
Privacy Preserving Technique for Set-Based Biometric

Authentication using Reed-Solomon Decoding

Jesse Hartloff∗1, Avradip Mandal2, and Arnab Roy2

1SUNY at Buffalo, Buffalo, NY, USA

hartloff@buffalo.edu
2Fujitsu Laboratories of America, Sunnyvale, CA, USA

{amandal, aroy}@us.fujitsu.com

Abstract: In this work, we present a single-factor biometric authentication system
that provides template security against an adversarial server while allowing error-
tolerant matching. Our approach is to secure templates represented as sets using error-
correcting codes and Reed-Solomon decoding. To accomplish this, each element in
the set is combined with a random codeword and a secret share is computed using
the codeword and a Reed-Solomon based secret sharing scheme. These random code-
words provide uncertainty for an attacker, while the genuine user can decode to the
correct values for verification. Without a reading from the enrolling biometric the
shares will appear random, thus protecting the users biometric. We show implemen-
tation results for this system on fingerprints using pairs of minutia points. Our system
overcomes many common weaknesses for template security systems including replay
attacks, malicious servers, eavesdroppers, and record multiplicity attacks.

1 Introduction

The appeal of using biometrics has led to an increase in their use as a means of identifica-

tion. With biometric-based authentication, users are not required to remember extraneous

passwords or carry tokens such as smartcards. All users effortlessly bring their biometrics

with them wherever they go making it an ideal candidate for user-friendly authentication.

However, this increase in use leads to privacy concerns when sharing biometric informa-

tion with various service providers since it can be difficult to tell if they are trustworthy.

The problem becomes severe when using the same biometric to enroll in several different

systems. If one of them is not using proper privacy protocols, it can allow your biometric

to be revealed and used to access other systems.

To achieve security against malicious servers, we construct a client-based system which

is an instantiation of a secure sketch [DORS08] based on Reed-Solomon decoding for

error-tolerant secure matching and an authentication protocol that prevents replay attacks.

We use the secure sketch as part of a fuzzy extractor [DORS08] to bind a secret to the

enrolling biometric reading creating a secure template which is sent to the server. We

∗Work done while Jesse Hartloff visited Fujitsu Laboratories of America.

109



note that our primitives do not satisfy the stringent cryptographic requirements outlined

in [Boy04]. In Section 4, we independently argue why our scheme still should be secure

based on reasonable assumptions.

By having a client-centered system, we gain some valuable security properties. Since the

only biometric related information that leaves the client is in the form of a secure template,

there is no need to trust the server or to secure the communication channels for enrollment

or verification. Also, since the client controls the generation of the template they can alter

the protocol if they wish. Changing the system to utilize different modalities or adding

a user-specific key can be done by the client without the server even being aware of the

clients protocol, thus adding security and flexibility to the system. We prevent replay

attacks by utilizing a secure signature of random values for each authentication.

We implemented this system on fingerprints using the publicly available FVC2002-DB1

[MMC+02] dataset and report the results in Section 5. To construct a template from a

fingerprint, we extract a set of pairs of minutia points and quantize each pair. This provides

a set of features that is used to construct the secure templates. These features are combined

in a secret sharing scheme such that an attacker cannot attack individual templates points

but must correctly match, or guess, a subset of features with size depending on the degree

of the underlying polynomial. Since all matching occurs at the client where the fingerprint

is read, we have access to the full fingerprint image of the test reading and utilize this

during verification.

2 Related Work

There have been various systems proposed that provide template security for fingerprints.

Possibly the most popular of them is the fuzzy vault construct of Juels and Sudan [JS06].

Similar to our current system, the fuzzy vault binds a secret to a set of values and releases

the secret using Reed-Solomon decoding given a set that is sufficiently similar to the one

used during enrollment. The security of the fuzzy vault relies on adding many randomly

generated chaff points to obfuscate the enrolling data. The fuzzy vault has been imple-

mented in various forms to secure fingerprint templates [BCF12, JA07, NNJ08], however

the fuzzy vault is vulnerable to various attacks including record multiplicity, chaff injec-

tion, and replay attacks [KY08, MNS+10, MMT09, PM09, SB07] and can have very large

template sizes due to the addition of enough chaff points for sufficient security. Our current

system overcomes all of these shortcomings.

Many protocols combine cryptographic techniques with biometrics to form a secure bio-

metric cryptosystem [BBCdS08, BCI+07, Sto10]. However, these schemes have been

shown to have vulnerabilities especially when a malicious server is considered instead of

the common honest but curious server [SBCS12].

Our work develops a new method that falls under the category of secure sketch [DORS08]

which we use as part of a fuzzy extractor [DORS08] to bind a secret to the enrolling finger-

print. A general theoretical framework for an authentication scheme using secure sketch is

given in [BDK+05]. Our scheme can be considered as a concrete instance of a fingerprint

matching scheme that generalizes to the abstract scheme from [BDK+05] which utilizes

110



a secure sketch and an authentication scheme, both of which are treated as black boxes.

The scheme also utilizes client-based computation to further protect the biometric data.

Another instance of this scheme has been implemented for face biometrics [SLM07].

There are many other proposed systems for fingerprint template security including [BSW07]

and [FMC12], both of which report more accurate matching performance that ours. We

note that in [BSW07], the system stores partial template information in the clear to com-

pute a robust distance measure that improves matching accuracy. A security analysis

shows that the remaining entropy in the template is still sufficient for security, though an

attacker is given some information of the enrolling fingerprint. Our proposed system does

not reveal any biometric information. The security of [FMC12] is based on two attacks

implemented by the authors that attempt to recover information of the enrolling fingerprint

from the stored template. Results are show with parameters for which these attacks have a

success rate of 0.

We show that in the proposed system, the enrolling fingerprint information is secure

against any attack, including an adversarial server, under the assumption of uniformity

of the template points. Addressing this assumption is a source of continuous research.

3 System Protocol

Our system consists of two phases - an Enrollment phase which is one-time for a single

user and server pair and an Authentication phase which can be executed for every session

of a user with the server. There are three parties involved in the Enrollment phase - the

user, the server and a Trusted Third Party, while in the Authentication phase only the user

and the server are involved. We describe the phases in detail below. The only role of

the Trusted Third Party is to verify that the server stores the correct template in tact, thus

preventing a man-in-the-middle attack.

3.1 Enrollment Phase

Enrollment

Client Server

Generate Template T and public key vk from biomet-

ric

Send identity, template and public key: (Id, T, vk)

Get the (Id, T, vk) tuple signed by a Trusted Third

Party. Receive Signature σId.

Store tuple and signature: (Id, T, vk, σId)

Send (Id, T, vk, σId) as acknowledgment.

Check, whether sent and received tuples are same.

Verify signature with Trusted Third Party’s public key

to confirm legitimate enrollment

Figure 1: Enrollment process

111



Input

Biometric reading B

1. Generate secret polynomial ps and compute signature keys (vk, sk) = KEYGEN(f(ps))

2. Extract set of feature points from biometric B = {bi}
n
i=1

3. For each bi randomly select a codeword ci from an Error Correcting Code C

4. Construct template points as {(bi ⊕ ci, ps(ci))}
n
i=1

Output

Template: T = {(bi ⊕ ci, ps(ci))}
n
i=1

Public Key: vk

Figure 2: Generate template

Enrollment consists of a user generating a random secret and binding it to her biometric to

create a secure template. The secret is used as a seed to generate a public verification key

using a signature scheme and will be used to generate the corresponding private signature

key during verification. The template and public key are then sent to server for storage.

The template and public key together with the user’s identity are then digitally signed by a

Trusted Third Party. This signature is sent back to the client for verification. See Figure 1.

Generating Template. As part of the enrollment process, the user will generate a secure

template using a random secret and a biometric reading by following the steps in Figure 2

which are described below. We assume that the reading is a set of bit-vectors bi of identical

length, where i runs from 1 to n, which is true in our implementation in Section 5. To

tolerate errors in reading each bit vector, we use an Error Correcting Code (ECC) C,

regarded as a set of codewords. The length of codewords is chosen to be the same as an

individual bit-vector bi.

1. User generates a random secret that will be used as a seed to generate a key pair

of a secure signature scheme. For use in our system, this secret is encoded as a

polynomial ps. We use a cryptographic hash function (e.g. SHA-3) f and a secure

signature scheme (e.g. PKCS #1) (KEYGEN, SIGN, VERIFY) in our system. The

key pairs are generated as follows, by using f(ps) as source of randomness for

KEYGEN.

(vk, sk) = KEYGEN(f(ps))

2. Extract a set (B) of feature points from a biometric reading, which is a set of bit-

vectors bi of identical length, where i runs from 1 to n. Please see Section 5 for a

concrete example.

3. Choose a random codeword ci from a code C for each bi ∈ B. The ci values

112



will be used to hide the template data while allowing some error-correction during

verification.

4. Compute yi = bi ⊕ ci and γi = ps(ci) for each i ∈ [n] and store as the secure

template T = {(y1, γ1), . . . , (yn, γn)}. The polynomial evaluations will be used as

input in a Reed-Solomon decoder to correct for errors.

3.2 Authentication Phase

Authentication

Client Server

Send request

Send the saved tuple and signature (Id, T, vk, σId) and

a random value r

Verify σId as signature on (Id, T, vk) with Trusted

Third Party’s Public Key

Recover private key sk from template T using biomet-

ric

Sign r using private key sk and send

σr = SIGN(sk, r)

Verify if signature is valid with public key vk:

VERIFY(vk, (r, σr))

Figure 3: Authentication

To authenticate, the server sends the signed tuple back to the user along with a random

value r. If the user is legitimate, she will be able to recover the secret from the template

using her biometric and generate the private signature key to be used to sign r. The sig-

nature on r is sent back to the server where it is verified using the public verification key.

See Figure 3.

Key Recovery. During verification, the client must recover the secret signature key from

the secure template and use it to sign the random value r sent by the server. Since the

key is recovered at each verification, the user is not required to remember it making this a

single-factor system. This signature is sent back to the server to complete the verification

process. Below are descriptions of the steps outlined in Figure 4.

113



Input

Template: T = {(bi ⊕ ci, ps(ci))}
n
i=1

Biometric reading B′

1. Extract set of feature points from biometric B′ = {b′i}
n
i′=1

2. For each yi and b′j , compute c′i,j = DECODE(yi ⊕ b′j)

3. For each i, find j∗ = j such that WEIGHT(c′i,j ⊕ yi ⊕ b′j) attains minimum value. Create a set of points S
consisting of each (c′i,j∗ , γi) such that WEIGHT(c′i,j∗ ⊕ yi ⊕ b′j∗) < THRESHOLD

4. Use a Reed-Solomon decoding algorithm to recover p′s from the set S. Compute signature keys (vk, sk) =
KEYGEN(f(p′s))

Output

Private Key: sk

Figure 4: Recover private key

1. Extract set of feature points {b′i}
n
i=1 from biometric reading B′ using the same

method as for enrollment.

2. Client computes c′i,j = DECODE(yi ⊕ b′j) for each (yi, b
′

j) pair. Here DECODE

outputs the nearest codeword from (yi ⊕ b′j).

3. For each i, client chooses j∗ = j, such that WEIGHT(c′i,j⊕yi⊕b′j) attains minimum

value for j between 1 to n. Create a set of points S consisting of each (c′i,j∗ , γi)
such that WEIGHT(c′i,j∗ ⊕ yi ⊕ b′j∗) < THRESHOLD.

4. Use Reed-Solomon decoding on S to recover p′. By the properties of the Reed-

Solomon decoder, if the number of genuine points in the S minus the number of

false points in S is greater than the degree of ps, then p′ = ps.

4 Security

4.1 Template privacy against Brute Force Attacker

We first show that the proposed system is secure against a basic brute force attack before

proceeding to formally show its security. A brute force attacker against our protocol from

the previous section has access to the template T = {(bi ⊕ ci, ps(ci))}
n
i=1 and public key

vk, where (vk, sk) = KEYGEN(f(ps)). The goal of the attacker is to recover the bio-

metric template B = {bi}
n
i=1 (or another biometric template close to B). This problem is

equivalent to guessing the random codewords {ci}
n
i=1 and testing the correctness of guess

from {ps(ci)}
n
i=1 and vk. If an attacker can correctly guess the random polynomial ps, it

can easily find the codewords from ps(ci) values. If the polynomial ps is of degree t, then

114



to find out the polynomial ps, the brute force attacker has to make correct guesses for ci
values simultaneously for at least (t+1) points. These random guesses can be interpolated

to a possible guess for the polynomial as p′s. The only way the attacker can check whether

the random guesses for ci values (equivalently, random guess for the polynomial ps) are

correct or not, is by running the KEYGEN algorithm on f(p′s) and checking whether the

resultant verification key is same as the published verification key vk or not. If we sample

the codewords from a (n, k, d) error correcting code, then each codeword ci has k bits of

entropy and the attacker has to make simultaneous guesses to at least (t + 1) codewords.

Hence our protocol has k(t+ 1) bits of security against brute force attackers.

4.2 Formal Security Guarantees

The protocol described in Section 3 provides the following security guarantees:

• Type-I Security: It is a secure authentication protocol, i.e., only legitimate users

can get authenticated to the server.

• Type-II Security: It protects user’s biometric data against malicious servers. If

multiple servers are authenticating the users using our protocol and one of them is

acting maliciously, even then the malicious server cannot authenticate to another

server on behalf of any common user (a person who has enrolled to both servers).

To show that our scheme is secure in both the cases, we consider a powerful adversary A,

which

1. Has access to the template

T = {(bi ⊕ ci, ps(ci))}
n
i=1

2. Has access to the public verification key vk, such that (vk, sk) = KEYGEN(f(ps))

3. Can send any r of its choice1 to the client and receive σr, which is a valid signature

of r (gets verified by the verification key vk).

The goal of the above adversary is to come up with a valid message, signature pair (r̂, σ̂r)
which would get verified by the verification key vk, without querying r̂ to the client2. Such

an adversary mimics a dishonest server trying to authenticate to another server (Type-II

attacker), as well as a powerful man in the middle attacker (Type-I attacker).

If the signature scheme is chosen message secure, then security of our protocol can be

based upon the following assumption, which we later argue to be reasonable.

1In the actual protocol the server also sends the enrolled template T along with its signature signed by a

trusted third party. Client verifies integrity of the template by verifying the signature with trusted third parties

public key, before reconstructing its private key based on the template. This forces the attacker to send the same

T to evoke a response.
2This actually provides a stronger security guarantee. In the actual protocol execution, the attacker has to

come up with a valid signature of some r̂, chosen by the honest server, not an r̂ chosen by the attacker herself.

115



Assumption 1. If f is a cryptographic hash function, B = {b1, · · · , bn} and B′ =
{b′1, · · · , b

′

n} are two sets of feature points corresponding to fingerprints of two differ-

ent individuals (Id and Id′), (c1, · · · , cn) and (c′1, · · · , c
′

n) are random code-words, and

ps, p
′

s are two randomly selected polynomials, then the following two tuples are indistin-

guishable to a computationally bounded adversary:

(Id, f(ps), {(bi ⊕ ci,ps(ci))}
n
i=1)

≈ (Id, f(ps), {(b
′

i ⊕ c′i, p
′

s(c
′

i))}
n
i=1)

The above assumption says that biometric templates corresponding to two different indi-

viduals are indistinguishable, as well as it is infeasible to correlate the output of the hash

function f(ps) and the biometric template T . We now prove that, under this assumption,

the only way the adversary A can be successful is to break the security of the signature

scheme.

Theorem 1. If (KEYGEN, SIGN, VERIFY) is a signature scheme which is existentially

unforgeable under chosen message attack (EU-CMA), and Assumption 1 holds true, then

adversary A can win only with negligible probability.

Proof. Using adversary A, we construct an EU-CMAadversary B against the signature

scheme. The EU-CMAchallenger will generate verification key vk and signing key sk
by running KEYGEN. Adversary B will receive the verification key vk from the EU-

CMAchallenger. The EU-CMAchallenger will also provide access to the signing oracle

SIGN(sk, ·) to the adversary B. Adversary B works as follows:

1. Sample fingerprint B′ = {b1, · · · , b
′

n} from a random individual. Sample random

codewords {c′1, · · · , c
′

n} and random polynomial p′s. Send vk and T ′ = {(b′i ⊕
c′i, p

′

s(c
′

i))}
n
i=1 to the adversary A. Assumption 1 says, adversary A would not be

able to distinguish the simulated (vk, T ′) from (public key of KEYGEN(f(ps)), {(bi⊕
ci, ps(ci))}

n
i=1) received in the real protocol.

2. For every signature query r sent by adversary A, B can forward the query to the

EU-CMAchallenger.

3. In the end, a successful A would provide a valid message signature tuple (r̂, σ̂r)
which was not obtained as the response to a query. B can send the same tuple to the

EU-CMAchallenger and provide a valid forgery.

Justification of Assumption 1. Assumption 1 plays a key role in our security proof.

Assuming the hash function f behaves as a random oracle, Theorem 2 stated below reduces

Assumption 1 to the following simpler one (independent of the hash function f ).

Assumption 2. If B = {b1, · · · , bn} and B′ = {b′1, · · · , b
′

n} are two sets of feature points

corresponding to fingerprints of two different individuals (Id and Id′), (c1, · · · , cn) and

(c′1, · · · , c
′

n) are random code-words, and ps, p
′

s are two randomly selected polynomials,

then

116



• The following two tuples are indistinguishable:

(Id, {(bi ⊕ ci, ps(ci))}
n
i=1)

≈ (Id, {(b′i ⊕ c′i, p
′

s(c
′

i))}
n
i=1)

• Given {(bi ⊕ ci, ps(ci))}
n
i=1, it is hard to output ps

Assumption 2 consists of two parts, of which the first one says that if we XOR biometric

feature bit-vectors with random codewords, the xored bit-vectors corresponding to two

different individuals become indistinguishable. Moreover, indistinguishability continues

to hold when we additionally provide random polynomial evaluations corresponding to

those random codewords. As a quick sanity check, if we assume the bi’s are coming from

a uniform distribution and ps is a linear polynomial our assumption holds provably. We

claim that even if ps is a higher degree polynomial and the bi’s are coming from an actual

fingerprint distribution, our assumption still holds. The second part of the assumption

says xoring the random codewords with biometric minutia points, hides the codewords to

sufficient degree that it is impossible to recover ps given the evaluations {ps(ci)}
n
i=1.

Theorem 2. If f is a random oracle, then Assumption 2 implies Assumption 1.

Proof. We show that if there is an Assumption 1 adversary A1, which succeeds with non

negligible advantage then we can construct an Assumption 2 adversary A2 succeeding

with non negligible advantage. From the Assumption 1 challenger, A2 receives the identity

of an individual Id and a biometric template T (using a coin flip, T was generated by the

biometric corresponding to either the individual Id or from another different individual).

A2 wins if

1. It can correctly guess whether T was generated using the biometric corresponding

to individual Id, or

2. It can output the polynomial ps used during the generation of T

A2 works as follows:

1. Sample random r from the range of f . Send (Id, r, T ) to A1

2. For each different random oracle query f(pi) made by A1, answer by sampling a

random ri from the range of f . Save (pi, ri) in a table.

3. In the end A1 will return its guess, whether T was generated using Id’s biometric

or not. Send the same guess to Assumption 2 challenger along with a random p out

of {pi} (random oracle queries made by A1) as a guess for ps.

f being a random oracle, (Id, r, T ) is a valid Assumption 1 challenge, as long as the ps
used in generation of T does not belong to the set {pi}. In that case, whenever A1 makes

a successful guess, A2 also makes a successful guess and wins against the Assumption 2

challenger. In the other case, A1 being an efficient adversary can only make polynomially

many f(pi) queries and one of those pi’s is actually ps. Hence, A2 can successfully guess

ps with 1/poly() probability, which is non-negligible.

117



5 Experimental Results

As a proof of concept of the feasibility of our system, we implemented a simple finger-

print matching method using pairs of minutia points. These template values consist of the

concatenation of the distance between the points, the difference in their orientations, the

angle of the line defined by the points, the angle between the orientation and the connect-

ing line, the number of ridges between the points, and the type of each minutia in the pair.

Each value is then quantized and the gray code is applied to the quantized values. This

encoding has the property that any two consecutive integers will have hamming distance 1.

This allows us to treat the integers as bit strings and enables the use of hamming distance

to compare similar minutia pairs. After quantization, these template values are 22 bits in

length. Since the angle of the line connecting the points is rotation variant, we consider

several different rotations of the test fingerprint during verification. We only compute the

enrolling template at a single rotation to limit the amount of information and correlation

in the template.

We use a (22, 6, 4) randomly generated code to protect the template points for this imple-

mentation. This code has 64 codewords which provides 6-bits of entropy that an attacker

would have to guess in order to recover the template point. Since there is no feedback

for an attack on a single point, an attacker would have to simultaneously correctly guess

enough points to recover the secret polynomial. At the ZeroFAR, this polynomial has

degree 16 meaning an attacker must simultaneously guess at least 17 points each with 6
bits of entropy resulting in 6 ∗ 17 = 102 bits of security against a brute force attack as

described in Section 4.1. To decode this polynomial we use the Welch-Berlekamp decoder

for the Reed-Solomon code.

The choice of code provides a tradeoff between security and matching accuracy. For this

implementation, we only utilize 1 bit of error correction, meaning we could use a more

efficient code with more than 64 codewords to increase entropy while still being able to

correct from 1 bit errors. However, increasing the number of codewords also increases the

number of false matches on the template points since it is more likely that a random value

will be within 1 bit of a codeword. Thus, the tradeoff between accuracy and security can

be adjusted by altering the size of the code.

To match a template with a fingerprint reading, we first extract a set of pairs from the

enrolled template using the method from Section 3.2. To increase the accuracy of genuine

matches, we filter out some of the extracted template points by only considering sets of

points that form a complete sub-graph of at least 4 minutia points. This reduces the chance

that a false match will be considered.

We use the FVC (Fingerprint Verification Competition) style of measuring results with

2800 genuine and 4950 impostor tests. Results are reported for FVC2002-DB1. Minu-

tiae points were obtained using the open-source minutiae extraction method MINDTCT

[WGT+] published by NIST.

A summary of our matching results can be found in table 1. Since security is a focus of

our system, we are concerned with large polynomials that lead to no false accepts.

118



Degree of Secret Polynomial FAR (%) FRR (%)

14 0.08 19.0

15 0.04 20.3

16 0.0 21.4

Table 1: Matching results for FVC2002-DB1. We note that the system should not be used when the
FAR is not 0.0 as this compromises security. We include additional values to give more information
on the matching performance of the system.

6 Conclusion

In this work, we presented a fingerprint matching system that provides template security

against an adversarial server by utilizing the entropy of random codewords in conjunction

with polynomial based secret sharing. We accomplish this in part by shifting the matching

responsibility to the client instead of the server. We also include a signature scheme for

verification that prevents replay attacks from potential eavesdroppers. In addition to pre-

senting this novel theoretical system, we provide the results of an implementation based

on pairs of minutiae points to show the feasibility of this system in practice.

References

[BBCdS08] Manuel Barbosa, Thierry Brouard, Stphane Cauchie, and SimoMelo de Sousa. Secure
Biometric Authentication with Improved Accuracy. In Yi Mu, Willy Susilo, and Jen-
nifer Seberry, editors, Information Security and Privacy, volume 5107 of Lecture Notes
in Computer Science, pages 21–36. Springer Berlin Heidelberg, 2008.

[BCF12] Julien Bringer, Herv Chabanne, and Mlanie Favre. Fuzzy Vault for Multiple Users.
In Aikaterini Mitrokotsa and Serge Vaudenay, editors, Progress in Cryptology -
AFRICACRYPT 2012, volume 7374 of Lecture Notes in Computer Science, pages 67–
81. Springer Berlin Heidelberg, 2012.

[BCI+07] Julien Bringer, Herv Chabanne, Malika Izabachne, David Pointcheval, Qiang Tang,
and Sbastien Zimmer. An Application of the Goldwasser-Micali Cryptosystem to Bio-
metric Authentication. In Josef Pieprzyk, Hossein Ghodosi, and Ed Dawson, editors,
Information Security and Privacy, volume 4586 of Lecture Notes in Computer Science,
pages 96–106. Springer Berlin Heidelberg, 2007.

[BDK+05] Xavier Boyen, Yevgeniy Dodis, Jonathan Katz, Rafail Ostrovsky, and Adam Smith.
Secure Remote Authentication Using Biometric Data. In Ronald Cramer, editor, Ad-
vances in Cryptology EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 147–163. Springer Berlin Heidelberg, 2005.

[Boy04] Xavier Boyen. Reusable cryptographic fuzzy extractors. In Vijayalakshmi Atluri,
Birgit Pfitzmann, and Patrick Drew McDaniel, editors, Proceedings of the 11th ACM
Conference on Computer and Communications Security, CCS 2004, Washington, DC,
USA, October 25-29, 2004, pages 82–91. ACM, 2004.

119



[BSW07] Terrance E. Boult, Walter J. Scheirer, and Robert Woodworth. Revocable Fingerprint
Biotokens: Accuracy and Security Analysis. In CVPR, 2007.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy Extrac-
tors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM J.
Comput., 38(1):97–139, 2008.

[FMC12] M. Ferrara, D. Maltoni, and R. Cappelli. Noninvertible Minutia Cylinder-Code Repre-
sentation. Information Forensics and Security, IEEE Transactions on, 7(6):1727–1737,
Dec 2012.

[JA07] Jason Jeffers and Arathi Arakala. Fingerprint Alignment for A Minutiae-Based Fuzzy
Vault. In Arathi Arakala, editor, Biometrics Symposium, 2007, pages 1–6, 2007.

[JS06] Ari Juels and Madhu Sudan. A Fuzzy Vault Scheme. Des. Codes Cryptography,
38(2):237–257, 2006.

[KY08] Alisher Kholmatov and Berrin Yanikoglu. Realization of correlation attack against
the fuzzy vault scheme. In Security, Forensics, Steganography, and Watermarking of
Multimedia Contents X, volume SPIE 6819, pages 68190O–68190O–7, 2008.

[MMC+02] D. Maio, D. Maltoni, R. Cappelli, J.L. Wayman, and A.K. Jain. FVC2002: Second
Fingerprint Verification Competition. In Pattern Recognition, 2002. Proceedings. 16th
International Conference on, volume 3, pages 811–814 vol.3, 2002.

[MMT09] Preda Mihailescu, Axel Munk, and Benjamin Tams. The Fuzzy Vault for Fingerprints
is Vulnerable to Brute Force Attack. In Arslan Brömme, Christoph Busch, and Detlef
Hühnlein, editors, BIOSIG, volume 155 of LNI, pages 43–54. GI, 2009.

[MNS+10] Johannes Merkle, Matthias Niesing, Michael Schwaiger, Heinrich Ihmor, and Ulrike
Korte. Security Capacity of the Fuzzy Fingerprint Vault. International Journal on
Advances in Security, 3(3 & 4):146–168, 2010.

[NNJ08] Abhishek Nagar, Karthik Nandakumar, and Anil K. Jain. Securing fingerprint template:
Fuzzy vault with minutiae descriptors. In ICPR, pages 1–4, 2008.

[PM09] Hoi Ting Poon and Ali Miri. A Collusion Attack on the Fuzzy Vault Scheme. ISeCure,
The ISC International Journal of Information Security, 1(1):27–34, 2009.

[SB07] W.J. Scheirer and T.E. Boult. Cracking Fuzzy Vaults and Biometric Encryption. In
Biometrics Symposium, 2007, pages 1 –6, sept. 2007.

[SBCS12] K. Simoens, J. Bringer, H. Chabanne, and S. Seys. A Framework for Analyzing Tem-
plate Security and Privacy in Biometric Authentication Systems. Information Forensics
and Security, IEEE Transactions on, 7(2):833–841, April 2012.

[SLM07] Y. Sutcu, Qiming Li, and N. Memon. Protecting Biometric Templates With Sketch:
Theory and Practice. Information Forensics and Security, IEEE Transactions on,
2(3):503–512, Sept 2007.

[Sto10] A. Stoianov. Cryptographically secure biometrics. volume 7667, pages 76670C–
76670C–12, 2010.

[WGT+] Craig I. Watson, Michael D. Garris, Elham Tabassi, Charles L. Wilson, R. Michael Mc-
cabe, Stanley Janet, and Kenneth Ko. User’s Guide to NIST Biometric Image Software
(NBIS).

120


