R. Rabiser, M. Wimmer, 1. Groher, A. Wortmann, B. Wiesmayr (Hrsg.): SE 2024,
Lecture Notes in Informatics (LNI), Gesellschaft fiir Informatik, Bonn 2024 97

Do Developers Benefit from Recommendations when
Repairing Inconsistent Design Models? a Controlled
Experiment

Luciano Marchezan', Wesley Assungdo!, Gabriela Michelon!, and Alexander Egyed'

!Johannes Kepler University Linz, Institute of Software Systems Engineering, Altenberger
Strafle 69, 4040 Linz, Austria

Keywords: Controlled Experiment; Consistency Checking; Repair Recommendations

Repairing inconsistent models is an error-prone and laborious task that requires a con-
siderable amount of time and effort from developers [Jo22; Ma23a; Tr22]. Hence, repair
recommendation (RR) approaches can be applied to maintain consistency and reduce the
time and effort required for the repair task, mainly on UML models [Bal6]. Approaches
proposing the use of RRs have been evaluated in a variety of scenarios in terms of scalability,
correctness, and minimalism [Ma22a; Ma22b]. However, most studies in the RR field do
not focus their evaluations on the perspective of developers regarding the provision of RRs.
These evaluations are important to analyze the implications of applying RRs strategies from
the perspective of its end-users, i.e., developers. In addition, as developers have different
experiences and preferences, ranking or automatically executing RRs to fix inconsistencies
may change the models in a way not desired by the developer. Hence, it is important
to understand the developers’ preferences when repairing models before applying these
approaches in industrial settings.

We address the aforementioned limitations by conducting an experiment with developers,
driven by three research questions (RQ): RQ1. Do developers benefit from recommendations
when repairing inconsistent design models? RQ2. How do developers perceive the use of
repair recommendations when repairing inconsistent design models? RQ3. Do developers
have preferred recommendations when repairing inconsistent design models? The data used
to answer the RQs was collected by analyzing developers repairing inconsistent models with
and without the provision of RRs. The sample was composed of 24 M.Sc./Ph.D. students
with varied software development experience. To answer RQ1, we measure how the use of
RRs can bring benefits to developers in terms of effectiveness (i.e., inconsistencies fixed)
and efficiency (i.e., the time required) when repairing design models compared to when
RRs are not provided. For RQ2, we asked developers to give us feedback regarding the
difficulty and their confidence when repairing the models. For RQ3, we ask the developers
to select and rank RRs to understand their preferences for different tasks.

©©®O® doi:10.18420/sw2024_29


https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/sw2024_29

98 Luciano Marchezan et al.

Results show that the provision of RRs benefits developers by improving their effectiveness
by 37.63% (p-value of 0.04) and efficiency by 29.81% (p-value of 0.17) in comparison
to not having RRs (RQ1). In more simple tasks, however, RRs reduce the efficiency of
developers. These findings evidence that RRs approaches can bring benefits to developers
in more complex tasks. Furthermore, the perceived difficulty and confidence of developers
when RRs are given are similar without RRs (RQ2). We also observed that developers do not
have an ideal RR for a given inconsistency, but rather have different preferences regarding
how to repair a model (RQ3). Moreover, in some contexts, any RR may be considered
not applicable. These findings highlight the importance of having developers’ feedback
when repairing models since they have different preferences. Such results also indicate that
applying automatic RRs in models by selecting the “most suited” RR may not be ideal, as
developers do not have the same opinion about what is the “most suited” RR.

The original paper is available at [Ma23b] with an online appendix at https://sites.
google.com/view/rrexperiment.

References

[Bal6] Bashir, R.S.; Lee, S.P.; Khan, S. U.R.; Chang, V.; Farid, S.: UML models
consistency management: Guidelines for software quality manager. IJIM 36/6,
Part A, pp. 883-899, 2016, 1ssn: 0268-4012.

[Jo22] Jongeling, R.; Ciccozzi, F.; Carlson, J.; Cicchetti, A.: Consistency Management
in Industrial Continuous Model-Based Development Settings: A Reality Check.
SoSym 21/4, pp. 1511-1530, Aug. 2022, 1ssN: 1619-1366.

[Ma22a] Marchezan, L.; Assuncao, W. K. G.; Kretschmer, R.; Egyed, A.: Change-Oriented
Repair Propagation. In: ICSSP. ACM, pp. 82-92, 2022, 1sBN: 9781450396745.

[Ma22b] Marchezan, L.; Kretschmer, R.; Assuncdo, W. K.; Reder, A.; Egyed, A.: Gener-
ating repairs for inconsistent models. SoSym/, pp. 1-33, 2022.

[Ma23a] Marchezan, L.; Assun¢do, W. K. G.; Herac, E.; Keplinger, F.; Egyed, A.; Lauw-
erys, C.: Fulfilling Industrial Needs for Consistency Among Engineering Ar-
tifacts. In: 45th International Conference on Software Engineering (ICSE) -
Software Engineering in Practice. Pp. 1-12, 2023.

[Ma23b] Marchezan, L.; Assuncdo, W. K. G.; Michelon, G. K.; Egyed, A.: Do Developers
Benefit from Recommendations when Repairing Inconsistent Design Models? a
Controlled Experiment. In: 27th International Conference on Evaluation and
Assessment in Software Engineering (EASE). Pp. 1-10, 2023.

[Tr22] Trols, M. A.; Marchezan, L.; Mashkoor, A.; Egyed, A.: Instant and global
consistency checking during collaborative engineering. Software and Systems
Modeling/, pp. 1-27, 2022.


https://sites.google.com/view/rrexperiment
https://sites.google.com/view/rrexperiment

