André Greubel, Sven Strickroth, Michael Striewe (Hrsg.):
5. Workshop ,,Automatische Bewertung von Programmieraufgaben (ABP2021) 51

On the Influence of Task Size and Template Provision on
Solution Similarity

Tobias Haan, Michael Striewe!

Abstract: In most cases of programming education, there is not a single correct answer to a given
task. Instead, the same problem can be solved by two or more pieces of program code that look very
different. At the same time, two or more pieces of program code that look very similar may actually
solve very different problems. It is thus not easy to foresee which degree of similarity one can expect
for all or at least the correct submissions to a given programming task. Since several applications may
benefit from some kind of prediction of the similarity, this paper presents first, preliminary results
from research on that topic. In particular, it presents results from an empirical study on the influence
of exercise size and template provision. Results indicate that both factors are not suitable as simple
predictors and that other factors have to be taken into account as well. Nevertheless, the results help to
generate hypothesis for more detailed subsequent studies.

Keywords: Programming Education; Program Code Similarity; Solution Space

1 Introduction

Computer programming is known to be a domain in which there is typically not a single
correct answer to a given programming problem. Depending on the type and complexity of
the problem, there might be (1) different algorithmic strategies to solve it (e. g. recursive or
iterative), (2) different possible implementations for the same strategy (e. g. a for-loop or a
while-loop), (3) different syntactical representations of the same implementation (e. g. i++
or i=i+1), and (4) virtually unlimited options for naming identifiers (e. g. variable names).
Consequently, two pieces of program code can look very different but both solve a given
problem. At the same time, two pieces of program code can look very similar, but produce
entirely different results due to a subtle but important deviation.

While this reduces the value of a direct comparison between two pieces of program code,
programming education knows nevertheless many useful applications for measuring program
code similarity on the large scale. Similarity of program code can be used to cluster the
“solution space” and consequently provide similar feedback to similar solutions [Gr12].
There are also approaches for automated grading support that suggest what manually crafted
feedback can be applied to which submission based on similarity [Hel7]. The gains in
efficiency of such methods directly correlated to the similarity of submissions. Approaches

! Universitit Duisburg-Essen, paluno - The Ruhr Institute for Software Technology, GerlingstraBe 16, 45127
Essen, Deutschland, michael.striewe @ paluno.uni-due.de

@@ @ doi:10.18420/abp2021-7


https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/abp2021-7
mailto:michael.striewe@paluno.uni-due.de

52 Tobias Haan, Michael Striewe

that require the preparation of several sample solutions for different solution strategies
(like e. g. [O119]) may also benefit from a reliable prediction of the expected similarity or
diversity of submission. An analysis of the solution space can also be used to determine
the relative difficulty of a task or the degree of freedom it allows [SG13]. Another quite
common application is the search for plagiarism [PPMOO]. Finally, structural similarity
of program code can also be used for grading [Na07, TRB04]. In any of these cases, the
result of a single comparison needs careful interpretation as already mentioned above.
However, also general properties of the programming task may have a remarkable influence
on the results. A solution template that is provided with the task may obviously cause
some minimum of similarity between all solutions, regardless of their correctness. Detailed
specifications within the task description like asking for a recursive solution or asking to
implement a particular class inheritance structure also limit the solution space at least for
correct solutions. However, the size of such effects seems not to be entirely predictable
and thus it is hard to foresee what degree of similarity or diversity among solutions can
be expected for a particular task. The possibility for better predictions in that area can
be considered beneficial particularly in the context of technology-enhanced assessment.
Knowledge about the size of the solution space can e. g. help to determine the quality of
tests and feedback rules. At the same time, clustering of similar submissions can take into
account if some minimal similarity is enforced due to the use of large templates.

The goal if this paper is to systematically look for possible correlations between the size of
solutions, the size of provided code templates and the kind of programming task in a sample
set of exercises from a programming lecture. To do so, it applies three different measures
for program similarity to hundreds of solutions for six programming exercises from an
introductory lecture on object-oriented programming in Java. The goal is to generate first
useful insights that help to generate hypotheses for more detailed subsequent studies.

2 Measurement of Program Code Similarity

There are several ways to measure the similarity of program code. One class of techniques
is based on graph comparison that is applied to the syntax tree or control flow graph of
a program. Another class is based on lexical comparison that is applied directly to the
program code. Finally, there is also the class of metric based comparisons, in which abstract
representations of programs in terms of metric values are compared. For the sake of brevity,
only the three approaches and tools used throughout this study will be explained in more
detail, followed by an overview on other approaches.

Clone Doctor (CloneDR)? is a commercial tool for detecting “code clones”, which are
pieces of code within a larger program that are identical or very similar. Code clones are
usually considered problematic with respect to software maintainability. Software quality
assurance thus tries to detect such clones. The approach used by CloneDR is based on the

2 http://www.semdesigns.com/Products/Clone/


http://www.semdesigns.com/Products/Clone/

On the Influence of Task Size and Template Provision on Solution Similarity 53

structure of abstract syntax trees [Ba98] and thus does not care about lexical properties
like variable names or code formatting. Syntax trees are cut into sub-trees and hash values
are computed for these trees. Sub-trees with identical hash values are considered identical,
while other sub-trees are ranked by similarity. For the purpose of this paper, we use the
number of code lines that are identified as clones by CloneDR and relate it to the total size
of a program. The result is a similarity value in percent.

Deckard is another tool that searches for code clones based on syntax trees. Different to the
previous approach, it introduces the notion of “characteristic vectors” to represent sub-trees
[Ji07]. Based on these vectors and the ability to merge several vectors it is able to ignore
additional, intermediate tree nodes like blocks or parentheses. Besides that, it also uses
clustering and hashing of vectors for similar sub-trees. It appears to be both faster and more
accurate than CloneDR [Ji07].

LAV?3 is a general-purpose tool for static program verification. Among other techniques,
it uses control flow analysis and constructs a control flow graph for that purpose. That
graph can also be used to analyse the similarity of two pieces of program code using
“neighbour matching” to determine the degree of similarity [Vul3]. Different to both
previous approaches, using the control flow graph not only ignores lexical differences but
also other syntactical differences in the implementation that have no or only very limited
influence on the control flow.

There are several other approaches that have not been used in this study. TBCCD [Yu19] and
Holmes [Me20] are also tree-based clone detectors but use additional information from a
lexical analysis of program code or the analysis of program dependency graphs, respectively.
Both approaches are quite new and seem to perform better than existing approaches, but
there is only little documentation available and they could thus not be applied easily on our
set of test data. Deltacon [KVF13] is an algorithm for measuring the similarity of general
graphs. It could thus also be applied to syntax trees, but it is specialised on comparing
graphs with known node correspondence and thus focuses on the detection of differences in
the connectivity. Hence, it is not suitable for the purpose of our study.

3 Empirical Study

The overall plan of the study is to use existing submissions for programming exercises,
compute similarity values for these and relate these to other characteristics of the exercises
and submissions, i.e. to the code (template) size and the correctness of the respective
submission. No sophisticated statistical methods will be used, as it is the intention to look
for obvious correlations (or their absence) and to generate hypothesis for future research.

3 urlhttp://argo.matf.bg.ac.rs/?content=lav



54 Tobias Haan, Michael Striewe

3.1 Data and Method

The empirical study is based on submissions to programming exercises from winter
term 2019/20. We used six exercises from an introductory lecture on Java programming.
Submissions were collected via an e-assessment system with automated feedback and
students were free to submit as often as they wanted. Consequently, we collected incomplete
and incorrect submissions, but also submissions that received full credit. Table 1 gives
an overview on the size of each exercise (measured in lines of code for template and
average submission) and the number of submissions. The templates followed the usual style
of writing Java code with not more than one statement per line and the vast majority of
submissions are written the same way. Hence, lines of code is indeed a usable approximation
for the size of the code.

Avg. total Template Share of tem- Number of Number

submission size (LOC) plate on avg.  total submis-  of correct

size (LOC) submission sions submissions
Exercise 1 45 15 0.33 1352 452
Exercise 2 228 145 0.64 4058 1182
Exercise 3 158 46 0.29 3078 795
Exercise 4 529 365 0.69 4790 652
Exercise 5 69 34 0.49 5422 1897
Exercise 6 211 116 0.55 3432 1005

Tab. 1: Overview on the six sample exercises used in the empirical study.

Exercise 1 is concerned with variables and the if-statement. The code template provides
method signatures and students are asked to implement simple calculations within these
methods. Exercise 2 focuses on constructors, arrays and loops. Students receive two Java
files as code template with predefined method signatures and are asked to perform some
operations (like searching, sorting or summarizing) on 1- and 2-dimensional arrays. Exercise
3 asks the students to implement a list data structure and perform operations on it. Students
received a single file as code template and an additional file with code that must not be
altered. Exercise 4 is similar to the previous one, but deals with a binary search tree as data
structure. Exercise 5 is the one with the most files to be edited since it is concerned with
inheritance structures. Students receive six files and must make changes and additions to
four of them to realize the correct inheritance of classes and methods. Exercise 6 deals with
enumerations, interfaces and maps. Again, student receive six files, but only need to alter
and extend three of them. The size of the code templates given in Table 1 only refers to files
that need to be touched by students and ignores files that must not be altered.

For each exercise, we created a clone detection report with CloneDR and performed a
pair-wise comparison of all submissions with Deckard and LAV. We normalized all results



On the Influence of Task Size and Template Provision on Solution Similarity 55

on a scale from 0 (no similarity) to 1 (full similarity). For Deckard and LAV, we used the
average and median similarity values for a first analysis. Admittedly, both measures are
weak as they can produce misleading results if the distribution of similarity values has more
than one peak. However, both measure are very close to each other in most cases and a
more detailed inspection of the distribution of similarity values revealed no cases in which
there were two or more clear peaks. Nevertheless, the following results are only a first step
towards a more detailed analysis. Some indicators for the need for a more detailed search
for peaks or clusters are discussed below.

3.2 Results

The results from all comparisons are summarized in table 2. As a general observation,
CloneDR produces clearly higher similarity values than the other tools, while LAV produces
slightly higher values than Deckard in all cases except for exercise 2.

There is no obvious trend on the difference between correct submissions and all submissions.
CloneDR produces lower similarity values for correct submission for all exercises except
for exercise 5. Deckard and LAV produces lower values in the same three cases and higher
values in the other three cases. There is no obvious correlation that these are exercises with
a remarkable high or low share of correct submissions. In exercises 5 and 6 the difference
between the values for all and correct submissions is larger than 0.05 in all cases (except for
exercise 6 in CloneDR), while it is below 0.02 in almost all other cases.

Moreover, there is no obvious correlation between the similarity of submissions and the
size or share of the code template. Exercise 1 and 3 have a low share of the code template
(0.33 and 0.29) and also the lowest similarity values in all tools. However, exercise 5 has a
moderate share of the code template (0.49) but high similarity values in all tools, including
the highest for correct submissions in CloneDR and LAV. Exercises 1, 3 and 5 are the ones
with the smallest code templates, but they span the entire range of similarity values. In turn,
exercise 4 has the highest share of the code template (0.69), but remarkable lower similarity
values in Deckard and LAV than exercise 2, in which the code template has a quite similar
share (0.64).

There is also no obvious correlation between the exercise size in terms of code produced by
students (which is the difference between the average submission size and the size of the
code template) and the similarity values. Exercises 1 and 5 have a similar amount of code
produced by students (30 and 35 lines), but very different similarity values. At the same
time, Exercise 4 and 5 have similarity values that are close to each other, but require an
entirely different student contribution (164 vs. 35 lines).



56 Tobias Haan, Michael Striewe

CloneDR Deckard LAV
all correct all correct all correct
Exercise 1 0.480 0.448 0.224 0.221 0.238 0.235
0.196 0.195 0.209 0.207
Exercise 2 0.744 0.743 0.447 0.467 0.442 0.462
0.447 0.468 0.442 0.463
Exercise 3 0.713 0.695 0.196 0.195 0.207 0.207
0.156 0.174 0.166 0.186
Exercise 4 0.830 0.817 0.386 0.366 0.408 0.389
0.370 0.360 0.394 0.383
Exercise 5 0.759 0.842 0.398 0.454 0.422 0.481
0.394 0.454 0.421 0.486
Exercise 6 0.799 0.779 0.367 0.422 0.388 0.448
0.337 0.420 0.359 0.449

Tab. 2: Similarity values for all and only correct submissions. For CloneDR, the overall share of clones
is listed as provided by the tool report. For Deckard and LAYV, average (first row per exercise) and
median (second row per exercise) values from the pair-wise comparison of submissions are reported.

3.3 Discussion

The missing obvious correlations in the results indicate that neither exercise size in terms of
code created by students nor template size in terms of lines of code provided to students
are good predictors for the size of the solution space. This is not surprising on the first
glance, since there are other factors like the task descriptions (that may prescribe or disallow
certain patterns) and the knowledge level of students that may also increase or limit the
solution space. Nevertheless, it is interesting to see that exercise 1 is among the exercises
with the lowest similarity values although it is small, has a clearly defined scope and is
used at the beginning of the lecture where students are expected to have a low level of
knowledge. Different to that, exercise 2 is used slightly later in the lecture and theoretically
gives much more possibilities to implement algorithms on arrays, but is nevertheless among
the exercises with the highest similarity value.

The relative small differences between the similarity values for all and correct solutions
in exercises 1 to 4 and the missing trend towards an increased or decreased similarity
for correct submissions seems to hint towards a lack of discrimination between the two
categories. In fact, there may be two competing factors, one for each category: On the one
hand, correct submissions can be expected to be similar if student stick closely to solution
patterns and strategies they have seen in the lecture or other sources. Deviations from these
patterns may cause errors and thus increase the diversity of all submissions, but not the



On the Influence of Task Size and Template Provision on Solution Similarity 57

correct ones. On the other hand, incorrect submissions may be intentionally incomplete
if students have only worked on some part of the exercise so far. Consequently, they have
not yet touched and filled parts of the provided code template. That may cause a higher
similarity in all submissions that will vanish once they work towards a more complete
submission. For exercises 5 and 6 a larger difference with higher similarity values for correct
submissions could be observed. This may indicate that there are only few correct possible
solutions on these exercises. For further studies, we may need to create more categories,
ignore submissions that are incomplete attempts, or apply advanced statistical methods to
find clusters that can be explained by other means.

With regard to tools, the results did not match our expectations we had based on the
underlying approaches. Although CloneDR and Deckard are somewhat similar in their
approach, they produce quite different results. At the same time, Deckard and LAV produce
quite similar results although their approaches are different. Since the relative high absolute
values from CloneDR do not match our subjective impression of submission similarity, we
will most likely focus on the other tools in subsequent studies.

4 Conclusions

We investigated the influence of exercise size and template provision on submission similarity.
Results indicate that neither exercise size nor template size seem to be simple predictor for
the size of the solution space.

Nevertheless, the study provides useful insight that helps to generate hypotheses for
subsequent studies. The first is, that a more fine-grained discrimination of submissions (e. g.
creating groups of submission also for partially correct submissions or partially unchanged
templates) helps to describe better how the similarity between submissions evolves over
time. This may be particularly useful in the context of automated grading, where scores
are easily available for each submission and where grouping by scores is more or less
meaningful depending on the actual similarity of submissions. A second hypothesis is, that
exercise size and template size have to be studied in conjunction with other factors like task
instructions and previous knowledge of students to come up with a predictor for the size of
the solution space. This is important for the further development of tool support, because
some factors are much easier to measure and quantify than others. Finally, there is also room
for the hypothesis that existing approaches for computing the similarity of program code are
not entirely suitable for the context of (small) programming exercises. Further studies on the
agreement between tools as well as on the agreement with a subjective human understanding
of code similarity may help to develop approaches that are specifically tailored for the use
in conjunction with programming exercises.



58 Tobias Haan, Michael Striewe

Bibliography

[Ba98]

[Gr12]

[Hel7]

[Ji07]

[KVF13]

[Me20]

[Na07]

[O0119]

[PPMO0]

[SG13]

[TRBO4]

[Vul3]

[Yul9]

Baxter, Ira D.; Yahin, Andrew; Moura, Leonardo; Sant’Anna, Marcelo; Bier, Lorraine:
Clone detection using abstract syntax trees. In: Proceedings of the International Conference
on Software Maintenance. IEEE, pp. 368-377, 1998.

Gross, Sebastian; Mokbel, Bassam; Hammer, Barbara; Pinkwart, Niels: Feedback Provision
Strategies in Intelligent Tutoring Systems Based on Clustered Solution Spaces. In (Desel,
Jorg; Haake, Joerg M.; Spannagel, Christian, eds): DeLFI 2012: Die 10. e-Learning
Fachtagung Informatik. Hagen, Germany, pp. 27-38, 2012.

Head, Andrew; Glassman, Elena; Soares, Gustavo; Suzuki, Ryo; Figueredo, Lucas; D’Antoni,
Loris; Hartmann, Bjorn: Writing Reusable Code Feedback at Scale with Mixed-Initiative
Program Synthesis. In: Proceedings of the Fourth (2017) ACM Conference on Learning @
Scale. pp. 89-98, 2017.

Jiang, Lingxiao; Misherghi, Ghassan; Su, Zhendong; Glondu, Stephane: DECKARD:
Scalable and Accurate Tree-Based Detection of Code Clones. In: 29th International
Conference on Software Engineering (ICSE’07). pp. 96-105, 2007.

Koutra, Danai; Vogelstein, Joshua T.; Faloutsos, Christos: Deltacon: A principled massive-
graph similarity function. In: Proceedings of the 2013 SIAM International Conference on
Data Mining. SIAM, pp. 162-170, 2013.

Mehrotra, Nikita; Agarwal, Navdha; Gupta, Piyush; Anand, Saket; Lo, David; Puran-
dare, Rahul: Modeling Functional Similarity in Source Code with Graph-Based Siamese
Networks. CoRR, abs/2011.11228, 2020.

Naude, Kevin Alexander: , Assessing Program Code through Static Structural Similarity.
Master’s Thesis, Faculty of Science, Nelson Mandela Metropolitan University, 2007.

Olbricht, Christoph: Trace-Vergleich zur Feedback-Erzeugung im automatisierten E-
Assessment-System JACK. In: Proceedings of the Workshop Automatische Bewertung von
Programmieraufgaben (ABP 2019). pp. 11-18, 2019.

Prechelt, Lutz; Philippsen, Michael; Malpohl, Guido: JPlag: Finding plagiarisms among
a set of programs. publikation, Universitit Karlsruhe, Fakultit fiir Informatik, Germany,
January 2000.

Striewe, Michael; Goedicke, Michael: Analyse von Programmieraufgaben durch Software-
produktmetriken. In: SEUH. pp. 59-68, 2013.

Truong, Nghi; Roe, Paul; Bancroft, Peter: Static Analysis of Students’ Java Programs.
In (Lister, Raymond; Young, Alison L., eds): Sixth Australasian Computing Education
Conference (ACE2004). Dunedin, New Zealand, pp. 317-325, 2004.

Vujosevié-Janici¢, Milena; Nikoli¢, Mladen; Tosi¢, Dusan; Kuncak, Viktor: Software verifi-
cation and graph similarity for automated evaluation of students’ assignments. Information
and Software Technology, 55(6):1004—-1016, 2013.

Yu, Hao; Lam, Wing; Chen, Long; Li, Ge; Xie, Tao; Wang, Qianxiang: Neural Detection
of Semantic Code Clones Via Tree-Based Convolution. In: [IEEE/ACM 27th International
Conference on Program Comprehension (ICPC). pp. 70-80, 2019.



	Introduction
	Measurement of Program Code Similarity
	Empirical Study
	Data and Method
	Results
	Discussion

	Conclusions

