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Abstract:

Model-checking is a way of testing the correctness of concurrent programs. To
do so, a model of the program is proven to match properties and constraints specified
by the programmer. The model itself is created by disregarding irrelevant program
details.

The biggest problem in model-checking is the number of program states that need
to be tested. Tapir, a simple but familiar object-oriented language and accompanying
tool chain, addresses this problem in two ways. First, the programmer can provide
application specific program transformations that reduce the state space. Second, for
selected classes and methods, the programmer can provide an alternative implemen-
tation: a slim black box version for use in model-checking that abstracts away many
details of the full fledged implementation.

Tapir’s aspect-oriented test case generation combined with black-boxing allows
model-checking of low-level library code.

1 Introduction

System software is critical software that includes such things as operating systems, net-
working libraries, and middle-ware. In general system software provides some service
to application code, and is hence essential for system stability. There is therefore a need
for ’extreme testing’ of system code which we implement by means of model-checking.
Because system software is often used by multiple concurrent threads or processes, the
software must be made safe with respect to concurrency. Model-checking provides this
concurrent testing naturally.

Model-checking a large library or complex service provider is hard due to two reasons.
First, model-checking requires complete, self-contained programs which by definition li-
braries or service providers are not. To model-check these, a service user (i.e. a test case)
must be supplied as well. For exhaustiveness, however, many service users are required,
better still, in combination with each other to increase test coverage. Second, model-
checking itself is time-intensive as it performs a complete state enumeration over a huge



state space. This requires a large memory to hold all computed states (to be able to detect
cyclic program states) and a lot of time to perform the state space enumeration itself.

Tapir has solutions to both of the above problems. First, Tapir supports Aspect Oriented
Programming (AOP) to weave a service or library together with one or more service users
creating many different complete (test-)programs. Second, Tapir allows the programmer
to aid in state space reduction by both providing program transformations that reduce the
model-checker’s state space and by providing an additional slimmed version of a class that
is used during model-checking.

The Tapir language is a subset of both Java and C++ with their worst and unneeded fea-
tures removed and some new features added. As such, Tapir’s language should be familiar
to many. Tapir adds aspect orientation (covered in Sec.|3)) for comfortable test case gener-
ation. Compile-time predicates, program transformations and analysis rules are added to
enable state space reductions (see Sec.[d). The base Tapir language features:

classes and templates, but no inheritance,

no type casts, pointer arithmetic, nor function pointers,
no exception handling support,

no static/global variables,

some functional programming support.

All these restrictions allow for easier program analysis and thus indirectly make state-space
reducing optimizations easier: the first two items provide strong static typing and eliminate
some types of errors. Removed exception handling simplifies control-flow. Removed sup-
port for global variables and added support for functional programming eliminate sources
of non-local reasoning which eases program understanding.

Parallelization and distributed programming are explicit. In Tapir, a class can be marked
with process or thread. A process class will have its run method invoked at virtual machine
start-up. When a process is running it can create instances of thread classes and start
them by invoking their start methods. Process classes communicate among each other
via Remote Procedure Calls (RPC) in active-message fashion [VECGS92|. This level of
communication abstraction allows systems programs to be written without knowledge of
communication media. Communication between threads is via process memory.

The Tapir tool chain (see Fig.[I) cannot only generate a C/C++ implementation from the
Tapir code. It can also generate program specific model-checkers (one generated per test
case). When generating the (C++) implementation, the weaver removes all statements
from the Tapir program that deal with AOP. What remains is a true library. That code is
passed to the Tapir compiler which generates a C++ library from it. For model-checking,
the aspect weaver generates all possible permutations of weavings to create the test case
programs. Each of these new Tapir programs (now without the AOP statements) is passed
to the Tapir compiler to generate a program (test case) specific model-checker. Each of
these model-checker programs is generated in Java, in the same way that the Spin [Hol97]
model-checker generates its C code for the Promela language. Such a Java program is then
fed to a JVM for execution. Because of the model-checker’s large memory requirements,
a specialized JVM such as LVM (Large Virtual machine) [VPQ7] is preferable. LVM’s
language extensions for memory optimizations and support for distributed execution on a
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Figure 1: Tapir tool chain.

cluster meet the model-checker’s large memory requirements.

The main contributions made in this paper are: (1) a technique to allow the programmer
to specify, at language level, multiple implementations of a class, method, or statement (a
version used during model-checking and a version used during code generation), (2) a way
to allow the programmer to aid the compiler in creating application specific optimization
rules to reduce the search space.

2 Self-consistency

Typical model-checking approaches express properties external to the code or use a for-
mulaic approach. We take a code-centric approach.

We call an application self-consistent if all incorporated checks succeed for all possible
runs. In Java/C/C++, such checks are often implemented by assert statements: assert (X)
where X evaluates to a boolean condition. If X evaluates to false the program aborts, if
true, nothing happens. These assert statements are then placed all over the program to test
the self-consistency of its data structures.

For many applications, it is also important to know that eventually an event will occur, that
a given program state will be reached, or that after some event some other condition should
hold. Although many model-checking environments provide specialized formalisms to
express such properties, they can also be explicitly programmed by means of asserts with
the help of counters. E.g., to test that after event X, eventually Y should hold, one could
write:

boolean X_happened
boolean Y_happened

false;
false;



int Y wait_counter = 0;
if (X)
X_happened = true;

if (X_happened)
{
assert {

Y_wait_counter++;
if (Y)
{
Y_wait_counter = 0;
}
assert (Y_wait_counter < MAX_Y_WAIT_COUNTER) ;

}

Linear Temporal Logic (LTL) [DAC99] is a formalism that is meant to describe such event
sequences (until/after X, Y should hold, etc.). CTL (Computation Tree Logic) [DAC99]|
extends LTL by adding that a condition holds on all possible paths following a program
state. By using model-checking we can guarantee CTL properties as it tests all possible
states.

Some problem domains have explicit time requirements as well. Again, instead of a special
formalism to express real-time properties, we support a minimalist approach by provid-
ing a ’system.currentClockTick’ method so that programs can check their to-be-checked
properties with asserts as well. When model-checking, the currentClockTick intrinsic re-
turns the number of executed instructions of the non-deterministic machine. When used
for model-checking, it will return the number of instructions executed by the simulated
machine. When used for code-generation, it works as expected. Using the currentClock-
Tick() method inside assert statements allows us to test real-time properties of programs.
For example:

long start = system.currentClockTick();
work () ;
long end = system.currentClockTick () ;
assert ( (end-start) < N);
when executed under the model-checker, the aspect will test if work () will always exe-

cute in less than N instructions.

Note that it is the responsibility of the programmer to write sufficient asserts into his code
to allow the model-checker to find all errors. While for simple tests automatic assert
generation seems feasible, tests of program semantics is definitely the programmer’s job.

Unfortunately, the above solutions have the potential to increase the state space as each
timer and counter variable becomes part of the state of a process. That can be partially
fixed by means of the techniques discussed below.

3 Aspect oriented testing

As Tapir is meant for programming system software, a Tapir program will in general not
be complete in the sense that it can link to an executable. What is needed is some start-up
environment that invokes the functions of the service provider to allow its functionality to
be tested. Moreover, because a library can often be used in different ways (by calling its



methods in different orders, for example), many different individual programs need to be
generated where each generated program uses the library in a different way.

To create a test, a set of classes and methods is woven into the library under test. We
call such testing code (that consists of ordinary Tapir classes and methods) a ’scenario’.
Thus, the Tapir weaver works as follows; for a given joint-point, a number of scenarios
may apply. For example, for a join-point X(), multiple scenario’s may contain a matching
X() method. For each permutation of scenarios that apply to a given join-point, the weaver
generates an output file in which each join point is replaced by a call to the method with
that name from inside the scenario. When there are multiple scenarios in the permutation,
the methods from that scenario are called in the order of the scenario permutation.

class FileStream join_point<FS_Mixin> {
boolean is_open;
StorageDevice device;
Lock 1;

int open(string name) {
is_open = true;
join_point<test_open(ret, name)>;
return ret;

}
byte read_byte (int fd) {
Block b = device.get_block();

join_point<test_read(ret)>;
return ret;

}
void close (int fd) {

is_open = false;
join_point<test_close (fd) >;
}
}

Figure 2: A file stream.

To illustrate this, let us examine the simple Tapir program from Fig.[2] It depicts a simple
file I/O class. Here, for example, join_point<test_open () > can be replaced by a
corresponding call to method test _open from one or more test scenarios.

From the two test scenarios from Fig. 3] four new tapir programs (four permutations)
are created by the weaver. One that looks only at scenario S1 which causes the join-
point statements to be replaced by calls to S1’s test_open, test_read, etc. The
second generated Tapir program is similar and considers only scenario S2. The other
two permutations replace each join-point with two calls, one per scenario. For example,
join_point<test_open () > will be replaced by {S1’s test_open(); S2’'s
test_open () ; } in the third permutation. In the last permutation, scenario S2 is con-
sidered first followed by scenario S1. This causes a replacement snippet:

{S2’s test_open(); Sl’s test.open(); }

Whenever a join-point causes a call to a scenario’s method, that scenario’s method is also
added to the class being woven into. This allows a weaved-in method to use the members
of the class where the join-point was performed. For example, this allows the use of



scenario S1 {
void test_open (int ret, string name) {..}
void test_read(byte ret) {assert (is_open); ..}
void test_close(int fd) {..}

class FS_Mixin {
void main () {
int fd = open("S1");
byte val = read_byte (fd);
assert (val == 42);
close (fd);
}
}
}

scenario S2 {
void test_open (int ret, string name) {..}
void test_read(byte ret) {..}
void test_close(int fd) {..}

class FS_Mixin {
void main() {..}
}

}

Figure 3: Two test scenarios for Fig.[2]

is_open in the assert statement in the test _read method of scenario S1.

The clause join_point<FS_Mixin>> in the first line of Fig.[3|causes the methods and
fields of class FS_Mixin from a test scenario to be added to the class FileStream. For the
first two permutations, the main method of either S1 or S2 is copied in. For the other two
permutations, we cannot bring in two equally typed ma in methods of course. Instead, we
concatenate the two bodies to create a single new main method.

As not all permutations of scenario weavings are valid, the programmer can restrict the set
of generated permutations by means of additional syntax:

e excludes X says that this scenario excludes scenario *X’.

e repeat Y says that this scenario can be repeated up to Y times inside a permutation.
By default a scenario is allowed to occur only once inside a permutation.

e exclusive says that this scenario cannot be combined with any other scenario.

e after X says that this scenario can only be put into a permutation if scenario X has
already been added.

4 Application specific code transformations to reduce the state space

To support threaded execution in the model-checker, Tapir supports a context_switch
instruction. Execution of this instruction allows the model-checker to non-deterministically
execute another (or the same) thread or process. This instruction spans the state space in
the model-checker to create all possible interleavings of thread and process executions.
Removing even one single context-switch thus has the potential to greatly reduce the state
space.



While some context-switch instructions can potentially be removed by generic (optimiza-
tion) rules, many can only be removed if application specific knowledge is applied. For
example, many context-switches can be removed if the programmer would provide the
compiler with knowledge that a piece of code only accesses thread-private data (and thus
cannot be influenced by other threads). It is hard (and most times impossible) for compiler
analysis alone to determine that data is actually thread-private.

This is why Tapir supports programmer supplied program transformation rules. These al-
low the programmer to code such programmer level information that can’t be extracted
easily (or at all) by static compiler analysis alone. These transformation rules and prop-
agation rules are coded by the programmer in his source code alongside his Tapir classes
so both are inside the same file(s). The rules themselves are interpreted by the compiler so
no compiler internals are exposed to the application programmer.

A program transformation rule needs to express two things: (1) when to allow the trans-
form and (2) what to transform into what. The *when’ question is almost always non-local:
information from somewhere allows a transformation elsewhere. To allow programmer
supplied transformations, we must therefore (application specifically) propagate informa-
tion using (predicate) propagation rules and provide a mechanism for describing program
transformations. Both mechanisms are supplied in the language (as opposed to hard-coded
inside the compiler).

The implications of bad (and good) applications of block-boxing are discussed in Sec.

4.1 Transformation rules

int open(string name) {
1.lock();

work_open () ;
is_open = true;
l.unlock () ;
return ret;

}

private void work_open () {
context_switch;

}

Figure 4: A propagation rule example.

Consider the open method of the FileSystem example of Fig. @} Because open might
be concurrently invoked, is its state is protected by lock 1. For some reason there is
a context_switch statement in work_open which is called from open. However,
because there is a lock/unlock pair surrounding it, the context-switch statement might be
superfluous when no other thread can interfere. This knowledge is application specific
as, for example, locks are programmed using ordinary Tapir statements and so provide no
language level "hints’ to atomicity. To be more precise, the lock class is a meta class (from

Sec.[5).



To get rid of the context-switch in this example, the program can provide a transformation
rule like:

transformation _rule {
guard: LockedToken[x]
pattern: { context_switch; }
target: { }

}

The semantics is that when the pattern’s statement (the context-switch statement here) is
found in the code while the guard holds, the pattern’s statement is replaced by the target’s
(empty) statement. The guard is a compile-time predicate. How that works is described
below.

4.2 Compile-time predicates

With the predicate statement, the programmer can tell the compiler that something
holds for a program variable. Compile-time predicates have no code generated for them at
all. For example, the Lock . lock () method can have:

predicate LockedToken [this]

atits end. The compiler propagates this predicate through the code and can then prove that
LockedToken[1] holdsin FileSystem.open. The propagation itself is facilitated
using programmer supplied propagation rules, see below in Sec.[4.3]

Note that transformation rules and predicates encode application level knowledge. The
compiler does not need to know that the Lock . lock () and Lock.unlock () methods
are special in any way.

In addition to using these compile-time predicates as guards in program transformations,
they can also be used in must_hold annotations on fields. For example:

class FileStream join_point <FS_Mixin> {
boolean is_open must_hold: L.ockedToken[1];

}

The compiler will flag an error if the predicate has not been propagated to any statement
that uses is_open. Extended syntax allows to distinguish read and write accesses. The
must_hold annotations over class fields are similar to type-states, see [DFO1, NGCO3|.

4.3 Propagation rules

Consider the following propagation rule that states that if the predicate LockedToken [x]
holds for variable x on a control-flow path that leads to the assignment 'y = x’, then



the predicate LockedToken [y] holds afterwards:

propagation_rule {
if_holds_before LockedToken[x]
with y =x;
then_holds_after LockedToken[y]

}

The statement for a propagation rule (here 'y = x’) can include field accesses and calls
to allow heap and inter-procedural predicate propagation. In case of multiple control-
flow-path predecessors, “1 f_holds before<0> P[x] and if_holds before<l>
P[x]” is used, where 0’ and ’1’ denote predecessor paths.

Note that transformation guards must be compile-time entities and not run-time entities
as they are used to enable compile-time transformations. The compiler must prove that a
guard always holds. We do this by propagating information.

Instead of compile-time predicates, run-time predicates could be used also. However, due
to the time-intensive nature of model-checking, making the model-checked code as small
and fast as possible is imperative. Adding run-time tests is therefore counter productive.

5 Application specific black boxing to reduce the state space

meta class StorageDevice {
Block[] blocks;

Block get_block (int id) {
return blocks[id]
}

void put_block (int id, Block b) {
blocks[id] = b;
}

Figure 5: Meta class.

Abstract-data types hide implementation from specification. We re-introduce the concept
here by allowing the programmer to provide two implementations of a class: a simpli-
fied implementation used during model-checking and a complex version used during code
generation.

The specification of a type can be modified in three ways: by marking a field, a method, or
a whole class with the meta keyword. In the FileStream class of Fig. [2| a StorageDevice
class is used to perform actual device I/O. The full code of this class is rather lengthy and
its implementation is transparent to the FileStream class under test. It would be both im-
practical and computationally intensive to use it in model-checking since the state space
would explode. To alleviate this problem, a simplified version that (loosely) implements
the same interface contract can be provided, see Fig.[5] In the example, when Tapir’s com-
piler generates the library, calls to get_block and put_block are generated (whose



implementation is to be externally supplied). When Tapir generates the model-checkers it
uses the code of the meta class.

To summarize, when marking a field as meta, the field itself is used during model-checking,
but in the generated implementation code, calls are emitted to getter and setter methods.
When marking a method meta, the method’s code is used during model-checking but when
generating the implementation code, the code of the function needs to be supplied exter-
nally. Marking a class as meta causes all its methods and fields to be marked meta.

5.1 Locks, condition variables, and compile-time asserts

Note that in Tapir, lock objects and condition variable objects, are themselves regular Tapir
objects. To ensure atomic execution of statements, Tapir provides the at omic statement-
block which is only allowed to occur in meta statements as it only has meaning for the
model-checker:

atomic { statements }

The actual implementation of the class must ensure its own atomic execution if needed.
Atomic blocks are guaranteed to be atomic inside the model-checker by not allowing either
the programmer or the compiler to insert context-switch instructions in them.

To allow waiting for a specific condition to become true, Tapir supplies the wait_until
statement:
wait_until <condition> statement

which blocks the current Tapir thread until the condition holds. Once the condition holds,
the statement is executed. Each wait_until implicitly adds a context-switch statement
so that if the condition does not hold, another thread can run. We can use atomic blocks
and the wait_until statements to implement the lock object as follows:

class Lock {

meta private void blocking_lock ()

predicate (UnlockedToken[this]) ;

Thread t = Thread.current () ;
wait_until value == 0 atomic {
owner = t;
value = 1;

predicate (UnlockedToken[this] => LockedToken[this]);

meta void unlock ()
{
predicate (LockedToken[this]);
atomic {
owner
value

null;
0;

}
predicate (LockedToken[this] => UnlockedToken|[this]);
}
}
Let us look at the blocking_-lock method. First, we assert that the compile-time pred-

icate LockedToken holds over ’this’. Afterwards we store the reference to the current



thread for later use. As soon as the value becomes zero, the current thread becomes the
lock owner and the value is set to one to indicate that the object is currently locked.

If UnlockedToken [this] holds, the transition predicate changes the predicate to
UnlockedToken [this]. We need an explicit transition statement here as simply as-
serting predicate (LockedToken[this]) at the end of blocking_lock would
cause to have both UnlockedToken[this] and LockedToken [this] valid on the
same reference (this) at the end of the method. There would then be no way to disam-
biguate between a correct predicate use here and a detected problematic usage.

The unlock method expects the LockedToken property to be set on it and so has the predi-
cate asserted. It then atomically resets the owner and the value before compile-time pred-
icate translation.

The code of the Condition variable is similar. A wait_until statement blocks on a
thread’s signal field. A list of blocked threads is used for waking them up once sig-
nalled. Condition.Signal, takes one thread from the list, and sets it signal field.

Because locks and condition variables use wait_until, the more they are used, the
larger gets the search space for the model-checker to explore.

Deadlock detection is implemented by the Lock and Condition objects themselves as they
count the number of blocked threads and compare it against the number of running threads
by an assert statement. Live-lock detection is currently not implemented as it is harder.
For example, it could happen by message exchanges, back-off algorithms, etc.

5.2 Discussion

While black-boxing helps to reduce the state-space, it also allows for divergence of the
model-checked system and the final system. If the black-box exactly implements the
semantics of the actual implementation, then no problems will occur. If the black-box
provides semantic changes in allowing less than the actual implementation, the system
could show errors not present when the black-box (meta) types are replaced by their ac-
tual implementations. If the black-box allows more in some way (in inputs, outputs, etc.)
compared to the actual implementations they replace, the final system will not show the
errors during model-checking.

It is the responsibility of the programmer to provide accurate replacement meta types.
This problem is endemic, however, to all systems doing black-box replacement. At least
in the solution proposed here, the places where abstraction from ’reality’ occurs are clearly
marked. Also, this guarantees that the structure of the whole program is the same as in
the actual implementation while this cannot be guaranteed if the specification or model are
completely separate from the implementation.



Table 1: File System Benchmark

Average Time | Heap Size
No Optimizations 342s | 11 GByte
Propagation 163 s 7 GByte
Propagation + Meta FileSystem 91s 4 GByte

*Dual Opteron 246, 2 GHz, 12 GByte of memory.

6 Performance

To measure model-checking performance, we use one application generated by applying
one test-scenario to our file system example. We first measure the effectiveness of the
propagation rules and user-level optimization rules and next the effectiveness of using
meta classes to remove code complexity.

The code of the benchmark is too big to include verbatim, so we sketch it here. The
whole program starts by creating two process objects. Each process then creates a thread
torun main (). Eachmain () then creates a FS_tester thread to run the FileSystem
tests and waits for completion (using a condition variable object). Each FS_tester
thread accesses the file system object to perform a series of writes and reads and uses
(runtime) asserts to check self-consistency. Because there could be multiple FS_tester
threads, the file system object is protected by a lock object. Outside of these threads, the
Tapir runtime library creates two additional Tapir threads per Tapir process for providing
services (a thread for managing incoming messages from other Tapir processes and another
for waiting for global system termination). In total, there are thus two processes to model-
check, each with four threads running and interacting and a number of objects allocated
by them.

We then create two versions of the application. One version (A) uses the file system class
described above and a companion Device meta class. A second version (B) of the ap-
plication replaces the FileSystem class with a meta class (making the Device meta class
redundant). Version (B)’s FileSystem methods have just enough implementation to satisfy
their interfaces. Furthermore, the benchmarks include Tapir’s runtime so that measure-
ments include the time needed to non-deterministically start-up the service threads and
model their interactions (which already contain a number of locks, etc. internally).

We then run the model-checker twice on version (A): once with and once without propa-
gation rules. For version (B) we time the model-checker with propagation rules enabled.

Table [T] gives performance results. Without optimizations (version (A), no propagation),
memory usage and run time are high. With optimization (version A with propagation), two
context switch instructions are removed (over a total of 12). However, one of those is in a
loop and hence critical. This causes the big performance gains seen. Version (B) makes the
code simpler (fewer instructions to simulate) and removes some object allocations (smaller
process state).

Memory requirements are high because every new state discovered in the search space is
placed into a hash-table. We use a 64 bit hash key computed over the simulated processes.



The hash table ensures that no state that has already been visited is expanded again. Mem-
ory usage is kept low by maintaining diffs of the simulated processes’s memory whenever
possible instead of creating a full-blown copy of the process each time it is stored into the
model-checker’s hash table.

7 Related Work

Except for the language restrictions, the programmer is free to code anything in Tapir.
This includes recursion which is not allowed by some other software model-checkers
(SPIN/Promela [Hol97], NuSMV [CCG™(2]). Tapir also supports concurrency (processes
and threads) which other software checkers cannot handle, e.g. Moped [mop03]. In gen-
eral, model-checkers that use state-machines (like Petri-networks [CCM97]]), cannot han-
dle recursion but can handle concurrency. Stack-machine based model-checkers cannot
handle recursion but can handle concurrency efficiently. Approaches that use virtual (Von-
Neumann) machines can handle both (such as we do here). They can handle both but
require more details in their models to operate and so generate a larger search space com-
pared to the restricted techniques.

Most model-checking approaches use separate implementation and model-checking lan-
guages. This can cause both implementations to diverge such that a bug-free, model-
checked application can still show logic bugs in the implementation, see [PEHV07|]. Tapir
uses one single language with only abstracting away low-level code in meta classes. This
approach should scale better than model-checking the complete application directly such
as CMC [MPC™02] does.

The use of Aspect-orientation has been proposed before for various tasks from implement-
ing the parallelization itself [Sob06] to adding unit-tests [Ben08]]. But to our knowledge,
AOP has not been used in a tool chain to generate permutations of test programs.

Condate[Vol06], extends GCC with external rules for semantic analysis. For example, one
might write a rule that states that between a call to malloc() and a call to free() there should
be a test against NULL. We achieve the same effect by a combination of predicates, prop-
agation rules, and transformation rules at language level but for optimization purposes.
Cobalt [LMCO3]] is similar to Condate, but uses its rules to generate a static optimizer in a
compiler while in Tapir rules are taken from the program and interpreted in the compiler
for extra flexibility.

Unlike our language-level approach, some approaches use compiler based static state
space reduction, e.g. [YGO04]] which does not allow application-level knowledge to re-
duce the search space. Tools such as F-Soft [GGIT08|, Bandera [CDH"00] and Java-
PathFinder [LVO1] take a program and extract a specification for an existing program
verifier by removing program details automatically. In contrast, Tapir leaves it to the pro-
grammer to decide which program details are superfluous or essential. Other techniques
to reduce the search space, such as program slicing [HRBS8SJ|, and predicate reduction or
predicate abstraction [DDP99] are orthogonal to Tapir’s approach and could be added to
our tool chain.



8 conclusion

Using AOP to generate test programs for libraries is a useful first step towards automatic
library testing. What is further required are things such as coverage analysis (how much
of the library is covered by a non-deterministic run of a library test), input value boundary
tests, etc. The use of meta classes to separate code into model-checking specific and
implementation specific parts is key to allow model-checking for some types of software,
especially if it interacts with hardware. Even if such problems are absent, black boxing
code inside simplified meta classes can severely increase model-checking performance (at
the cost of false negatives/positives).

Even though programmer written optimization rules can be hard to write and get right, they
can help performance enormously. Still, by providing them in libraries the programmer
may even never see their use.
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