
Executing Abstract Test Cases∗

Bernhard Peischl Martin Weiglhofer

Franz Wotawa†

{peischl, weiglhofer, wotawa}@ist.tugraz.at

Abstract: Generally, test cases derived from a formal model can not be directly fed
into implementations under test (IUT), because model based test generation techniques
produce abstract test cases. In order to run an abstract test case against an IUT the ab-
stract test case either has to be transformed to a concrete test case or an execution of the
abstract test case is needed. In this paper we propose a rule based test execution frame-
work, which allows the execution of abstract test cases. Furthermore, we present first
results from testing a so called SIP Registrar by executing abstract test cases derived
with the TGV tool from a formal specification.

1 Introduction

Applying model based testing techniques to industrial sized systems requires an appropri-
ate formal model of the system under test. Typically, a formal model abstracts from real
world problems in order to get models of manageable size in terms of their state spaces.
Due to these abstractions, the output of test generation tools are so called abstract test
cases, which describe test scenarios in an abstract way. For the execution of such abstract
test cases every stimuli i has to be converted to a concrete message γ(i), while a system
response o has to be mapped to the abstract level α(o). Normally, manually written test
drivers are responsible for the transformation of test messages. However, the implementa-
tion of a test driver is a tedious and error prone task.

In difference to our previous work on test generation [APWWa, APWWb], this article
deals with execution of the derived test cases. We propose a rule based system for defining
γ and α. We show how to execute abstract test cases in terms of our proposed framework
and illustrate first experimental results using this novel technique.

This paper continues as follows: in Section 2 we briefly introduce IO-labeled transition
systems (IOLTS) and IOLTS test cases. Section 3 presents our test execution approach. In
Section 4 we discuss first results. Finally, in Section 5 we present our conclusions.

∗The research herein is partially conducted within the competence network Softnet Austria (www.soft-net.at)
and funded by the Austrian Federal Ministry of Economics (bm:wa), the province of Styria, the Steirische
Wirtschaftsförderungsgesellschaft mbH. (SFG), and the city of Vienna in terms of the center for innovation
and technology (ZIT).

†Authors are listed in alphabetical order.

421

2 Preliminaries

Since we use TGV [JJ05] for the generation of our test cases the derived test cases are
IOLTSs. For details about the underlying testing theory we refer to [Tre96].

Definition 1 (Input Output LTS (IOLTS)) An IOLTS is a labeled transition system (LTS)
M = (QM , AM ,→M , qM

0) with QM a finite set of states, AM a finite alphabet (the la-
bels) partitioned into three disjoint sets AM = AM

I ∪ AM
O ∪ {τ} where AM

I and AM
O

are input and output alphabets and τ 8∈ AM
I ∪ AM

O is an unobservable, internal action,
→M⊆ QM × AM × QM is the transition relation and qM

0 ∈ QM is the initial state.

We use the following classical notations of LTSs for IOLTSs. Let q, q′, q1, . . . , qn ∈
QM , Q ⊆ QM , a, a1, . . . , an ∈ AM

I ∪ AM
O and σ ∈ (AM

I ∪ AM
O)∗. Then, q

a→M q′ =df

(q, a, q′) ∈→M and q
a→M=df ∃q′ : (q, a, q′) ∈→M , and q

a

8→M=df 8∃q′ : (q, a, q′) ∈→M .
q

ε⇒ q′ =df ((q = q′) ∨ (q
τ→M q1 ∧ · · · ∧ qn−1

τ→M q′)) and q
a⇒ q′ =df ∃q1, q2 :

q
ε⇒M q1

a→M q2
ε⇒M q′ which generalizes to q

a1...an⇒ q′ =df ∃q0, . . . , qn : q = q0
a1⇒M

q1 . . . qn−1
an⇒M qn = q′. We denote q afterM σ =df {q′| q

σ⇒M q′}.

Among others a test case T = (QT , AT ,→T , qT
o) has following two properties [APWWa,

JJ05]: (1) A test case is input complete in all states where an input is possible: ∀q ∈
QT : (∃a ∈ AT

I , q
a→T⇒ ∀b ∈ AT

I , q
b→T). (2) T is controllable: no choice is allowed

between two outputs or between inputs and outputs: ∀q ∈ QT , ∀a ∈ AT
O : q

a→T ⇒ ∀b ∈
AT

I ∪ AT
O \ {a} : q 8 b→T .

3 Abstract Test Execution

Executing abstract test cases consists of two different tasks. One task is test control, i.e.,
select the next test message and determine the test verdict. The other task is the trans-
formation of the abstract test messages to concrete stimuli and the conversion of concrete
system responses to abstract test messages.

The test control procedure for an IOLTS is given by the algorithm of Figure 1. This al-
gorithm takes an IOLTS test case TC and returns a verdict when executing the test case
against an implementation under test (IUT). The two methods send(message) (line
6) and receive() (line 9) denote the communication with the IUT. This two methods
encapsulate the refinement of requests and the abstraction of responses, respectively. Start-
ing at the initial state qTC

0 (line 3) of the test case our test execution algorithm traverses
through a certain IOLTS test case until the current state qc is a verdict state (line 4). If the
current state qc has an output edge (line 5), the stimuli which is represented by the label of
the edge is sent to the IUT (line 6). Otherwise, the algorithm waits for a response of the
IUT (line 9). If it receives a response, it updates the current state qc (line 10). Note, that the
controllability property (see Section 2) of test cases simplifies the test control algorithm,
because the algorithm does not need to handle inputs and outputs at the same state.

422

1 procedure t e s t C o n t r o l (
“

QT C , AT C
I ∪ AT C

O ,→T C , qT C
0

”
) : v e r d i c t

2 begin
3 qc = qT C

0
;

4 whi le qc *∈ {fail, pass, inconclusive} do
5 i f ∃p ∈ QT C , l ∈ AT C

O : (qc, l, p) ∈→T C then
6 send (l) ;
7 qc = p ;
8 e l s e
9 msg = r e c e i v e () ;

10 qc = qc afterT C msg ;
11 f i
12 done
13 R e s u l t := qc ;
14 end

Figure 1: Test control algorithm for IOLTS test cases.

For the transformation of messages, we use a rule system RS . RS consists of two sets
of rules γS and αS , a set of mappings of abstract to concrete values MS , and a set of
variables VS :

RS = 〈γS , αS ,MS ,VS〉 = 〈(rγ
1 , . . . , rγ

n) , (rα
1 , . . . , rα

m) ,MS ,VS〉

The two ordered rule lists γS and αS define how to refine stimuli, and how to abstract
from system responses. The set of named variables VS contains values associated with
names. VS may be modified during the application of a rule from γS or αS . The set of
named mappings MS associates concrete and abstract values. MS contains grouped pairs
of ordered lists, where one list contains the concrete values and the other list contains the
corresponding abstract values.

A rule ri(m, s) is a binary function that takes the abstract or the concrete message as first
parameter m and the current intermediate result from previous applied rules as second
parameter s. ri returns the transformed message.

Currently we use nine different types of rules that are listed in Table 1. The formal def-
inition of the rules uses following notation: φ(regex, text) is a boolean predicate which
returns true if the regular expression regex matches in text. i denotes the start-index of
the match, while : denotes the end-index of the match. · stands for the concatenation func-
tion and 0 represents the end position of an element. e[j : k] denotes the part from index j
to index k of an element e. VS(var) gives the value of a variable var, while VS(var) := x
assigns the value x to variable var. MS(y).abs(C, i) denotes the retrieval of the i-th ab-
stract value for the mapping y given the list of concrete values C. MS(y).con(A, j) gives
the j-th concrete value for the list of abstract values A of mapping y.

4 Empirical Results

We implemented the abstract test execution presented in Section 3 in a tool called TestEx-
ecutor and executed test cases against a commercial and an open source implementation

423

rule description formal definition
app. Append the result of the list of

rules R to s. appR(m, s) = s · R(m, s)

sub-
sti-
tute

Given a regular expression c,
this rule replaces the matched
text within s by the result of
R.

subR
c (m, s) =

(
s[0 : i] · R(m, s) · subR

c,t(m, s[, : $]) if φ(c, s)

s otherwise

con-
di-
tion

Apply a list of rules R if the
regular expression c matches
within the element m.

ifR
c (m, s) =

(
R(m, s) if φ(c, m)

s otherwise

loop Apply a list of rules R for ev-
ery match of a regular expres-
sion c in the m.

forR
c (m, s) =

(
forR

c (m[, : $], R(m, s)) if φ(c, m)

s otherwise

save Save the result of R at location
x.

savR
x (m, s) = VS(x) := R(m, s)

load Retrieve the value stored in x. valx(m, s) = VS(x)

map-
ping

Map abstract values to a
concrete value and vice versa.

conR
y,j(m, s) = MS(y).con(R(m, s), j)

absR
x,i(m, s) = MS(x).abs(R(m, s), i)

part Extracts a matching regular
(sub) expression r from m partr(m, s) =

(
m[i : ,] if φ(r, m)

empty element otherwise
text Returns the fixed text t textt(m, s) = t

Table 1: Rules for the specification of abstraction and refinement functions.

of a Session Initiation Protocol (SIP) Registrar. Currently our TestExecutor uses UDP for
the communication with the IUT. However, our approach is not limited to UDP.

SIP handles the signaling part of communication sessions between two end points. SIP
defines various entities that are used within a SIP network. One of these entities is the so
called Registrar, which is responsible for maintaining location information of users. SIP is
a text based protocol that uses a request/response transaction model. A message consists
of a start-line, indicating the message type, a message-header and a message-body. The
message-header contains information like the originator, the recipient, and the content-
type of the message. Message bodies of REGISTER requests are usually empty.

In order to ensure a particular system state of the IUT for each test case we reset the
IUT before running a certain test case. We overcome the problems of concurrency and
asynchronous communication by using the reasonable environment assumption [FJJV97],
which says that the environments waits until stabilization after sending a single message.
This means that the test execution environment waits for all responses from the IUT before
sending a new message. Due to our specification’s structure this assumption solves the
problem of asynchronous communication as well.

For our SIP Registrar specification [APWWa, APWWb], the rule sets for γ and α comprise
66 (12 appR, 9 subR

c , 7 ifR
c , 1 forR

c , 5 valx, 11 conR
y,j , 9 partr, and 12 textt) and 36

(10 appR, 5 ifR
c , 4 forR

c , 3 savR
x , 1 absR

x,i, 3 partr, and 10 textt) rules, respectively. We
use 4 mappings and 3 variables.

Table 2 outlines the results of executing test suites (1st column) containing abstract test
cases against the commercial and the OpenSER Registrar in terms of the number of exe-

424

cuted (2nd column), passed (3rd and 8th column), failed test cases (4th and 9th column)
and the overall time needed (sec.) to execute the test cases (7th and 12th column). Ad-
ditionally this table shows the amount of time needed to reset the implementations (6th
and 11th column), which is approximately 4,4 sec. per test case for the commercial and
approximately 3,0 sec per test case for the open source implementation. The test execu-
tion with the algorithm illustrated in Figure 1 (5th and 10th column) takes approximately
7,3 sec. per test case for the commercial implementation and 3.7 sec. per test case for
OpenSER. This difference is mainly caused by timeouts, since the commercial implemen-
tation sometimes does not respond to stimuli (e.g., test suite not found). Thus, we need to
wait for the expiration of a timer (3 sec) during test execution.

Test no. commercial OpenSER
suite tc pass fail exc. reset sum pass fail exc. reset sum
not found 880 0 880 6881 5607 12488 880 0 2838 2407 5245
inv. requ. 1328 0 1328 10614 5761 16375 1008 320 4501 3759 8260
unauth. 432 260 172 2714 1888 4602 130 302 1452 2409 3861
reg. ok 1488 1104 384 9143 5102 14245 1104 384 6049 3941 9990
delete 1280 16 1264 10188 5391 15579 1148 132 5201 3766 8967
Total 5408 1380 4028 39540 23749 63289 4270 1138 20040 16282 36323

Table 2: Test execution results.

Due to our specification’s structure, we obtain various similar test cases. Summarized,
we found 9 faults for the commercial Registrar and 4 faults for OpenSER. A detailed dis-
cussion of the detected faults can be found in [APWWa]. However, our rule based test
execution framework proves to be applicable for testing this two SIP Registrar implemen-
tations.

5 Conclusion

This article presents a rule-based test execution framework that allows the execution of
abstract test cases. The presented test execution framework supports the employment of
model based testing in industrial sized projects. Our approach removes the requirement
for writing particular test drivers for the execution of test cases. Instead we propose to use
rules for the specification of the abstraction and the refinement function.

In difference to other test execution languages, like for example the standardized Testing
and Test control notation (TTCN) [ETS04], we do not need to convert the complete test
case into an executable format. Only required parts are considered during test execution.
TTCN-3 uses more powerful programming language related constructs for test execution
and test data handling. However, many of these constructs are not needed when executing
(abstract) test cases derived by model based testing techniques.

425

References

[APWWa] Bernhard K. Aichernig, Bernhard Peischl, Martin Weiglhofer, and Franz Wotawa. Proto-
col Conformance Testing a SIP Registrar: An Industrial Application of Formal Methods.
In SEFM’07. To appear.

[APWWb] Bernhard K. Aichernig, Bernhard Peischl, Martin Weiglhofer, and Franz Wotawa. Test
Purpose Generation in an Industrial Application. In A-MOST’07. To appear.

[ETS04] ETSI. Methods for Testing and Specification (MTS); The Testing and Test Control
Notation version 3; Part 1: TTCN-3 Core Language, 2004. ES 201 873-1.

[FJJV97] Jean-Claude Fernandez, Claude Jard, Thierry Jeron, and Cesar Viho. An Experiment in
Automatic Generation of Test Suites for Protocols with Verification Technology. Science
of Computer Programming, 29(1-2):123–146, 1997.

[JJ05] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms. Int. Journal on
Software Tools for Technology Transfer (STTT), 7(4):297–315, August 2005.

[Tre96] Jan Tretmans. Test Generation with Inputs, Outputs and Repetitive Quiescence. Soft-
ware - Concepts and Tools, 17(3):103–120, 1996.

426

