, simplicity is a major design objective of the created languages in this context and
according to our experiences up to now, all intended markup languages could be modeled
using this technique.

The metatool, while still being in an early stage, compiles these kinds of schema defini-
tions to a KnowWE plugin containing a full-fledged implementation of the markup, which

4http://www.d3web.de

198 Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe



Figure 6: The time event markup of the HermesWiki project defined in the KnowWE metatool.

only needs to be copied to the plugin-folder of a KnowWE installation. It can then be
used on any document/page in any number or order to populate the knowledge base. This
includes parsing, reference resolution with errors handling and correction propositions
(based on edit-distances to existing terms). In particular, the closed-world knowledge
compilation problem is solved incrementally, guaranteeing high performance compilation
even for very large knowledge/document bases [RSLP11]. A detailed explanation of the
KnowWE architecture and the functionality of the schema processing is beyond the scope
of this paper. However, apart from a few lines of script, actually inserting the knowledge
into the knowledge base repository (RDF-triples in this example), the plugin is entirely de-
fined by that schema. The metatool is implemented as a plugin of the eclipse framework5.
To allow for quick feedback cycles within the markup development process, we included
a quick test mechanism. The developer can specify a test document/wiki page containing
examples of the target markup to be implemented. After triggering the quick test mech-
anism the markup schema is compiled and an embedded KnowWE engine is launched,
processing the specified test page. The result of the processing is visualized using colors
and mouse-overs. Figure 7 shows a test page with above markup schema specification
launched. The red underline at War indicates that the compilation algorithm has not found
a proper definition of the term ’War’ in the current document base (only consisting of these
few lines in this quick-test example).

A categorization for knowledge acquisition metatools is given by Eriksson et al. [EPG+95],
distinguishing method-oriented, architecture-oriented, and ontology-oriented metatools.

5http://www.eclipse.org

A Meta-Engineering Approach for Customized Document-centered Knowledge Acquisition 199



Figure 7: The time event markup in the quick test view.

According to this, the presented tool is an architecture oriented metatool. The KnowWE
core and the metatool are available as open source LGPL-licensed6.

6 Related Work

The idea to build customized domain-specific knowledge acquisition tools to enable do-
main specialists to become directly involved in the knowledge encoding process more
easily has been studied before [MCW+86, Gal87]. The resulting tasks of specification
and implementation of such tools have been addressed by establishing a conceptual model
of the domain in advance followed by the actual tool design and implementation accord-
ingly [Mus88]. Meta-level tools support the knowledge engineers on these implementation
tasks [Gap91, Eri92, EM93]. The meta-level tool Protégé7 was designed to allow knowl-
edge engineers to specify a model of the domain. Based on that model a knowledge ac-
quisition tool is generated automatically [Mus89]. Protégé has been evolved consequently
for years [GMF+03] incorporating problem-solving methods and application tasks.

All this work was focused on graphical user interfaces. Document-centered authoring
using knowledge markups is a fundamentally different approach for authoring formal
knowledge bases. However, the basic idea, that customization according a conceptual
model shared by the domain specialists significantly improves their interaction capabilities
with the knowledge base, is similar. A meta-level approach for domain or project specific
customization of this document-centered approach has not yet been addressed. Also the
technical challenges for a meta-tool in this case significantly differ from those mentioned
above. Parsing and compiling knowledge markups into a knowledge base repository with
user assistance is more related to the discipline of compiler construction in software engi-
neering [ALSU06]. For the parsing task a class of tools called parser generators have been
developed (e.g., ANTLR8), generating parsers from a declarative specification (grammar)
of the language. Such a tool can be considered as partial metatool for analyzing grammar-

6https://isci.informatik.uni-wuerzburg.de
7http://protege.standford.edu
8http://www.antlr.org/

200 Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe



based formal languages, as parsing is only the first step of the overall compilation task.
However, the problem of compiling knowledge has turned out to be significantly easier
than compiling general purpose programming languages and partly can be solved by a gen-
eral mechanism (assuming the knowledge base to have set characteristic, c.f. [RSLP11]).

In the context of graphical user interfaces the entire specification and implementation of
the tools needs to be completed before actual knowledge acquisition activities can be
started by the domain specialists. In the document-centered context knowledge acqui-
sition can be started right at the beginning by editing documents using the basic document
authoring environment. Another advantage is, that the final design details of the speci-
fication of the optimally customized knowledge acquisition environment can be delayed
to a later point in the project. The specification of a suitable tool complying to a con-
ceptual model is a challenging task in the document-centered as well as in the GUI-based
approach. However, the document-centered approach allows to drive an agile process, that
optimizes this specification during the project progress, ensures larger flexibility and helps
to prevent wrong design decisions at very early stages.

7 Conclusion

In this paper, we introduced a knowledge engineering approach that aims at the devel-
opment of custom domain-specific knowledge acquisition tools for document-centered
development. Opposed to knowledge acquisition with graphical user interfaces, in the
document-centered approach the domain specialists edit documents using knowledge
markup languages to form the actual knowledge base. We presented the meta-engineering
process that helps to specify and implement a suitable customized authoring environment
that optimally complies with the conceptual model of the domain specialists. The agile
process allows for knowledge acquisition and customization process to run in parallel and
coordinates the introduction of new domain-specific knowledge markups. We presented
the document-centered knowledge acquisition environment KnowWE and a correspond-
ing metatool that allows for quick and simple implementation of new (domain specific)
markups, specified within the meta-engineering process. The practical use of the overall
approach was illustrated by a real-world case study within the HermesWiki project. Cur-
rently, we are applying the approach also in other projects to gain more experiences in the
design of helpful markup languages for different domains and project scopes.

References

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools (2nd Edition). Addison Wesley, 2006.

[BA04] Kent Beck and Cynthia Andres. Extreme Programming Explained: Embrace Change
(2nd Edition). Addison-Wesley, Boston, 2004.

A Meta-Engineering Approach for Customized Document-centered Knowledge Acquisition 201



[BRP11] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe. KnowWE: A Semantic
Wiki for Knowledge Engineering. Applied Intelligence, 35(3):323–344, 2011.

[EM93] Henrik Eriksson and Mark Musen. Metatools for Knowledge Acquisition. IEEE Softw.,
10:23–29, May 1993.

[EPG+95] Henrik Eriksson, Angel R. Puerta, John H. Gennari, Thomas E. Rothenuh, Samson W.
Tu, and Mark A. Musen. Custom-Tailored Development Tools for Knowledge-Based
Systems. Technical report, Stanford University School of Medicine, 1995.

[Eri92] Henrik Eriksson. Metatool support for custom-tailored, domain-oriented knowledge
acquisition. Knowledge Acquisition, 4(4):445 – 476, 1992.

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley Professional, 2010.

[Gal87] William A. Gale. Knowledge-based knowledge acquisition for a statistical consulting
system. International Journal of Man-Machine Studies, 26(1):55 – 64, 1987.

[Gap91] Ute Gappa. A tool-box for generating graphical knowledge acquisition environments.
In Proceedings of the World Congress on Expert Systems, pages 797–810, 1991.

[GMF+03] John Gennari, M. Musen, Ray Fergerson, W. Grosso, Monica Crubezy, H. Eriksson,
Natalya Noy, and Samson Tu. The evolution of Protege: an environment for knowledge
based systems development. Int. J. Hum.-Comput. Stud., 58(1):89–123, 2003.

[KKP+09] Gabor Karsai, Holger Krahn, Class Pinkernell, Bernhard Rumpe, Martin Schneider,
and Steven Völkel. Design Guidelines for Domain Specific Languages. In Proceedings
of the 9th OOPSLA Workshop on Domain-Specific Modeling, pages 7–13, 2009.

[Mar09] R. Martin. Clean Code: Handbook of agile software craftsmanship. Prent. Hall, 2009.

[MCW+86] Mark A. Musen, David M. Combs, Joan D. Walton, Edward H. Shortliffe, and
Lawrence M. Fagan. OPAL: Toward the Computer-Aided Design of Oncology Ad-
vice Systems. In Computer Application in Medical Care, pages 43–52, 1986.

[Mus88] M. A. Musen. Conceptual Models of Interactive Knowledge-Acquisition Tools. In
J. Boose, B. Gaines, and M. Linster, editors, Proc. of the European Knowledge Acqui-
sition Workshop (EKAW’88), pages 26–1 – 26–15. Gesellschaft für Mathematik und
Datenverarbeitung mbH, Sankt Augustin, Germany, 1988.

[Mus89] M. A. Musen. An editor for the conceptual models of interactive knowledge-
acquisition tools. Int. J. Man-Mach. Stud., 31:673–698, December 1989.

[PG92] Frank Puppe and Ute Gappa. Towards knowledge acquisition by experts. In Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems, volume
604 of LNCS, pages 546–555. Springer, 1992.

[RLB+10] Jochen Reutelshoefer, Florian Lemmerich, Joachim Baumeister, Jorit Wintjes, and
Lorenz Haas. Taking OWL to Athens – Semantic Web Technology takes Ancient
Greek History to Students. In Proc. of the 7th Extended Semantic Web Conf., pages
333–347. Springer, 2010.

[RSLP11] Jochen Reutelshoefer, Albrecht Striffler, Florian Lemmerich, and Frank Puppe. Incre-
mental Compilation of Knowledge Documents for Markup-based Closed-World Au-
thoring. In K-CAP ’11: Proceedings of the sixth international conference on Knowl-
edge Capture, pages 81–88. ACM, 2011.

[Spi01] Diomidis Spinellis. Notable Design Patterns for Domain Specific Languages. Journal
of Systems and Software, 56(1):91–99, February 2001.

202 Jochen Reutelshoefer, Joachim Baumeister, Frank Puppe


