
Efficient Fault-Tolerant Addition by Operand Width Consideration

Bernhard Fechner, FernUniversität in Hagen, Dept. of Mathematics and Computer Science, 58084 Hagen, Germany

Jörg Keller, FernUniversität in Hagen, Dept. of Mathematics and Computer Science, 58084 Hagen, Germany

Abstract

Addition is a central operation in microcontrollers and hence faults should be detected for safety reasons. We extend

the principle of recomputing with shifted operands (RESO) by doing the re-computation concurrently to the computation

in the case of small operands. Thus, we generate a solution cheaper than two adders and faster than simple repetition.

To extend RESO, we consider the actual bit-widths of the operands. We validate our method with data from static code

analysis of two application kernels.

1. Introduction

Detection of hardware faults, permanent or transient, is

achieved by exploiting redundancy. Addition can be made

fault-tolerant by structural redundancy, e.g. by using two

adders and comparing the results, or by temporal redun-

dancy, i.e. by having the same adder perform the addition

twice, in different manners. We present a compromise that

needs fewer resources than two adders and needs less time

than two cycles per addition.

Addition was chosen as an example because it presents

several challenges. First, addition is central to all types

of computation in all kinds of processors, from simple mi-

crocontrollers to multi-billion transistor high-performance

superscalar microprocessors. Second, an adder circuit it-

self is not very costly concerning its area. Thus, measures

that avoid another adder must be very efficient. Third,

while in large processors a second adder may be the so-

lution at hand because area is available in plenty, another

adder makes a difference in small microcontrollers and in

terms of area and of energy consumption. But microcon-

trollers need fault-tolerance as well, sometimes more than

microprocessors, because microcontrollers are often used

to control devices interacting with the real world.

A general overview over redundant number systems as

well as error detection and correction is given in [5]. Er-

ror detection is currently achieved by duplicating or trip-

licating hardware [7], time redundancy [6] and recompu-

tation by using shifted operands (RESO) [4, 8]. Further

techniques based on RESO include the recomputation with

swapped operands [1] or the recomputing with duplication

with comparison [2].

Our method extends RESO by considering that not all ad-

ditions need the full width of the adder. If we have an n-bit

adder, and an addition only has n/2-bit operands, then the

two versions of the same addition might be executed on the

adder concurrently.

The remainder of this paper is organized as follows. Sec-

tion 2 presents our method, Section 3 presents an analysis

with two application kernels, and Section 4 presents a con-

clusion and an outlook to future work.

2. Operand Width Consideration

An n-bit adder of any type can easily be used to perform

multiple additions of smaller widths concurrently by sup-

pressing carry signals that cross the border of the different

additions. A prominent example where this method is ap-

plied are multimedia extensions in microprocessor instruc-

tion sets. In our case however, the sizes of the operands are

not known in advance. To compute the number of leading

and trailing zeroes in an operand requires a parallel pre-

fix computation [3] and thus is as complex (O(n) gates,

O(log
2 n) depth) as an addition itself.

To provide fault-tolerance, we can restrict to a simpler

question: can two identical additions be computed con-

currently or not? The answer is yes if both operands of

an addition only require up to n/2 bits. This is the case if

the n/2 leading bits of each operand are zero. If this test is

positive, then the upper n/2 bits of the adder can be used to

perform the same addition as the lower n/2 bits do. Hence

we need n/2-bit multiplexers connected to the upper n/2
input bits and the lower n/2 input bits of each operand,

and a 1-bit multiplexer on the carry from position n/2− 1
to n/2. This multiplexer is fed with the original carry, and

with the carry in. The latter is needed if two additions are

performed concurrently. The principle is illustrated in Fig-

ure 1, where al, bl and ah, bh denote the lowermost and

uppermost n/2 bits of n-bit operands a and b respectively

and cin denotes the carry in.

We exemplary extend the RESO principle for 16-bit

operands and perform the addition twice but concurrently,

where the second addition is done with operands shifted to

the uppermost bits. For 32-bit operands, we repeat the ad-

dition after it is finished. For the repetition, we might swap

the operands if both adder inputs are connected to differ-

ent read ports of the register file. Note, that we implicitly

assume 32-bit addresses, if not otherwise stated.



0 MUX 1 1MUX0

0
M

U
X

1

ADD(n/2)

ADD(n/2)

ZERO

a lbh b lah

cin

s h s l

Figure 1: Redundant addition hardware.

3. Analysis

The cost of our method is two multiplexers of n/2 bits

each and a 1-bit multiplexer, having the total complexity

of 3n + 4 gates, counted conservatively, as multiplexers

can be made almost as cheap as a single gate at transistor

level. Furthermore, we need circuits to test whether the

uppermost n/2 bits of both operands are zero. This can be

achieved by a simple OR-tree over n = 2 · n/2 bits. If we

assume that 4-input OR gates are available at twice the cost

of 2-input OR gates and only slightly larger delay, then for

n = 32 we only have cost 21 and delay 3. Thus our method

is cheaper than another adder which would have cost 5n

even for the cheap ripple-carry adder.

We admit that our solution might slightly increase the cycle

time if the adder is on the critical path because of the zero-

counter and the multiplexers. However, the scheme can

be pipelined and the increase is only 4 gate delays, 2 for

the zero-counter, 2 for the multiplexer. The comparison of

both results is needed in any redundancy scheme and can

be postponed into the next cycle.

Our method needs two cycles for large operands, but only

one for additions of n/2-bit operands.

In order to experimentally assess the advantage of our

method, we deduct the operand widths by using common

codes. As a first example, we choose Livermore Loop 1,

as given below.

for(k = 1; k <= 990; ++k){
space1_1.x[k-1] = \

spaces_1.q + space1_1.y[k-1] \

* (spaces_1.r * space1_1.z[k+9] + \
spaces_1.t * space1_1.z[k+10]);

}

There are 19 additions (and subtractions) in each loop it-

eration. These are the comparison by subtraction, the

increment of k, four additions to compute array indices

(k-1,k-1,k+9,k+10), seven additions to compute the

address of a struct element (e.g. space1 1.x), four ad-

ditions to add the array index to the base address, and two

additions to evaluate the expression.

Of these 19 additions, only the first 6 use 16-bit operands.

All address calculations are 32 bit, and the data in the ar-

rays is unknown at compile time and thus must be assumed

to be 32 bit.

Thus, 6 out of 19 additions (31.6%) are 16 bit additions

and can be done in one cycle, so that the average addition

time is 1.68 cycles instead of two cycles. One may assume

Livermore Loop 1 to be not the typical code to be executed

on a microcontroller, but for clarity we did not want to take

a code too advantageous for our method. Control codes

will often have less accesses in arrays and structs, so that a

greater fraction of additions will be 16 bit.

As a second example, we choose multiplication of dense,

square matrices of single precision floating point numbers.

We assume that our processor emulates floating point mul-

tiplication in software, and contains a multiplier for 16-bit

unsigned integers only. We further assume that the matrix

dimensions are 256 at most. This assumption is based on

the fact that dense matrices are used.

unsigned int i, j, k;
float a[n][n], b[n][n], c[n][n];

for(i = 0; i < n; i++)
for(j = 0; j < n; j++){
c[i][j] = 0;
for(k = 0; k < n; k++)

c[i][j] += a[i][k] * b[k][j];
}

Access to a matrix element such as c[i][j] is typically

implemented as *(cbase+(i*m+j)), where cbase is the

base address of the matrix c. As i, m and j are less than

256, the addition i · m + j is a 16-bit addition. As cbase
is a 32-bit address, the second addition is a 32-bit addition.

Access to elements of other matrices also comprises one

16-bit addition and one 32-bit addition each.

Each loop iteration comprises two 16-bit additions, one

for the subtraction to implement the less-than comparisons

such as i < n, and one to increment the loop variable.

After the last iteration, there is a final comparison that ter-

minates the loop.

Each floating-point multiplication is realized in software

as follows. For clarity of presentation, we only present the

case where both factors are normalized and where the re-

sulting product is normalized, too. For details on floating-

point representations and their arithmetic, cf. a textbook

on arithmetic such as [5]. A normalized, single-precision

IEEE 754 floating-point representation is stored as a sign

bit s, 23 fractional bits m (plus the implicit 1 for the inte-

gral part) of the mantissa and 8 bits for the characteristic c.

The number represented is

(−1)s · 1.m · 2c−b ,

where b = 127 is the bias. The product of two such repre-

sentations (s1, m1, c1) and (s2, m2, c2) is (s′, m′, c′) with

s′ = s1 ⊕ s2, c′ = c1 + c2 − b and 1.m′ = 1.m1 · 1.m2.



Table 1: Frequencies of 16-bit and 32-bit additions in ma-

trix multiplication

Code line 16-bit additions 32-bit additions

i loop 2n + 1
j loop (2n + 1)n
setting cij n2 n2

k loop (2n + 1)n2

access matrix el. 3n3 3n3

float mult. 2n3 3n3

float add. n3 n3

Note that if 1.m1 · 1.m2 ≥ 2, then we have to shift the

result to the right and increase the resulting characteristic

c′. To multiply the two mantissas, we split both of them

into 12-bit high and low halves, and perform four multipli-

cations and three additions.

Thus, the computation of the resulting mantissa requires

three 32-bit additions while the computation of the result

characteristic comprises three 16-bit additions if normal-

ization with shift and increment is needed, and two 16-bit

additions if not. For simplicity (and to our disadvantage),

we assume that all floating-point values used have man-

tissa values less than
√

2 so that their product is less than

2. Thus no result normalization with mantissa shift and

characteristic increment is needed, and two 16-bit addi-

tions suffice.

A floating-point addition comprises one subtraction of the

characteristics to align the mantissas, and one mantissa ad-

dition, i.e. one 16-bit and one 32-bit addition.

In total, we have 8n3 + 4n2 + 3n + 1 16-bit additions

and 7n3 + n2 32-bit additions, as Table 1 indicates. Thus,

about 8/15 ≈ 53.3% of all additions are 16-bit additions,

reducing the average addition time to 1.467 cycles.

If we would use pointer arithmetic to avoid multiplications

in addressing matrix elements, an appropriate alignment

of matrix rows to addresses that are multiples of 210 would

even improve the situation to a single 16-bit addition, with-

out 32-bit additions. To achieve this, one would use a 10-

bit unsigned integer offset and address matrix elements

by *(cbasei|offset++), where cbasei is the base ad-

dress of row i of matrix c.

4. Conclusions

We have presented a simple method that extends RESO

to provide fault-tolerant additions with smaller cost than

methods based on structural redundancy, and less time

penalty than approaches based on temporal redundancy,

thus providing a suitable compromise. Our method is valu-

able for small devices where die area is scarce and time is

valuable. We have assessed the speed of our method to be

1.47 to 1.68 cycles on average for two example codes.

Future work will comprise evaluation with more and di-

verse codes, extension to other, more elaborate types of

operations such as multiplication, and extension to use this

method not only for redundancy but for acceleration of

codes as well.

References

[1] B.W. Johnson. Fault-tolerant microprocessor-based

systems. IEEE Micro, 4:6–21, December 1984.

[2] B.W. Johnson, J.H. Aylor, and H.H. Hana. Efficient

use of time and hardware redundancy for concurrent

error detection in a 32-bit VLSI adder. IEEE Journal
of Solid-State Circuits, 23:208–215, February 1988.

[3] R. E. Ladner and M. J. Fischer. Parallel prefix compu-

tation. Journal of the ACM, 27(4):831–838, October

1980.

[4] J. Li and E. E. Swartzlander Jr. Concurrent error detec-

tion in ALUs by recomputing with rotated operands. In

Proc. IEEE Int.l Workshop on Defect and Fault Toler-
ance in VLSI Systems, pages 109–116, 1992.

[5] B. Parhami. Computer arithmetic and hardware de-
signs. Oxford University Press, 2000.

[6] J.H. Patel and L.Y. Fung. Concurrent error detection

in ALUs by recomputing with shifted operands. IEEE
Trans. Comp., 27:1093–1098, December 1978.

[7] D.P. Siewiorek and R.S. Swarz. Reliable Computer
Systems Design and Evaluation. A.K. Peters, 3rd edi-

tion, 1998.

[8] Whitney J. Townsend, Jacob A. Abraham, and Earl E.

Swartzlander, Jr. Quadruple time redundancy adders.

In Proc. 18th IEEE Int.l Symp. Defect and Fault Toler-
ance in VLSI Systems, pages 250–256, 2003.




