
Mapping of SLA-based workflows with light

communication onto Grid resources

Dang Minh Quan1 and Jörn Altmann12

1 International University of Bruchsal, Campus 3, 76646 Bruchsal, Germany
dang.minh@i-u.de

2 TEMEP, School of Engineering, Seoul National University, South-Korea
jorn.altmann@acm.org

Abstract. Service Level Agreements (SLAs) are currently one of the
major research topics in Grid Computing. Among those system compo-
nents that support SLA-aware Grid jobs, the SLA mapping mechanism
has an important position. It is responsible for assigning sub-jobs of
the workflow to Grid resources in a way that meets the user’s dead-
line and minimizes costs. Assuming many different kinds of sub-jobs and
resources, the process of mapping an SLA-based workflow with light
communication defines an unfamiliar and difficult problem. This paper
presents a solution to this problem. The quality and efficiency of the
algorithm is validated through performance measurements.

1 Introduction

Service Level Agreements (SLAs) define a business contract between users and
service providers. SLAs in the context of Grid computing describe an business
environment, in which providers guarantee users that their workflow will be exe-
cuted on the Grid within the agreed upon period of time and will get paid for the
service usage. One of the main system components, which support SLAs man-
agement for Grid-based workflows is the job mapping mechanism. The mapping
mechanism that we will present maps each sub-job of the workflow to resources
in a manner that satisfies two main criteria: First, it will guarantee the workflow
execution on time; Second, it will calculate a low cost solution.

If a customer uses a service, he is charged based on the service usage and can
expect a quality as indicated in the SLA. An automated mapping is necessary as
it frees users from the tedious job of assigning sub-jobs to resources under many
constraints such as workflow integrity and execution deadline, cost minimisation.
Additionally, a good mapping mechanism will help users to minimize the cost
for using Grid resources.

We have developed a running system for SLA-based workflows [7–10], which
differs from other works [5, 6] in the following aspects. In our system, sub-jobs of
the workflow can be sequential or parallel programs and each resource can man-
age many sub-jobs at the same time. Our work on this topic solved the problem
for workflows with heavy communication. The key difference of this paper and
the previous works is the communication. The light communication can help us

135



ignore the complex in time and cost caused by data transfer. Thus, we could
apply specific technique to improve the speed and the quality of the mapping
algorithm. An initial solution for the case of workflows with light communication
has been presented in [7], but without considering variable runtime of sub-jobs
and different resource requirements.

This paper, which belongs to this series of efforts to develop a job mapping
framework for SLA-based workflows [7–10], will present a solution for variable
runtime of sub-jobs and different resource requirements.

Like many popular systems handling SLA-based workflows [1–3], our work-
flow system is of the Directed Acyclic Graph (DAG) form. It is assumed that
the data to be transferred among sub-jobs is very small, usually less than 10MB.
The user is also required to specify the estimated runtime of each sub-job to-
gether with the specific resource requirements. The time is split into slots. Each
slot represents a constant period of real time, in the range of 2 to 5 minutes.
Figure 1 illustrates an example of a Grid workflow with resource requirements
as specified in Table 2. The label of each link of the workflow represents the
amount of data, which has to be transferred between two sub-jobs.

Subjob 0

Subjob 4

Subjob 6
2 2

1

1 1

2

1

Subjob 1

Subjob 3Subjob 2

1

Subjob 5

2
2

Fig. 1. A sample workflow

Sj ID CPU Storage Exp Runtime

0 64 59 1 18

1 48 130 2 16

2 64 142 1 17

3 64 113 2 20

4 48 174 1 18

5 48 97 1 19

6 64 118 1 18

Fig. 2. Resource requirements for sub-jobs

At each Grid site, which is assumed to be a High Performance Computing
Center (HPCC), the resources are managed by the software system that is called
local Resource Management System (RMS). Each RMS has its own unique re-
source configuration. To ensure that a sub-job can be executed within a specified
time period, the RMS must support advance resource reservation such as CCS
[12]. In our system, RMS has the capability of reserving three main types of
resources: CPUs, storages, and experts. An extension to further resources is
straightforward. To illustrate the working of the solution by means of an ex-
ample, we assume to have three RMSs, which have the same number of CPUs,
namely 96, the same amount of storage, 3TB, and the same number of experts,
10. All reservation profiles are empty.

HPCCs are usually inter-connected by a broadband link, which is greater
than 100Mbps. The length of one time slot in our system is between 2 and 5
minutes. Thus, the amount of data transferred through a link within one time slot
can range from 1.2GB to 3GB. Since we assume less than 10MB of data transfer

136



between sub-jobs (workflows with light communications), the data transfer can
easily be performed within one time slot (right after the sub-job had finished its
calculation) without affecting any other communication between two RMSs.

A formal specification of the described problem entails the following elements:

– Let R be the set of all Grid RMSs. It includes a finite number of RMSs,
which provide static information about controlled resources and the current
reservations/allocations.

– Let S be the set of all sub-jobs in a given workflow. It includes all sub-jobs
with the current resource and deadline requirements.

– Let E be the set of all data transfers in a workflow. It indicates the depen-
dency between the sub-jobs and the necessity for data transfers between the
sub-jobs.

– Let Ki be the set of resource candidates for sub-job si. It includes all RMSs
that can run sub-job si. We note that Ki is a subset of R.

Based on the given input, we are looking for a feasible and, possibly, cost-
minimizing solution. The required solution is a set defined in Formula 1.

M = {(si, rj , start slot)|si ∈ S, rj ∈ Ki} (1)

If the solution does not have start slot for each si, it becomes a configuration
as defined in Formula 2.

a = {(si, rj |si ∈ S, rj ∈ Ki} (2)

A feasible solution must satisfy the following conditions:

– Criteria1: All Ki �= ∅. There is at least one RMS in the candidate set of
each sub-job.

– Criteria2: The total runtime period of the workflow must be within the
expected period given by the user.

– Criteria3: The dependency among the sub-jobs is resolved and the execu-
tion order remains unchanged.

– Criteria4: Each RMS provides a profile of currently available resources and
can run many sub-jobs of a single workflow in parallel. Those sub-jobs, which
run on the same RMS, form a profile of resource requirements. For each RMS
rj with its profile of available resources and for each time slot, , the number
of available resources must be larger than the resource requirements.

– Criteria5: The data transmission task eki from sub-job sk to sub-job si

takes one timeslot right after the finished time of sub-job sk , eki ∈ E. If
sub-job sk and sub-job si are executed in the same RMS the data transfer
task is neglected. This can be assumed since all compute nodes in a cluster
usually use a shared storage system like NFS or DFS. Thus, the time to
move data in the same storage is zero.

In the next phase, feasible solutions with the lowest cost are sought. As the
number of data to be transferred between sub-jobs in the workflow is very small,

137



we can omit the cost of data transfer. Thus, the cost C of a Grid workflow is
defined in Formula 3. It is the sum of the charge of using: (1) the CPU, (2) the
storage and (3) the expert knowledge.

C =
n�

i=1

si.rt ∗ (si.nc ∗ rj .pc + si.ns ∗ rj .ps + si.ne ∗ rj .pe) (3)

with si.nc, si.ns, si.ne being the number of CPUs, the amount of storage, the
number of expert required for sub-job si respectively. si.rtj is the runtime of
sub-job si in RMS rj . The value of si.rtj can be determined with the mechanism
described in [13]. rj .pc, rj .ps, rj .pe are the price of using CPU, storage, expert
of RMS rj respectively.

It can easily be shown that the cost-minimizing mapping of a workflow onto
RMSs is a NP-hard problem.

2 Related works

In [5, 6], Zeng et al and Iwona et al built systems to support QoS features for
SLA-based workflows. To map a workflow onto a Grid resource, they used In-
teger Programming (IP) for finding a solution. Applying IP to our problem is
impossible because of two reasons. First, the arbitrary length of a sub-job cannot
be expressed in an Integer Programming model. The time to complete a sub-job
depends on the resource configuration and the reservation profile of the RMS.
Second, an RMS can handle many parallel programs at the same time. Thus,
we do not know how many, which, and when sub-jobs will be executed in an
RMS. Consequently, we cannot formulate the IP constraint of available resource
as described in Criteria 4.

Meta-heuristics such as Genetic Algorithm and Simulated Annealing proved
to be very effective in mapping and scheduling problems. However, in the case
of our problem, with the appearance of resource profiles, the evaluation at each
step of the search becomes expensive for large problems [10].

A mechanism (based on Tabu search) for mapping a light communication
workflow onto Grid resources is described in [7]. In order to shorten the compu-
tation time caused by the high number of resource profiles to be analyzed and
by the wider range of start time of the sub-job without violating the end time,
several techniques for reducing the search space were introduced. However, these
techniques cannot be applied to solve the problem in this paper because of the
variable runtime lengths of the sub-jobs within different RMSs.

The work in [10] solved the problem of mapping a heavy communication
workflow onto Grid resources. The H-Map algorithm has been proposed. The
main idea of the H-Map algorithm is forming a widely distributed set of initial
configurations and performing the local search for each of them. As the problem
in [10] is closed to the problem in this paper, we can adapt the H-Map algorithm
to map the light communication workflow onto Grid resources. The framework
is retained as described in Figure 3, but we change the computing timetable
function and computing cost function to suit the new requirement.

138



Sort the solution space according to the computation cost

Clear the initial set of solutions

While not enough solutions {

Form new configuration by combining 2 cost levels

Compute timetable to check the feasible

If feasible, put to the initial set of solutions

}

For each solution in the set {

Do local search with the cost function

}

Pick the best solution

Fig. 3. Framework of the H-Map algorithm

Analyze the workflow into set of sub-jobs in sequential

layers. Sub-jobs in the same layer do not depend on each

other.

For each sub-job in the set {

Sort the candidate RMSs according to cost order.

For each RMS in the sorted candidate list {

calculate the execution time of that sub-job on the

RMS. If it meet the deadline then assigned the sub-

job to the RMS

}}

Fig. 4. The application of DBC algorithm
to our problem

The original DBC Grid scheduling algorithm [11], called the cost-time op-
timization scheduling algorithm, is used to schedule parameter sweep appli-
cation on global Grids. This algorithm builds on the cost-optimization and
time-optimization scheduling algorithms. This is accomplished by applying the
time-optimization algorithm for scheduling task-farming jobs onto distributed
resources having the same processing cost. Even this algorithm only supports
sequential sub-jobs. However, the idea can also be applied to our problem since
our workflow can be considered a parameter sweep application. The modified
algorithm is presented in Figure 4.

3 L-Map algorithm

In this paper, we propose an algorithm called L-Map to map light communication
workflows onto the Grid RMSs (L - stands for light). The goal of the L-Map
algorithm is to find a solution, which satisfies the requirements as described in
Section 1.

Each sub-job has different resource requirements. There are a lot of RMSs
with different resource configurations. The initial action is to find the suitable
RMSs among those heterogeneous RMSs, which can meet the requirement of
the sub-job. The matching between the sub-job’s resource requirements and the
RMS’s resource configuration is done by several logic checking conditions in the
WHERE clause of the SQL SELECT command. This work will satisfy Criteria
1. Suppose that each sub-job has m RMSs in the candidate list, we could have
mn configurations. The overall L-Map algorithm is presented in Figure 5. The
following sections will describe each procedure of the algorithm in detail.

Step 0: With each sub-job si, we sort the RMSs in the candidate set Ki

according to the cost of running si. The cost is computed according to Formula
3. The configuration space of the sample is presented in Table 6. Each RMS-Rt
column presents the RMS and the runtime of the sub-job in this RMS.

Step 1: We form the first configuration by assigning each sub-job to the
RMS having the lowest cost in the candidate list. The calculated configuration

139



Sort
solution

space (0)

Create initial
configuration

(1)

Compute
earliest-

latest
timetable

(2)

Build RMSs
reservation
profile (3)

Adjust sub-
jobs of the

conflict
period (4)

Workflows
DAG

RMSs

Having
conflict
period

Local
search

result
No

Yes

Had adjustment

Move sub-
jobs to other

RMSs (6)
Cannot adjust &

have conflict

Move
success

Yes

No

Call W-Tabu
algorithm

Is initial
solution
available

Yes

No

Cannot find
solution

Fig. 5. Framework of the L-Map algorithm

Sj ID RMS-Rt RMS-Rt RMS-Rt

0 R1 - 16 R3 - 17 R2 - 16

1 R1 - 14 R2 -14 R3 - 14

2 R1 - 16 R2 - 16 R3 - 17

3 R1 - 16 R3 - 15 R2 - 17

4 R1 - 15 R2 - 17 R3 - 15

5 R1 - 14 R3 - 16 R2 - 16

6 R1 - 16 R3 - 16 R2 - 17

Fig. 6. RMSs candidate for each sub-job in
cost order

1 11111 1

0 2 4 51 63

Fig. 7. The first selection configuration of
the example

is described as a vector. The index of the vector represents the sub-job and the
value of the element represents the RMS. The first configuration in our example
is illustrated in Figure 7.

Step 2: As the runtime of each sub-job in the selected RMS was defined and
the time to do data transfer equals zero, we can compute the earliest start time
and the latest stop time of each sub-job using conventional graph algorithms.
Following this procedure, we ensure that the Criteria 2 is met. In the case of our
example, we assume that the user wants the workflow to be started at time slot
10 and stopped at time slot 85. The resulting Earliest-Latest timetable is shown
in Table 8.

Step 3:For each RMS appearing in a configuration and each type of resource
in the RMS, we build the resource reservation profile using the Earliest-Latest
timetable. In this step, the runtime of the sub-job is computed from the earliest
start time to the latest stop time. In our example, only RMS1 appears in the
configuration. The CPU reservation profile of the RMS 1 is presented in Figure

140



Sj ID Earliest start Latest stop

0 10 37

1 26 69

2 26 41

3 42 69

4 26 69

5 26 69

6 58 85

Fig. 8. The earliest-latest timetable

10

96

26 37 58 69 85

272

208

144

42

Time

Num CPU

Number of

available CPU

Fig. 9. Reservation profile of RMS 1

9. As can be seen from Figure 9, there are many conflict periods, in which, the
number of required resources is greater than the available resources.

Step 4: We move sub-jobs out of the conflict period by adjusting the earliest
start time or the latest stop time of the sub-jobs. One possible solution for our
example is shown in Figure 10(a), where either the latest stop time of subjob1
is set to t1 or the earliest start time of subjob2 is set to t2. The second possible
solution is to adjust both sub-jobs simultaneously as depicted in Figure 10(b).
A necessary prerequisite here is that after adjusting, the latest stop time minus
earliest start time of the sub-job is larger than its runtime.

rate

0
t1 t2

time

sj1

sj22

rate

0 t1 t2

time

sj1

sj2

rate

0 t1 t2

time

sj1

sj2

rate

0 t1 t2

time

sj1 sj2

(a) Moving sub-jobs (b) Adjusting sub-jobs

Fig. 10. Resolving the conflict period

Step 5: We adjust the earliest start time and latest stop time of the sub-jobs
that are linked with the moved sub-jobs and then repeat step 3 and 4 until we
cannot adjust any sub-jobs any more. The results of this step applied to our
example, the CPU reservation profile of RMS 1, is depicted in Figure 11.

Step 6: If there are still some conflict periods after step 5, we have to move
some sub-jobs contributing to the conflict to other RMSs. However, the resource,
which has the conflict period, should be utilized as much as possible. Thus, the
cost for using the resources will be kept at a minimum. This is a knapsack prob-
lem, which is known to be NP-hard. Therefore, we use the heuristic algorithm of
Figure 12. This algorithm ensures that the remaining free resources are always
less than the smallest sub-job. If a sub-job cannot be moved to another RMS,
we can deduce that the Grid resource is busy and the w-Tabu algorithm [9] is
invoked. w-Tabu algorithm maps a SLA-based workflow to Grid resources with

141



10

96

26 37 58 69 85

272

208

144

42

Time

Num CPU

Number of

available CPU

Fig. 11. Reservation profile of RMS 1 after
adjusting

Select the most serious conflict period

Determine all sub-jobs contributing to the period

Sort those sub-jobs according to cost in descend order

For each sub-job in the list {

If the resource free greater than the resource required by

the sub-job

Let the sub-job stay in the RMS

Update the number of resource free of the period

Else

Assign the sub-job to the next RMS in its sorted

candidate list }

Fig. 12. Moving sub-jobs algorithm

makespan optimization. If the w-Tabu cannot find an solution, the algorithm
will stop.

In the case of our example, the largest conflict period is 42-69 with allocations
of sub-job 3, 5 and 4 (sorted in descending order according to the cost). Since
we can fill the period with sub-job 3 only, sub-job 4 is moved to RMS 2 and
sub-job 5 is moved to RMS 3. This step created a new configuration.

Step 7: As we created a new configuration, the process from step 3 to step 6 is
repeated until there is no conflict period. This process will satisfy the conditions
of Criteria 3, 4 and 5. After this phase, we have a feasible candidate solution.

Step 8: A local search procedure is used to improve the quality of the solution
as far as possible. We search in the neighborhood of the candidate solution for
a better solution. If a better solution has been found then it will play the role
of the candidate. The process is repeated until we cannot find a better solution.
More details about how this procedure meets all the criteria can be seen in [10].

4 Performance experiment

The goal of the experiment is to measure the feasibility of the solution, its cost,
and the time needed for the computation. The hardware used for the experiments
is rather standard and simple (Intel Duo 2,8Ghz, 1GB RAM, Linux FC5). To
conduct the experiments, 18 workflows with different topologies, number of sub-
jobs, sub-job specifications, and amount of data transferred between sub-jobs,
are generated. These workflows are then mapped to 20 RMSs with different re-
source configurations and resource reservation profiles by 3 algorithms: L-Map,
H-Map, and DBC. In the experiment, 30% number of RMS having CPU perfor-
mance equals to the requirement, 60% number of RMS having CPU performance
is 100% more powerful than requirement, 10% number of RMS having CPU per-
formance is 200% more powerful than requirement. Along with the increasing in
performance, the price for each CPU class is also increased. The runtime of each
sub-job in each type of RMS is assigned by using formula 4.

142



rtj =
rti

pki+(pkj−pki)∗k
pki

(4)

with pki, pkj being the performance of a CPU in RMS ri, rj respectively and
rti being the estimated runtime of the sub-job with the resource configuration of
RMS ri. k is the speed up control factor. 60% number of sub-jobs having k = 0.5,
30% number of sub-jobs having k = 0.25, 10% number of sub-jobs having k = 0.
The description about resource configurations and workload configurations can
be seen at the address: http://it.i-u.de/schools/altmann/DangMinh/desc expe1.txt.
The final result of the experiment is presented in Table 13. Column Sjs (Sub-jobs)
presents the number of sub-jobs within the workflows. The cost of the solution
and the runtime for finding the solutions for each algorithm are recorded in
column Runtime and column Cost.

L-Map H-Map DBC

Sjs Cost Runtime Cost Runtime Cost Runtime

Simple level experiment

7 625.386634 1 625.386634 1 625.386634 0.5

8 749.706622 0.5 749.706622 0.5 755.306618 0.5

9 768.416626 0.5 768.416626 1 774.016622 0.5

10 830.883292 0.5 833.683290 1 833.683290 0.5

11 883.923294 0.5 883.923294 1 883.923294 0.5

12 936.393294 0.5 936.393294 2 936.393294 0.5

13 992.233294 0.5 992.233294 1 992.233294 0.5

Intermediate level experiment

14 1044.093300 1 1044.093300 2 1049.693296 0.5

15 1169.953288 1 1169.953288 2 1175.553284 0.5

16 1294.273276 0.5 1294.273276 2 1294.333288 0.5

17 1353.649942 0.5 1353.649942 3 1353.649942 0.5

18 1477.969930 0.5 1477.969930 2 1477.969930 0.5

19 1501.396596 1 1501.396596 7 1504.196594 0.5

20 1560.773262 0.5 1560.773262 3 1560.773262 0.5

21 1584.153262 1 1584.153262 6 1584.153262 0.5

Advance level experiment

25 1762.433256 2 1762.433256 5 1770.833250 0.5

28 1862.649928 3 1862.649928 7 1873.849920 0.5

32 2184.839906 4 2190.499914 10 2193.239900 0.5

Fig. 13. Performance experiment result

The experiments are divided into 3 levels. Within the simple level, 7 work-
flows with a number of 7 to 13 sub-jobs are mapped onto 20 RMSs. The result
shows that the solutions created by different algorithms are identical for work-
flows with the same number of sub-jobs.

143



In the intermediate level experiment, we map 8 workflows that have 14 to
19 sub-jobs. The result of this experimentshow a difference in the quality of
the solution found by the different algorithms. Method DBC, which do not use
local search and need relative smaller runtime, found lower quality solution than
other methods. Method H-Map found high quality solutions but needed more
time than L-Map.

The advance level experiment mapped 3 workflows (with the number of sub-
jobs in the range from 25 to 32). The result of this experiment shows that L-Map
algorithm found out higher quality solutions than the DBC algorithm. It also
found equal or even better solutions in a shorter time than the H-Map algorithm.

5 Conclusion

This paper has presented an algorithm, which performs a cost-efficient and fast
allocation of workflows with light communication between sub-jobs onto Grid
resources with respect to SLA-defined runtime constraints. In our work, the
distinguishing factor is that the number of data to be transferred between sub-
jobs is very small. Considering this factor allows to detect and resolve the conflict
periods quickly. The simulation-based performance evaluation showed that the
proposed algorithm creates solutions of equal or better quality than existing
algorithms. Besides, it needed a significantly smaller computation time than the
other two algorithms in our comparative study. These characteristics are positive
factors for applying the method in real environments.

References

1. E. Deelman, J. Blythe, Y.Gil, C. Kesselman, G. Mehta, K. Vahi, K. Blackburn,
A. Lazzarini, A. Arbree, R. Cavanaugh, S. Koranda: Mapping Abstract Complex
Workflows onto Grid Environments. Journal of Grid Computing, Vol 1, no. 1,
(2003) 25-39.

2. J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd: GridFlow: Workflow Management for
Grid Computing. Proc. 3rd IEEE/ACM Int. Symp. on Cluster Computing and
the Grid, Tokyo, Japan, (2003) 198-205.

3. R. Lovas, G. Dzsa, P. Kacsuk, N. Podhorszki, D. Drtos: Workflow Support for
Complex Grid Applications: Integrated and Portal Solutions, Proc. 2nd European
Across Grids Conference, Nicosia, Cyprus, (2004).

4. A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, F. Casati: Automated sla monitoring
for web services. DSOM 2002, LNCS 2506, (2002) 28–41.

5. L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, H. Chang: QoS-
Aware Middleware for Web Services Composition. IEEE Transactions on Software
Engineering, v.30 n.5, (2004) 311–327.

6. I. Brandic and S. Benkner and G. Engelbrecht and R. Schmidt: QoS Support for
Time-Critical Grid Workflow Applications, Proc. e-Science (2005).

7. D.M. Quan, O. Kao: Mapping Grid job flows to Grid resources within SLA context.
Proc. the European Grid Conference,(EGC 2005), LNCS 3470, (2005) 1107–1116.

144



8. D.M. Quan, O. Kao: On Architecture for an SLA-aware Job Flows in Grid Envi-
ronments. Journal of Interconnection Networks, World scientific computing, (2005)
245–264.

9. D.M. Quan: Error recovery mechanism for Grid-based workflow within SLA con-
text. To be published by International Journal of High Performance Computing
and Networking (IJHPCN), (2007).

10. D.M. Quan, D.F. Hsu: Mapping Heavy Communication Grid-Based Workflows
onto Grid Resources Within An SLA Context Using Metaheuristics. To be pub-
lished by International Journal of High Performance Computing and Application
(IJHPCA), (2007).

11. R. Buyya, M. Murshed, D. Abramson, and S. Venugopal: Scheduling Parameter
Sweep Applications on Global Grids: A Deadline and Budget Constrained Cost-
Time Optimisation Algorithm. Software: Practice and Experience (SPE), Vol 35,
no 5, (2005) 491–512.

12. M. Hovestadt, O. Kao, A. Keller, A. Streit: Scheduling in HPC Resource Manage-
ment Systems: Queuing vs. Planning. Proc. 9th Workshop on JSSPP at GGF8,
LNCS 2862, (2003) 1-20.

13. D.P. Spooner, S.A. Jarvis, J. Cao, S. Saini, G.R. Nudd: Local grid scheduling
techniques using performance prediction. IEEE Proc. Computers and Digital Tech-
niques, (2003) 87–96.

145




