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Abstract. We introduce a methodology for automating the maintenance of domain-
specilic concepl laxonomies and grammatical class lierarchies simullaneously,
bascd on weremental natural language text understanding. The acquisition pro-
eess 15 centered around the Linguistic and coneeptlual “quality” of various forms of
cvidence underlying the generation, assessment and on-going refinement of lex-
ical and concept hypotheses. On the basis of the quality of evidence, hypotheses
are ranked according to plausibility, and the most reasonable ones are selected for
assimilation into the given lexical class hierarchy and domain taxonomy.

1 Introduction

Intelligent systems require knowledge-inlensive resources 1o reason on. As their cre-
ation is usually delegated 1o human experts who are slow and cosily, these systems
face the often deplored knowledge acquisition bottleneck. The knowledge supply chal-
lenge is even more pressing when sufiiple knowledge sources have to be provided
within the frameworlk of a single system, all at the same time. This is typically the case
for knowledge-intensive natural language processing (NLP) systems which require si-
multancous feeding with a lexical inventory, morphological and syntactic rules or con-
straints, and semantic as well as conceptual knowledge.

Each of these subsystems embodies an enonmous amount of specialized component
knowledge of1ts own. Much emphasis has already been put on providing machine learn-
ing support for gsingle ol these components  acquiring morphological [JT97], lexical
[RJ99,SMO0], syntactic [Bri93.Cha93 |, semantic [GSI197] and conceplual knowledge
[HI.94,81.94|. But only Cardie |Car93| has made an attempt so far to combine these
different streams of knowledge within g uniform approach, i.e., to learn different types
of relevant NP knowledge in tandem.

We also propose such an approach, a lecarning system capable of acquiring syntactie
and conceptual knowledge simultancously. We build on already speeificd grammar and
domain knowledge but these resources are continuously enhanced as a by-product of
text understanding processes. Wew coneepts are acquired and positioned in the concept
taxonomy, a5 well as the grammatical status of their lexical correlates 1s leamed 1ak-
ing three knowledge sources into account. Domain krowledge serves as a comparison
scale for judging the plausibility of newly derived concept descriptions in the light of
prior knowledge. Grummaiical knowledge contains a type hicrarchy ol lexical classes
according to which increasingly restrictive grammatical constraints are made available,
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Structural linguistic patterans, linally, are used (o assess the strength of the imterpretative
force that can be atinbuted (o the grammatical construction in which unknown lexical
iems oceur. Our model makes explicit the kind ol qualitative reasoning that 1s behind
such a multi-threaded learning process | S198].

2 A Learning Scenario

Consider a learning scenario as depicted in Figure 1 from a grammatical perspective
and in Figure 2 from a conceptual one. Suppose, your knowledge of the information
technology domain tells you nothing about ftoh-Ci-8. Imagine, one day your favorite
technology magazine features an article starting with “The finh-Ci-8 has a size of ... 7.
Has your knowledge inereased? If so, what did vou learn from just this phrase?
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Fig. L. Sample Scenarior Grammatical Learning Fig. 2. Samplc Scenario: Conceptual Learning

The learnming process starts upon the reading of the unknown word “ffeh-Ci-8 7. In
thig initial step, the corresponding hypothesis space incorporates all the top level con-
cepls available 1o the ontology lor the new lexical item “ftoh-Ci-8 7. So, the concept
Lrou-Ci-8 may be an QrJLCT, an ACTION, a DEGREL, cle. (ef. Figure 2). Similarly,
from g grammatical viewpoint (¢f. Figure 1), the lTexical item "“Fioh-Ci-8" can be hy-
pothesized as being an instance of one of the top-level part-of-speech categories, e.g.,
a NOMINAL, an ADVERI or a VERBALL Due to grammatical constraints, however,

U while 1he distinetion between NOMINAL and VERBAL should be obvicus, the prominent role
of Apvirs at the top level of word class categorics might not be, Tlowever, NOMIN AL as well
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( “froh-Ci-87 dircetly follows " 7he ) the VERBYINITE hypothesis and related ones can
be immediately rejected (ef. the darkly shaded box in Figure 1).

While processing the noun phrase “fhe /foh-Ci-8 7 as the subject of the verb “has ™,
the ADVERB hypothesis, as well as alternative ADIECTIVE hypotheses, ineluding par-
ticiples acting as adjectives, ADIPARTICIPLE {cf. the grey shaded boxes in Figure 1),
hecome invahd (none of the mstances ol any of these word classes must imtervene a de-
ternminer and & fintte verb), sull leaving the SUBSTANTIVE hypothesis intact. Additional
supporiive evidence for the latter comes from the part-ol-speech constraints imposed by
the suk] {or, alternatively, by the obi) dependency relation (el the valency require-
ments attached to the verb “Aes ™ in Figure 1), while the equally possible VERBINIITN
alternative is ruled out due to violating syntactic evidence, Since “fioh-Ci-8 " is not a
pronoun {it does not match this closed list), we hypothesize it to be a NaLn, finally,

From an ontological perspective (cf. Figure 2), the concept 1'10n-Ci-8, at this stage
of analysis, s related via the AGINT role to the ACTION concept POSSESSION, the
concept denoted by “has” (lexiecal ambiguitics, c.g., for the verb “has™, lead to the
ercation of alternative hypothesis spaces). Sinee POSSESSION requires its AGENT to be
an OBIECT, ACTION and DEGREF are no longer valid concept hypotheses tor 1TOH-
C1-8. Their cancellation (¢l the darkly shaded boxes i Tigure 2} yields a significant

reduction ol the huge initial hypothesis space. The learner then aggressively specializes
the remaiming single hypothesis (o the immediaie subordinates ol OBIECT, viz. PHYS-
IeALOBILCT and TECHNOLOGY, in order Lo lest more resiriclive hypotheses which
duc 1o more specilic conglraints  are casier lalsifiable,

In addition. the linguistic constrainls for the verb “has ™ indicate that the gram-
matical direct object relation 1s 1o be interpreted in terms ol a conceptual PATIENT
role. Accordingly, the phrase “ ... has a size of ... 715 processed such that size. 1 is the
FaTIENT of the POSSISSION relationship, Subsequent conceptual interpretation steps
combine the fillers of the AG1N1 and PATIEN T Toles such that the following termino-
logical expressions are asserted:

(P1) vize.1 @ PHYSICALSIZE
(P2) frah-Ci-R.1 HAS-8121 size.]

Assertion {P1) indicates that size. 1 15 an instance ol the concepl class PHYSICALSIZE
and (P2) relates vize. 1 and fr0A-Ci-8.1 via the binary relation HAS-S1ZL,

Given the conceplual roles attached o PIYS1CALSIZLE, the sysiem recognizes that
all specializations of PRODBUCT can be related o the concept PUYSICALSIZL (via the
role Si7i-001), while for TrCHNGLOGY no such relation can be established. So, we
prefer the conceptual reading of 110n-C1-8 as a kind of a PrODLCT over the T1.C11-
NOLOGY hypothesis (ef. the grey-shaded box in Figure 2). At this intial stage, we come
up with two assumptions — grammatically, we consider the lexical item “ftoh-Ci-8 7 as
a NOUN, while coneeptually, we interpret 1ITOTI-CI-8 as a PRODUCT.

as VEerBAL carry grammatical information such as aasc, gendor, numbor, or Longo,
mocd, aspect, respectively, none of which s shared by ApvrrRs.
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3 The L.earning Model

The system architecture for elicitating congeptual and grammatical knowledge from
texts is summarized in Figure 3, It depicts how linguistic and congeptual evidence are
generated and combined to continuously diseriminate and refine the set of coneept hy-
potheses (the unlinown item yet to be leamed is characterized by the black square).
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Fig. 3. Architecture for Text-Based Concept and Grammar |Leaming

Grammatical knowledge for syntactic analysis is based on a fully lexicalized depen-
dency grammar [HSB94 |, Such a grammar caprures binary valency constraints benween
a syntactic head {e.g., a noun) and possible modifiers (e.g., a determiner oran adjective).
These inelude restrictions on word order, compatibility of morphosyntactic features and
semantic integrity conditions. For a dependencey relation & C 49 :— {specificr, subject,
dir-object, ...} to be established between a head and 4 modifier, all valeney constraints
nust be fulfilled. In this approach, lexeme specilications form the leal nodes of a lexi-
con tree which are further abstracied in terms ol a hicrarchy of word class specilications
at difTerent levels of generality, This leads (o a word class hicrarchy, which consists ol
word class names %W — {VERBAL, VERBFINITE, SUBSTANTIVE, NOUN, ...} and a sub-
sumption relation ixeq — {(VERBEINITE, VERBAL), (NOUN, SUBSTANTIVE), ..} C
' x #, which characterizes specialization relations between word classes.

The language processor [HBNOO] yields structural dependeney information from
the gramimatical constructions in which an unknown lexical 1tem occurs in terms ol the
corresponding parse tree. The kinds of syntactic constructions (c.4., gemitive, apposi-
tion, comparalive), in which unknown lexical iems appear, are recorded and assessed
later on relative to the eredit they lend o a particular hypothesis.

Conceprral knowledge is expressed in terms of a Ki-O~i-like knowledge repre-
sentation language [WS92]. A domain ontology consists of a sct of concept names #
= {COMPANY, HARD-DISK, ...} and a subsumption relation ise, — {{HARD-DISK,
SrorageDrvice). (IBM, CoMpeaNy). ..} © F x F. The set of relation names
R, = {UAS-PART, DLLIVLR-AGENT, ...} contains the labels of conceptual relations
which are also organized in a subsumption hicrarchy iseg = {{HAS-HARD-DISK, HAS-
PIY SICAL=PARTY, (HAS-PUYSICAL-PART, HIAS-PART), ...},
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The semantic nterpretation of parse trees [RMIT99] involving unknown lexical
iems and their conceptual corrclales in the ferminofogical knowledge base forms the
hasis for the denvation of concept Avpotheses, which are further enriched by conceplual
annotations rellecting structural paterns ol consistency, mutual justiflication, analogy,
cte. This kind of initial evidence, in particular ils prediclive “goodness™ lor the leaming
task, is represented by corresponding sets of linguistic and conceprual quality labels,

Linguistic qualify labels rellect structural propertices of phrasal patterns or discourse
contexts in which unknown lexical ilems occur we assume that the type of grammat-
ical construction exercises a particular inlerpretaiive Toree on the unknown ttem and,
at the same time, yiclds a particular level ol credibility Tor the hypoiheses being de-
rived therefrom. Appositive constructions ( “the laser prinier X7), c.g., constrain the
conceptual status of the unknown item much more than, e.g., genitives ("X price ).

Conceptual gquality fabels vesull Trom companng the representation structures ol
a concept hypothesgis with those of aliernative concepl hypolheses or a priori repre-
sentation structures in the underlying domain knowledge base from the viewpoinl of
structural similarity, compatibility, etc. The closer the match with given knowledge, the
more credit is lent to a hypothesis. For instance, a very positive conceptual quality la-
bel, M-DrnLorn, is assigned to multiple derivations of the same concept hypothesis
in different hypothesis (subjspaces, a definitely negative one is illustrated by INCON-
SISTENT, which annotates contradictory assertions.

Multiple concept hypotheses for cach unknown lexical ilem are organized in (erms
of corresponding Avpethesis spaces, each one holding a different or a further specialized
concept hypothesis. The guality machine cstimates the overall credibility of singlc con-
cept hypotheses by taking the assambled set of quality labels for cach hypothesis into
account. The [inal computation ol a prelerence order for the cnlire sel ol competing
hypoiheses takes place 10 the guafifier, a terminological classifier extended by an eval-
uation metric [or quality-based selection criteria. The output of the quality machine is a
ranked list of plausible concept hypotheses (for a formal specification of the underlying
qualification calculus, cf. |[SHOR|).

4 The Learning Scenario Revisited

Depending on the type of the syntactic construction in which the unknown lexical ilem
occurs, different hypothesis generation rules may fire. Genitives, such as “The switch
of the ltoh-Ci-5 .7, place by far fewer constraints on the item to be acquired than, say,
appositives like “The laser printer Itoh-Ci-8 .7, In the following, let fargef be the un-
known item {7 ftoh-Ci-8 ") and base be the known item (“switch ™), whose conceptual
relation to the target is constrained by the syntactie relation in which their lexieal cor-
relates appear. The main constraint for genitives, c.g., says that the tarpet concept fills
(exactly) one of the # roles attached (o the base concepl. Since the correct role cannot
yel be decided upon witheut additional evidence, # alternative, equally hikely hypothe-
ses have o be posiled {unless additional constraints apply). Following on that, ihe target
concept is assigned as a tentative [iller of the i-th role of base in the corresponding i-th
hypothesis space. As an immediate consequence, the classifier derives a suilable con-
cept hypothesis by specializing the targer concept (initially Tor, by default) according

69



1o the value restriction of the base concept’s f-th role (¢l” [HTLY4] for a similar constraint
propagation mechanisn). Additionally, the hypothesis generation rule assigns a synlac-
tic gquality label to cach #-th hypothesis indicating the type of syntacuic construction in
which larget and base co-occur (here, Genitive).

After the processing of “The ftoh-Ci-8 has ¢ size of .7, the target 11o1-CI1-8 1s
already predicted as a PRODUCT, Prior to continuing with the phrase “The switch of the
ftoh-Ci-8 .7, consider a fragiment of the conceprual representation for SwircCies:

(P SWITCI-OF = gunier [PART-OF| o wane
(P4 SwirTcH =
YHAS-PRICEL.PRICL ||
YHAS-WLEIGHT. WLIGIT T
o OureurDey U INpUrDey U
VSWITCH-or, | _ _ . T
STORAGEDLEY J COMPUTLER

The relation SWITCH-0OF 1s delined by (P3) as the set ol all PART-01 relations which
have their domain restrieted to SWITCH and thair range resineted o HHARDWARLE. In
addition, {P4) rcads as “all fillers of HAS-PRICLE, HAS-WLIGIL, and SWITCH-01 roles
must be concepts subsumed by PrICE, WEIGHT, and the disjunction {(OCTPUTDLY
L InpPurDEy U STORAGEDLY U COMPUTLER), respectively™. So, three roles have to
be considered for relating the target [T01-CI-8, as a tentative PRODLCT, to the base
concept SwiCl, Two of them, nas-rricE and nas-wiaGH, are ruled out due to
the violation of a simple integrity constraint (PRODUCT docs not denote a unit of mea-
sure}. Theretore, only the role SWITCH-0OT must be considered. Due to the definition of
SWITCIH=-01 (el P3). I'ton-Ci-8 is immediately specialized o [TARDWARLE by the clas-
sifier. Since the classifier aggressively pushes hypothesizing to be maximally specific,
four distinet hypotheses are immediately created due to the specific range restrictions of
the role SwiTCn-or expressed in (P4}, viz, OLreurDey, INPUTDEY, STORAGED Y
and COMPUTER, and they are managed in four distinet hypothesis spaces, hy, A2, i
and A, respeetively. Within By, &z, and &2, DEVICE, their common supereoneept, 8
multiphy denved by the classifier, too. Accordingly, this hypothesis 1s assigned a high
degree of conlidence by issuing the conceplual quality label M-DLERUCED,

5 Evaluation

The knowledge base on which we performed our experiments contained 1,215 concepts
and 1,721 conceplual relations. We randomly selecied from a corpus ol information
teehnology magazines 39 texis, with a total amount ol 73 unknown words (— TesiSet,
see below) from a wide range of word classes (excluding Viirisars), For each of them,
up to 16 learning steps were considered. A learning step captures the final result of all
semantic interpretations being made after new textual inpur, usually a clause or sentence
in which the item to be learned oceurs, has been processed.

5.1 Olfline Performance

In a [irst series of experiments, we neglecied the incrementality of the learner and cval-
vated our system in terms of its bare off-line performance. By this we mean its potential

70



1o deierniine the correct concepl deseription at the end ol cach text analvsis, consider-
mg the outcome of the final learning step only. Following previous work on evaluation
nmcasures [or learning systems [[TL94], we distinguish here the Tollowing paraniclors:

— I¥pothesis denotes the set ol concept or grammatical class hypotheses denved by
the system as the flinal result of the wext understanding process for cach target 1lem;

— Correet denotes the number of cases in the test set in which Hypothesis contains
the correet concept or grammatical class deseription for the target iten;

— OneCorreet denotes the number of cases in the test set in which Hypothesis is a
singleton set, i.c., contains only the correet coneept or grammatical deseription;

— ConceptSum denotes the number of concepts generated by the system for the target
itemn considering the entire test sct.

Measures were taken under four experimental conditions {ef. Table 1), In the see-
ond column (indicated by =), we considered the contribution of a plain lerminelogical
reasoning contponent to the concept acquisition task, the third column contains the re-
sults of incorporating linguistic quality crtena only (denoted by TH), while the (ourth
column mirrors nguistic as well as conceptual quality criteria (designaied by CB). The
ifth column contains data [rom the grammar learner.

In an attempt to relate these results of the quality-basced concepl learner 1o a system
close in spirit to owr approach, we here consider Camii [HL94], whose reasoning
mode is similar to the terminclogical classifier we use, CAnMuLLE (ef, Table 1, column
one), for the noun interpretation task, outperforms our system with respect to reeall
(44% vy, 29%29), as well as with respect to precision (67% vs 9%/19/%30%) under all
three test conditions., SUll, the data is hard 1o compare {and, even harder, 1o gencralize)
given the few number of Tearning cases in Camiit and in our system, diverging tasks
(learning concepts denoted by nouns only in Camiik vs. learning concepts denoted
by non-verbal items), and the different evaluation frameworks (amount and specificity
of the background knowledpe available). Two interesting observations, however, can be
made. First, learning without the qualification caleulus, just relying on terminological
reasoning, leads o particularly disastrous precision resulis (9%). Sceond, in 27% ol all
learning cases our system derived a single and valid concept hypothesis.

We have no reasonable conmparison data Tor the grammar learner night now. The
suceess rate ol to-day’s best perlorming POS taggers (ranging on the order ol 97-99%
[Vou93.Bri93| should, nevertheless, be taken with caution in comparison 1o our [rame-
work, since the diversily and speciicity of the word classes we employ is much higher

[ CAMILLE] =] TH] CB]J Grammar |
TestSet ¥ =18 7A Ta 75 Ta
Correcl 8 22 22 22 %3]
OneCorrect * [§] [i] 20 16
ConceptSum 12 248 114 74 169
RECAILL = % 4484 20 3% 24 3%, 29 3% RE.0%%
PRECISION : Co?*}ﬁgum 67% R7%|  10.3%|  30.2% 39,1%

Table 1. Performance Mceasures for Concept and Grammar Learning,
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{om the order o 80) than that in PennTree bank-style grammars (with 36 POS tags). The
data in Table 1 {columm live) lists simply all word class hypotheses generated at all by
the parser. Sull they indicate a considerable recall (88%), while precision 1s low (39%).
That number will subgtantially increase when we add a simple heurigtics, viz. 1o count
multiple derivations and 1o select the most [requent oneds) as the preferred hypothesis,

5.2 Online Performance: Learning Accuracy

In the context of class or lype hicrarchics, a prediction may be more or less precise,
i.e., it may approximate the target concept al diflferent levels ol specificily. Varying
degrees of the precision of hypotheses are captured by a measure of learning acciracy,
which takes into account the topological distance of a hypothesis to the goal concept
of an instance, i.e., the degree to which it correctly predicts the concept ¢lass which
subsumes the target concept to he learned. Leamning aceuracy {(£.4) is tformally defined
as (n being the number of coneept hypotheses for the target):?

CFH

1A, } Y2
= —_ : A= R
A= ) E \ with  LA; P s
iZi{l.n> FP—DP "

i FP =10

SF; speeifies the length of the shortest path (in terms of the number of nodes being
traversed) from the 'TOP node of the coneept hicrarehy to the maximally specifie coneept
subsuming the instance o be leamed in hypothesis £, CF specilics the lengih ol the path
from the TOr node to that concept node in hypothesis § which is common both to the
shortest path (as defined above) and the actual path to the predicted concept (whether
correct or not); £7 specifies the length of the path from the 'T'O1 node to the predicted
(in this casc fitlse) concept (fF; = (O, if the prediction is correet), and 28 denotes the
node distance between the predicted false node and the most specifie common coneept
(om the path from the Tor node (o the predicied false node) still correctly subsuming
the target in hypothesis £

Figure 4 depicts the learning accuracy curve lor concepl learning for the entire data
set {75 items). We also have included the graph depicting the growth behavior ol hy-
pothesis spaces {Figure 3). For both data sets, we distinguish again between three mea-
surements — LA CB gives the accuracy rate for the full qualification caleulus including
linguistic and conceptual quality criteria, LA TH for linguistic criteria only, while LA —
depicts the accuracy values produced by the plain terminological reasoning component
without incorporating any quality criteria. In Figure 4, we start from LA values in the
interval between 31% to 34% for LA —/LLA TH and LA CB, respectively, in the fivst
learming step, whereas the number of hyvpothesis spaces (NI range between 0.0 and
0.5. The latier values are duc 1o the Tact that an unknown lexical 1tent cannot always be
syntactically related when 1t oceurs because it forms extragrantmatical imput, and there-
fore the generation ol concept hypotheses {ails. [n the course of the analysis more and

2 Note that ‘learning aceuracy’, as we define it. is diffcrent [rom the notion of “accuracy® in
[H1.94], in which the number of hypotheses which contain the correct interpretation is divided
by the number of hypotheses gencrated at all.
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more evidence can be collected for an appropriate grammatical and conceptual integra-
tion of the unknown item, though the number of hypotheses increases, With a maximum
of 16 learning steps, learning accuracy approximates 153%, 34% and 39% for LA —, LA
TH and LA CB, respectively, and the NH values rise to 8.4, 4.9 and 3.2 for cach of the
three eriteria, respeetively. Peak values are reached after 4 and 5 learning, steps (60%)
using the Tull qualification system.

This data diverges considerably from that generated under more “lriendly” exper-
imental conditions |[HS98[, where we achieved [.A values ranging between 749% (for
LA =) and 87% (for LA CB). These superior results were due to perfeet parses (we
here included runs with partial parses, too), and the foeus on one word class only (viz.
nouns), while in the reeent experiments we refrained from such restrictions in order
1o generate reahstic data (sinmlar decline effects are mentioned though not measured
m [[TL94]). The nain findings (rom the previous study could be replicated, however.
The pure terminological reasoning machinery consistently achieves an inferior level of
leaming accuracy and generales more hypothesis spaces than the leacner equipped with
the qualification caleulus.

6 Conclusions

Knowledge-based systems provide powerful forms of reasoning, bur it takes a lot of ef-
fort to equip them with the knowledge they need by means of manual knowledge engi-
neering. In this paper, we have introduced an alternative solution based on an automatic
learning methodology in which concept and grammatical class hypotheses emerge as
a result of the incremental assignment and cvaluation of the quality of linguistic and
conceptual evidence related o unknown words, No specialized leamning algornithn 1s
nceded, since learming 1s a (metadreasoning sk carried out by the classificr of a ter-
minological reasoning system. This distinguishes our methodology from Cardie’s case-
bascd approach also combimng conceptual and grammaltical learning [Car93].

The work closest 10 ours has been carried out by [RIZE9] and [[1L94]. They also
gengrate concept hypotheses from linguistic and conceptual evidence, Unlike our ap-
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proach, their sclection of hypotheses depends only on an ongoeing discrimination pro-
cess based on the availability of this data but does not incorporate an inferencing scheme
for reasoned hypothesis selection. The crucial role of quality considerations becomaes
obvious when once compares plain and quality-annotated terminological reasoning for
the learmng task. In the light of our evaluation study (cl. Fig. 4. final learning step) the
difference amounts to 24%,, considering between LA - {plain terminological reasoning)
and LA CB values {terminological metareasoning based on the qualification caleulus
|SHYR).
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