

Concept, Implementation and Evaluation of a Virtual
Learning Environment for Acquiring Competences in
Android App Development

Frank Neumann 1, Juan Carlos Rodríguez-del-Pino2, Sebastian Homer3

Abstract: The presented project provides a virtual learning environment for university courses
teaching app development using Android and Kotlin. It features both self-guided lessons and
associated tests as well as practical app development tasks and associated self-assessed
programming exercises. The well-known Moodle plug-in Virtual Programming Lab (VPL) serves
as a starting point for the latter part. VPL gets extended by means for the usage of the Gradle build
tool, the Android SDK tools and AndroidX tests for unit tests at the level of Android activities and
fragments. In particular, the rather excessive resource requirements of the Gradle tool created
numerous problems in the sandboxes used by VPL. These issues were addressed by configuring
suitable VPL settings. In addition, problems associated with the proper usage of these settings had
to be addressed in VPL. In order to evaluate whether the virtual learning environment suits the
student’s need for learning app development, a questionnaire was designed that contains questions
about the course in general and about the design, handling and the benefits of the exercises The
answers of the students to this questionnaire confirm that the proposed virtual learning environment
provides a suitable means for learning in the described field.

Keywords: virtual programming lab, VPL, automated grading, automated assessment, automated
evaluation, Kotlin, Android, Gradle, Android X tests

1 Introduction

Learning to develop native Android apps is an exciting and challenging endeavor for
undergraduate students in computer science. It involves obtaining manifold skills ranging
from the used programming language, over various aspects of Android apps and associated
frameworks, to high-level architecture and programming concepts needed for such app
development.

In the present case, computer science undergraduate students (fifth semester) enroll for the
course with a strong background in object-oriented programming, software engineering

1 HTW – Hochschule für Technik und Wirtschaft Berlin, Fachbereich 2: Ingenieurwissenschaften - Technik

und Leben, Wilhelminenhofstr. 75a, 12459 Berlin, Germany, frank.neumann@htw-berlin.de,
https://orcid.org/0000-0002-8530-3283

2 ULPGC - University of Las Palmas de Gran Canaria, Department of Informatics and Systems, Tafira
Campus, 35017, Spain, jc.rodriguezdelpino@ulpgc.es

3 HTW – Hochschule für Technik und Wirtschaft Berlin, Hochschulrechenzentrum, Ostendstraße 25, 12459
Berlin, Germany, sebastian.homer@htw-berlin.de

cba doi:10.18420/inf2022_77

D. Demmler, D. Krupka, H. Federrath. (Hrsg.): INFORMATIK 2022,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2022 913

https://orcid.org/0000-0002-1825-0097
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.18420/inf2022_77

and some foundations in formal aspects of computer science as well as UML. The learning
module starts from this competence level of students and aims at providing them with the
above-mentioned theoretical foundations and practical skills for app development up to an
intermediate level. The course’s goal consists in the development of a medium size
Android app by project groups of two students. For mastering the project, the students
must take into account modern paradigms of Android development as advocated by the
Android team with regards to architecture, design and navigation.

Altogether, the module consists of 12 units that each take three hours (1.5 hours lecture,
1.5 hours of programming exercises and homework) and three additional sessions offering
advice and consultation time for the final app project.

The course is split into four learning sections as shown in Table 1.

Section
name

Number
of units

Content

1 Learning
Kotlin

5 • Type system
• Function
• Classes and interfaces
• Collections
• Lambdas
• Coroutines

2 Android
basics

2 • Activities and layouts
• Views and view groups
• Intents
• Manifest

3 Android app
architecture

4 • Fragments
• Navigation
• Data binding
• MVVM
• Connectivity
• Asynchronous programming

4 UI aspects 1 • Styles
• Themes
• Material design
• Menus
• App bars

Table 1: Content of the Android app development module

914

The first section focuses on providing insights into the Kotlin programming language and
its concepts. In particular, the students learn the type system, functions, classes, interfaces,
collection classes, lambdas and coroutines. The subsequent block on Android basics
focuses on the various components used in an Android app (activities, intents, manifest,
etc.) and layouts. The following section aims at providing architectural guidance for
modern Android app development as recommended by Google’s architecture guides [1].
The last unit focuses on UI aspects such as themes, styles and menus.

2 Related Work

The following sections analyze what kind of approaches and solutions exist for a virtual
learning environment for Android app development using Kotlin. The first section studies
the topic of self-guided learning courses and their associated tests for self-assessment. The
second section focuses on practical app development tasks and associated self-assessed
programming exercises.

The analysis will take into account video guided self-learning courses (e.g. Udacity,
Udemy, Stepik), self-learning tutorials (e.g. Google codelabs), and some tools aimed at
creating self-assessed programming exercises (e.g. CodeRunner, VPL, EduTools plugin).
Special attention will be paid to the integration into Learning Management Systems (LMS)
used in the university context.

2.1 Self-guided Learning Courses – Conceptual Level

Over the last decade massive open online courses (MOOC) emerged and gained attraction
both in academia (e.g. OpenHPI4, Standford Online5) and on commercial eLearning
platforms (e.g. Coursera6, Linkedin Learning7, Stepik8, Udacity9, Udemy10). MOOCs
typically combine video lectures with subsequent assessment of competences. Although
many free courses are available, no free MOOCs for the discussed topic of Android app
development could be identified. Many of the above-mentioned MOOCs and eLearning
platforms provide the necessary tooling to author new learning courses.

Overall, MOOCs are standalone solutions that in most cases are not integrated in the LMS
of universities. In the opposite direction, typical LMS (e.g. Blackboard, Canvas, ILIAS,
LAMS, Moodle) used by universities may easily serve as platforms to setup self-guided
learning courses combined with automated assessments. Courses in LMS may contain a

4 https://open.hpi.de
5 https://online.stanford.edu/
6 https://www.coursera.org/
7 https://www.linkedin.com/learning/topics/linkedin-learning
8 https://stepik.org
9 https://www.udacity.com/
10 https://www.udemy.com

915

https://open.hpi.de/
https://online.stanford.edu/
https://www.coursera.org/
https://www.linkedin.com/learning/topics/linkedin-learning
https://stepik.org/
https://www.udacity.com/
https://www.udemy.com/

blend of videos and other learning materials as well as test activities used to assess the
learning progress.

Google Developers Codelabs11 provide self-learning tutorials through a step-by-step
experience to setup an app or to use a particular feature in an existing app. They typically
give precise coding instructions along with the necessary conceptual knowledge. On the
subject of Android app development with Kotlin Codelabs offers excellent courses.
Unfortunately, Codelabs do not provide means for assessing the learning progress, as their
main target consists in guiding students through the stepwise process of writing code for
the app.

2.2 Self-learning Exercises – Programming Level

A couple of platforms developed over the last decade that support self-learning
programming exercises combined with automated assessment. Codecademy12 is a
commercial platform offering coding classes in currently 12 programming languages at
different levels of proficiency. Users of the platform write their coding solutions, which
can then be evaluated. JetBrains Academy13 falls also in this category but offers significant
fewer subjects. This platform uses the EduTools plugin14 for Android Studio, IntelliJ and
other IDEs. In addition, EduTools may also be connected to other eLearning platforms
like Coursera. Unfortunately, no interface connecting EduTools to any LMS could be
identified. freeCodeCamp15 focuses on providing free self-learning courses initially for
web-technologies (HTML, CSS and JavaScript) but extended its scope towards subjects
as Python and data science. Unfortunately, these eLearning providers do not integrate in
any of the LMS used by universities.

On the university side, various add-ins may be employed to build self-learning
programming exercises within LMS. For Moodle two noteworthy plug-ins were identified.
The Virtual Programming Lab (VPL) [2] [3] [4] [5] [6] [7] [8] is a plug-in to the Moodle
LMS, which supports more than 30 programming languages out of the box. It can be easily
extended for additional programming languages by supplying adapted bash scripts. It
allows teachers to author programming exercises alongside with the expected results as
testcases. Students can edit, run and evaluate their solution in the commonly used Moodle
environment. If desired, teachers can accept the grades determined by self-evaluation
performed by the students. In addition, VPL provides teachers with capabilities to detect
plagiarism among the handed-in solutions. CodeRunner is another plug-in to Moodle,
which supports about 10 programming languages but does not offer any check for
plagiarism [9].

11 https://codelabs.developers.google.com/
12 https://www.codecademy.com/
13 https://www.jetbrains.com/academy/
14 https://github.com/JetBrains/educational-plugin
15 https://www.freecodecamp.org/

916

https://codelabs.developers.google.com/
https://www.codecademy.com/
https://www.jetbrains.com/academy/
https://github.com/JetBrains/educational-plugin
https://www.freecodecamp.org/

3 Problem Analysis

In the authors perception, the ideal virtual learning environment for university courses
teaching app development using Android and Kotlin would allow for the authoring and
usage of:

• self-guided lessons including videos and other multimedia learning materials
focusing on the teaching of concepts

• associated tests assessing the reached competences of the students
• self-learning programming exercises
• automated assessment of the students’ solutions handed-in for the programming-

exercises

In addition, the learning environment would allow the teacher to check for plagiarism
among the coding solutions. Ideally, the students would work in their usual IDE for
Android app development i.e. Android Studio. In order to keep all the data for the course
in one place, the results of the tests and programming exercises should be stored within
the LMS. Table 2 summarizes the functional and technical requirements identified for the
virtual learning environment.

ID Group Description

F-1 Authoring content,
tests and exercises
by teachers

F-1.1 Authoring of lessons including videos and other
multimedia learning materials focusing on the teaching
of concepts.

F-1.2 Authoring of tests assessing the competence level of the
students in the area of concepts.

F-2 Exploring content by
students

F-2.1 Explore and use course material.

F-2.2 Assessment of acquired competence level based on
tests.

F-3 Authoring of
programming
exercises by teachers

F-3.1 Authoring of programming exercise description.

917

F-3.2 Authoring of sample solution for programming exercise.

F-3.3 Coding of test cases used for the assessment of the
programming exercise.

F-4 Editing, running and
evaluation of coding
solutions by students

F-4.1 Editing of coding solution for programming exercise.

F-4.2 Upload of coding solution for programming exercise.

F-4.3 Running of coding solution for programming exercise.

F-4.4 Evaluation of coding solution for programming
exercise.

F-5 Check for plagiarism
by the teacher

Identification of similar coding solutions for
programming exercises.

T-1 LMS Moodle should be used as LMS for storing the content
and the results of tests and programming exercises.

Table 2: Identified functional and technical requirements for the virtual learning environment

4 Proposed Solution

Starting from the gathered requirements and the technology landscape laid out in the
previous sections, suitable technologies will be identified in a first step. Based on the
selected technology stack, the desired solution will be further developed and described.

4.1 Selection of the Technology Stack

Chapter 2 described currently available technologies, platforms and tools for the
realization of a virtual learning environment geared towards app development for Android
and Kotlin. Those technologies will be filtered by the requirements collected in chapter 3
in order to select the best fitting technologies.

Due to the technical requirement T-1 demanding an LMS integration, the many eLearning
platforms unable to integrate with Moodle will be rejected. Moodle itself sufficiently
covers the requirements groups F-1 and F-2. Only CodeRunner and VPL as Moodle plug-
ins will be further considered for the coverage of the requirements clusters F-3, F-4 and
F-5. Neither of both plug-ins supports developing Android apps out of the box. However,

918

VPL supports the Kotlin programming language and offers plagiarism checks. In contrast,
CodeRunner does not support Kotlin and does not provide any kind of plagiarism check.
Consequently, the combination of Moodle and VPL covers more requirements than
CodeRunner combined with Moodle. Neither of the two solutions supports Android app
development out of the box. Finally, Moodle in combination with the VPL plug-in is
selected as the technology stack to implement the virtual learning environment geared
towards app development for Android and Kotlin.

4.2 Configuration of VPL Jail Server

Based on the chosen technology stack of Moodle and VPL, the first stage of implementing
the desired solution will be detailed. The VPL jail server needs to be properly configured
for building and running Android apps. In the VPL architecture, the jail server acts as an
execution sandbox that effectively isolates code run by different users from each other.
The development of Android apps requires the following parts of the Android SDK:

• sdkmanager: Allows for the installation of the different SDK components.
• build-tools: SDK component required for building Android apps.
• platform-tools: Contains platform tools like adb.
• platforms: The actual SDK packages

On the jail server, the “/usr/lib/android-sdk” directory is used for installing the SDK. The
SDK manager16 needs to be downloaded to this directory first. With its help the other three
components will be installed. The following code lines depict the installation of the above-
mentioned SDK components for the Android SDK version 30.0.3 using the sdkmanager
tool:

sdkmanager "build-tools;30.0.3"

sdkmanager "platform-tools" "platforms;android-30"

Subsequently, experiments were conducted on how to use the Gradle build environment
within a sandbox on the jail server. The Gradle tool has rather excessive resource
requirements that create numerous problems in the sandboxes used by VPL. These issues
were addressed by identifying and configuring suitable VPL settings. It turned out that
both within the VPL plug-in and on the jail server the maximum used memory and the
maximum file size of the execution file had to be increased to 2 GB. Here the required
settings for the jail server’s configuration file:

MAXMEMORY=2Gb

16 https://developer.android.com/studio/command-line/sdkmanager

919

https://developer.android.com/studio/command-line/sdkmanager

MAXFILESIZE=2Gb

When using those limits, a jail server of version 2.7.2 or higher is required due to issues
in the XMLRPC protocol.

4.3 Configuration of VPL Plug-in

Accordingly, the following limits have to be permitted in the configuration of the VPL
plug-in:

Maximum memory used: 2 GB

Maximum execution file size: 2 GB

Maximum number of processes: 200

4.4 Authoring of VPL Activities

When creating a new VPL activity in Moodle, those settings have to be selected under
Advanced Settings -> Maximum execution resources limits.

A general issue is the high number of files being used when developing an Android app
in Android Studio. The layout of a minimal app consists of various files in a very specific
structure depicted in Figure 1.

920

Figure 1: Structure and content of an Android app project

Besides the actual source files, it contains resource files as well as configuration files for
Gradle. Drawing from previous experiences, students often fail to hand in a higher number
of files. Therefore, the actual submission for the above-mentioned case will consist of only
three files:

• MainActivity.kt
• activity_main.xml
• AndroidManifest.xml

Consequently, the other required files have to be provided by the setup of the VPL activity
as shown in Figure 2. They should be added under Advanced Settings -> Execution files.

921

Figure 2: Android app files contained as VPL execution files

The Gradle version specified in gradle-wrapper.properties should be set to 7.3, as
previous versions had memory issues in the jail server’s sandbox environment.

Finally, the vpl_run.sh and the vpl_evaluate.sh files need to be adapted for running and
evaluating an Android app. Here, the JDK version 15.0.2 is required for running
RoboElectric tests at the level of activities and fragments. The difference between the run
and the evaluate scripts consists only of the different build targets used for Gradle:

• Run: compileReleaseSources

922

• Evaluate: testDebugUnitTest

. common_script.sh

check_program java

check_program kotlinc

if ["$1" == "version"] ; then

 echo "#!/bin/bash" > vpl_execution

 echo "kotlinc -version &> .kotlinc_version" >> vpl_execution

 echo "cat .kotlinc_version | sed 's/.*kotlin/kotlin/'" >> vpl_execution

 chmod +x vpl_execution

 exit

fi

JUNIT4=/usr/share/java/junit4.jar

if [-f $JUNIT4] ; then

 CLASSPATH=$CLASSPATH:$JUNIT4

fi

export CLASSPATH

search Android SDK

export ANDROID_SDK_ROOT=/usr/lib/android-sdk

Use JDK 15.0.2

export JAVA_HOME=/usr/lib/jvm/jdk-15.0.2

build and test using Gradle wrapper

chmod +x ./gradlew

cat common_script.sh > vpl_execution

echo "export ANDROID_SDK_ROOT=$ANDROID_SDK_ROOT" >> vpl_execution

923

echo "export JAVA_HOME=$JAVA_HOME" >> vpl_execution

echo "./gradlew compileReleaseSources" >> vpl_execution

chmod +x vpl_execution

5 Experiences and Discussion

We designed a questionnaire containing questions about the course in general and about
the design, handling and the benefits of the exercises. There were 25 students enrolled in
the course. 14 of them received grades in the exercises and thus can be regarded as active
participants. 10 of the students filled out the questionnaire.

For each question, we used a Likert scale with a range that goes from 1 for the lowest
score (strongly disagree) to 5 for the highest (strongly agree). Table 3 contains the
questions used, the mean and two distribution plots of the student’s responses. The left
box plot shows the locality and spread of the answers' numerical values. The median is
plotted as a solid vertical line and outliers as dots. The left and right hinges represent the
1. and 3. quartile. The left whisker reaches from the hinge to the lowest value at most 1.5
* inter-quartile range, the right one to the largest value not further than 1.5 * inter-quartile
range [10]. The right histogram shows the absolute number of each answer value in the
data set.

Question Mean Distribution plots

The programming exercises were an
important supplement to the lectures.

4.5

The goal of the tasks provided by the
professor was always clear.

3.8

I had no technical difficulties handing in
and evaluating my solutions.

2.9

The provided exercises made me think
about related problems of programming.

3.8

I was able/asked to create my own
solutions for the given problem.

3.4

924

I used other sources to solve the problem. 2.3

I discussed my approaches with other
students in my class.

2.8

The programming exercises helped me to
better understand the concepts of Android
apps such as activities, fragments,
navigation and data binding.

4.4

I developed skills and techniques. 3.6

The lecture and exercises increased my
interest in developing Android app.

4.1

I feel empowered to solve typical
problems/issues in developing Android
applications.

4.1

The combination of lectures and practical
exercises was a good preparation for the
final project

4.2

Table 3: Evaluation questions and statistics

A pleasant result of the questionnaire – the didactic goal of the course was achieved: Only
one student neither agreed nor disagreed with the statement, that the exercises helped to
understand the basic concepts of programming Android apps, the others agreed (4) or
strongly agreed (5). 7 out of 10 students strongly agreed, that the programming exercises
were an important supplement of the lectures. The majority reports an increased interest
in developing Android Apps and feel empowered to solve problems or issues in that field.

3 students were faced with technical problems when handing in or evaluating their
solutions, only 1 student strongly agreed, that no problems occurred. None of the students
asked the technical helpdesk for assistance or failed uploading a solution.

The answers show that students did not use other sources than the provided broadly. We
asked them for a list of used sources, they mentioned Google Codelabs, StackOverflow
and video tutorials hosted by YouTube.

925

6 Conclusions

Altogether the proposed virtual learning environment provides a suitable means for
learning in the described field. This statement was confirmed by the questionnaires handed
in by the students. However, certain aspects of the current setup can still be improved. The
answers to the question on technical difficulties when handing in and evaluating solutions
suggest that especially the reliability of this aspect can be significantly increased.

Another area of improvement is the long build time required by the Gradle tool. When
using Gradle from the command line or from within Android Studio, the long build time
is likewise encountered when building a project for the first time. After the first build,
Gradle keeps the results of previous builds. On this basis Gradle is able to perform
incremental builds that require significantly less time.

However, the sandbox environment of the VPL jail server is not designed to keep results
of previous builds. Therefore, Gradle always executes a very time-consuming full build.
Improvements addressing this issue have to be implemented at the level of VPL and the
jail server. Overall, the VPL developers are studying how to incorporate the Gradle build
tool, the Android SDK tools as well as the AndroidX tests so can be used in VPL out of
the box.

On the level of the requirements gathered in chapter 3, all of them were completely
covered by the selected technology stack and the implemented solution.

Remarks:

The present paper is a slightly extended version of [11].

References

[1] Google, "Android app architecture," 7 10 2021. [Online]. Available:
https://developer.android.com/topic/architecture. [Accessed 23 3 2022].

[2] J. C. Rodríguez-del-Pino, E. Rubio Royo and Z. Hernández Figueroa, "A virtual
programming lab for Moodle with automatic assessment and anti-plagiarism
features," in Proceedings of The 2012 Internacional Conference on e-Learning,
e-Business, Entreprise Information Systems, & e-Government, 2012.

[3] "VPL, the Virtual Programming lab for Moodle," [Online]. Available:
https://vpl.dis.ulpgc.es/. [Accessed 23 3 2022].

926

[4] A. v. Wangenheim, J. E. Martina, R. Cancian and J. C. Dovicchi, Developing Programming
Courses with Moodle and VPL: The Teacher's Guide to the Virtual Programming
Lab, Florianopolis: Bookess, 2015.

[5] D. Thiébaut, "Automatic evaluation of computer programs using Moodle's virtual
programming lab (VPL) plug-in," Journal of Computing Sciences in Colleges, p.
145–151, 01 06 2015.

[6] J. Rodríguez, E. Rubio-Royo and Z. Hernández, "FIGHTING PLAGIARISM: METRICS
AND METHODS TO MEASURE AND FIND SIMILARITIES AMONG
SOURCE CODE OF COMPUTER PROGRAMS IN VPL," in 3rd International
Conference on Education and New Learning Technologies, Barcelona, Spain,
2011.

[7] J. Rodríguez, E. R. Royo and Z. Hernández, "SCALABLE ARCHITECTURE FOR SECURE
EXECUTION AND TEST OF STUDENTS' ASSIGNMENTS IN A VIRTUAL
PROGRAMMING LAB," in 3rd International Conference on Education and
New Learning Technologies, Barcelona, Spain, 2011.

[8] J. Rodríguez, E. R. Royo and Z. Hernández, "USES OF VPL," in 5th International
Technology, Education and Development Conference, Valencia, Spain, 2011.

[9] "CodeRunner," [Online]. Available: https://coderunner.org.nz/. [Accessed 3 4 2022].

[10] "A box and whiskers plot (in the style of Tukey)," [Online]. Available:
https://github.com/tidyverse/ggplot2/blob/HEAD/R/geom-boxplot.r. [Accessed
3 4 2022].

[11] F. Neumann, J. C. Rodríguez-del-Pino and S. Homer, "Acquiring Android App Development
Skills in a Virtual Learning Environment: Extending the Virtual Programming
Lab for Moodle towards Self-Assessed App Development Tasks employing
Android and Gradle," in 35. Jahrestagung des Arbeitskreises
Wirtschaftsinformatik der deutschsprachigen Fachhochschulen (AKWI),
Berlin/Germany, 2022.

927

