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Abstract: We study the effect of growth on the fingerprints of adolescents, based on
which we suggest a simple method to adjust for growth when trying to retrieve an
adolescent’s fingerprint in a database years later. Here, we focus on the statistical
analyses used to determine how fingerprints grow: Procrustes analysis allows us to es-
tablish that fingerprints grow isotropically, an appropriate mixed effects model shows
that fingerprints essentially grow proportionally to body height. The resulting growth
model is validated by showing that it brings points of interest as close as if both fin-
gerprints were taken from an adult. Further details on this study, in particular results
when applying our growth model in verification and identification tests, can be found
in C. Gottschlich, T. Hotz, R. Lorenz, S. Bernhardt, M. Hantschel and A. Munk: Model-
ing the Growth of Fingerprints Improves Matching for Adolescents, IEEE Transations
on Information Forensics and Security, 2011 (to appear).

1 Introduction

Consider the following scenario: an adolescent at age 11, say, gives his fingerprints which

are entered into an automatic fingerprint identification system (AFIS); later, at age 30, his

fingerprints are again taken, and run against the AFIS database. To find the adolescent

fingerprint matching the adult one is made difficult by the fact that the adolescent has

grown into an adult – as have his fingerprints, compare Figure 1. As these systems are

usually engineered for adults, growth effects are not taken into account appropriately, and

the AFIS will decide that the adolescent print matches the adult print poorly; indeed, the

points of interest (POI), i.e. minutiae and singular points, cannot be brought close by

merely rotating and translating the imprints, see Figure 1 (right).

This study aims at determining how fingerprints grow, such that the effects of growth can

efficiently be taken into account and corrected for. For more background on the political

implications of this question, as well as on the lack of research on fingerprint growth so far,

see the complete study report published in [GHL+11]. Here, we focus on the statistical

∗T. Hotz acknowledges support by DFG CRC 803, C. Gottschlich by DFG RTS 1023.

11



2 mm

Figure 1: Earliest (left) and latest (middle) rolled imprints of right index finger of person 28 with
points of interest (POI) marked by a human expert. Superimposed POI (right) of earliest rolled
imprint without rescaling (blue circles), with rescaling (purple triangles), each brought into optimal
position w.r.t. the POI of latest rolled imprint (red squares).

analyses that allow us to model fingerprint growth, and to validate the proposed model.

In [GHL+11] the authors also describe the dataset which was used for this study. It con-

sisted of 48 persons (35 male, 13 female) whose fingerprints were taken between 2 and

48 times. At the time when the first fingerprint was taken participants were between 6

and 15 (median 12) years old, when the last fingerprint was taken they were between 17

and 34 (median 25) years old. We thus had longitudinal datasets of 48 persons’ finger-

prints through their adolescence at our disposal, in order to answer the question of how

fingerprints grow.

To be able to measure how growth affects fingerprints, for each person a human expert

selected one finger whose imprints were of high quality, showing many POI in all its

imprints; the human expert then marked all corresponding POI in this finger’s imprints.

The remainder of this article is organised as follows: in Section 2, Procrustes analysis is

employed to determine whether fingerprints grow isotropically in all directions. The affir-

mative answer to that question allows to model fingerprint growth by rescaling, the factor

of which may be obtained from growth charts of body height, as detailed in Section 3. This

model allows to effectively predict growth of fingerprints such that adolescent fingerprints

can be transformed into fingerprints which can be treated like adult fingerprints as shown

in Section 4. Finally, we summarise and discuss the results obtained in Section 5. Further

information on this study, including on the model’s performance in practice, can be found

in [GHL+11].

2 Screening for anisotropic growth effects

It was to be expected that fingerprints grow in size. However, it was unclear whether they

grow isotropically, i.e. equally in all directions, which would result in a simple uniform

scale-up of the fingerprint. Indeed, it is known that finger bones tend to grow more in

length than in width, becoming relatively narrower [Mar70].
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To address the question whether there are any anisotropic growth effects, we employed

techniques from the field of shape analysis (see e.g. [DM98] for more details) where

one considers objects only up to translation, rotation and isotropic rescaling, i.e. up to

similarity transformations. In particular, we used full Procrustes analysis: for this, let us

consider the POI of person i, fixed for the moment, marked in the jth rolled imprint of that

person’s selected finger. Assuming that n POI have been marked in each of the J imprints,

we can represent their coordinates as an n-dimensional complex vector zij ∈ C
n.

Next, we aim to define a mean point configuration for that finger, independent of transla-

tions, rotations and rescaling. Hence, we look for some µi ∈ C
n which minimises the dis-

tances to the zij if the latter are allowed to be translated, rotated and rescaled. Clearly, one

should fix µi’s size and centre of mass, i.e. we require that µi ∈ Sn = {z ∈ C
n : 1

∗
nz =

0, ‖z‖ = 1} where 1n represents the column vector comprising n ones, and ‖ · ‖ denotes

the usual Euclidean norm.

Note that rotating and rescaling POI z ∈ C
n can be described by multiplication by some

λ ∈ C
∗ = C \ {0}, whereas translation is given by adding τ1n for some τ ∈ C. Hence,

a reasonable choice for µi is

µi = argmin
µ∈Sn

J∑
j=1

min
λ∈C∗,τ∈C

‖λzij + τ1n − µ‖2. (1)

µi is called a Procrustes mean of the zij ; it is usually unique up to a rotation which we

assume to be chosen arbitrarily. Let us denote the respective minimisers on the right by

λij and τij ; they represent the rescaling, rotation and translation bringing zij into optimal

position to µi. Then,

ẑij = λijzij + τij1n

is rescaled, rotated and translated to optimally match µi with respect to (w.r.t.) the Eu-

clidean norm; one might also say that the ẑij are registered w.r.t. the Procrustes mean.

Figure 2 (left) shows the µi and the ẑij for the right index finger of person 28.

Now that rescaling, rotation and translation have been fixed, one can apply methods of

classical multivariate data analysis to the ẑij ; note however, that the registration – and

in fact even the space’s dimension – depends on the finger, i.e. on i. We will thus first

perform intra-finger analyses which will then get aggregated over the study population;

recall that we chose one finger per person.

Assume for a moment that there was an anisotropic growth effect; then, we would expect

to see a trend in the ẑij , the POI moving in a preferred direction as time progresses. This

growth effect should strongly correlate with the fingerprint’s size; note that time is not a

good predictor since the effect of one year of growth is expected to be larger for younger

persons – for adults there should not be any growth related effects any more.

We therefore need a measure of size of a person’s fingerprint. With the data at hand, this

can only be an intra-finger measure of size which will not enable us to compare different

finger’s sizes, but this will suffice for our intra-finger analysis. As a measure of person i’s
fingerprint j’s size, we chose

Sij = ‖zij −
1

n
1n1

∗
nzij‖, (2)
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Figure 3: Full (left) and partial (right) generalised Procrustes analysis of POI for the right index
finger of person 28: scores (i.e. coordinates in direction) of the respective first PC (vertical axis) vs
size (horizontal axis).

total variation. Also, the first PC captures much of this trend, explaining a median 64% of

the variation; thus size is close to explaining as much of the total variation as any linear

predictor, if we do not correct for isotropic growth effects.

3 Modeling fingerprint growth

From the last section, we may assume that, essentially, fingerprints grow isotropically.

What remains to be determined are the factors by which fingerprints get enlarged during

growth. Since it is well known that the lengths of upper limbs and body height exhibit a

strong correlation during growth [McC70, HYM77], we decided to utilise growth charts

of boys’ and girls’ body heights, in particular those given in [KOG+02].

If for two fingerprints to be compared we only know the person’s age and sex at the time

the imprints were taken, we cannot hope to be able to predict that person’s individual

growth – e.g. we do not know whether some imprint was taken immediately before or

after her pubertal growth spurt. Instead we must resort to using the amount a “typical”

person would have grown over the same period. We therefore use growth charts of boys’

and girls’ median body height, given in [KOG+02].

This gives a simple model for fingerprint growth: for person i and imprint j taken at age

xj , look up the population’s median body height at age xj of the corresponding sex; let us

denote that by Gij . If later imprint j′ is taken, we propose to predict how fingerprint j has

grown in the meantime by simply enlarging it by a factor of Gij′/Gij , i.e. by the factor

the “median person” would have grown in body height over the same period.

To check whether growth charts for body height can in fact be used for growth of fin-

gerprints, we compared these to the measure of fingerprint size defined in equation (2).

Recall that this is an intra-finger measure of size, lacking an absolute scale. For person 28,
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Figure 4: Left: imprints’ sizes (blue circles: rolled, green diamonds: plain control) of person 28’s
right index finger, as well as fitted growth according to the growth chart (purple line); right: estimated
ηij of the mixed effects model on a log-scale vs rank of age.

we show its fingerprints’ sizes Sij divided by their geometric mean (the arithmetic mean

on the log-scale) in Figure 4 (left). Plotted are the rolled imprints’ sizes as blue circles;

at times, additional plain imprints had been taken as controls at the same occasion, their

sizes are plotted as green diamonds for comparison. Similarly, the Gij , the corresponding

median body heights, were divided by their geometric mean and plotted in violet – in fact,

the entire normalised growth curve for that period is shown.

The growth curve in Figure 4 (left) is seen to fit person 28’s fingerprint growth very well.

To check how good growth charts for body height can predict fingerprint growth in the

entire study population, we used the following linear mixed effects model:

logSijk − logGij = ρk + νi + ηij + εijk,

where the additional index k serves to distinguish between rolled imprints and plain con-

trols. Since we are only interested in relative increases in size, the analysis works on a

log-scale. The outcome on the left is given by the log-ratio of the imprint’s observed size

Sijk and the corresponding median body height Gij . Since size is an intra-finger measure,

there cannot be a universal factor of proportionality between our fingerpint size and body

height, thus νi on the right allows for an individual factor of proportionality, fixed for that

finger. Even if two imprints are taken at the same point in time, like the rolled and the

plain control imprint, there may be variations in the locations of the POI, due to distor-

tions arising from the skin being pressed on a flat surface, and also due to variations in

the process of marking the POI. These random effects are captured by the εijk which we

assume to be independent and to follow a Gaussian distribution with mean 0 and variance

σ2
ε . Systematic differences between rolled imprints and plain controls are taken into ac-

count by ρk; note how in Figure 4 (left) the plain controls in green appear systematically

smaller than the rolled imprints in blue. Finally, ηij models deviations of person i at the

time when imprint j was taken from the growth model; the ηij are again assumed to be

random – since persons and times were random as far as the analysis is concerned – and

independently Gaussian distributed with mean zero and variance σ2
η .

The standard deviation σε of the εijk represents how much a fingerprint’s size appears
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to vary between two imprints taken at the same age; this is the measurement noise any

AFIS has to cope with. On the other hand, the model misfit is given by the ηijs’ standard

deviation ση . Comparing these two enables us to determine how well the proposed growth

model fits the data in relation to the noise level. By maximum likelihood, see e.g. [PB00],

we estimated them to be about σ̂ε = 0.0225 and σ̂η = 0.0223 on the log-scale, i.e. both

are of similar magnitude; the difference between the fixed effects ρk for rolled imprints and

plain controls was estimated as 0.0242. Bringing them back to the original scale, we obtain

variations in size due to noise of about ±(exp(σ̂ε)−1) = ±2.28%, similar to the variations

due to model misfit of about ±(exp(σ̂η)−1) = ±2.26%; for the difference between rolled

ink and plain control we get 2.44% larger rolled imprints than plain controls. This analysis

used a total of 578 imprints (combinations of i, j, and k), taken on 352 occasions (pairs of

i and j) from 48 persons (i). For a visual inspection, we show the estimated ηij sorted by

age in Figure 4 (right); systematic deviations from the growth model would be expected to

result in regions where the ηij are driven away from the horizontal line; however, no large

systematic deviations in comparison to the random noise are discernible.

4 Validating the growth model

The two previous sections established that fingerprints grow isotropically, and proportion-

ally to body height. This led to the proposed strategy of enlarging the younger imprint

prior to comparing it with an older imprint, by a factor to be read off from growth charts

of boys’ and girls’ body height.

To validate this model for use in fingerprint matching, we determine how closely POI

can be registered when the younger imprint is rescaled, in comparison to when it is left

unscaled. To do so, we chose to compare the earliest (j = 1) and the latest (j = J) rolled

imprint for each person i, and determined the square root of the POI’s average squared

Euclidean distance after bringing the last rolled imprint into partially optimal position by

rotation and translation,

δi(µ) =
√

min
λ∈C∗,|λ|=1,τ∈C

1

n
‖λziJ + τ1n − µ‖2.

cf. equation (3); we determine the distance of the last rolled imprint to the first one with

µ = zi1 without rescaling; with rescaling, we use µ = αzi1 where the scale factor is given

by α = GiJ/Gi1; in order to see typical variations when the same imprint is taken twice

on the same occasion, we also use the corresponding last plain control for µ (if available).

Note that this distance does not depend on which of the two imprints was fixed and which

was allowed to be rotated and translated, since λ is required to fulfil |λ| = 1.

The mean distances thus obtained per person are shown in Figure 5 where they are rep-

resented across persons by the respective cumulative distribution functions. The median

over the mean distances without rescaling is found to be about 0.62 mm, which is approx-

imately halved when growth is taken into account by rescaling, resulting in a median of

0.33 mm. In fact, this is the same order of magnitude as the median mean distance of

0.31 mm when comparing with the plain control; see [GHL+11] for box-plots conveying
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Figure 5: Empirical cumulative distribution functions of mean distance from POI of the latest rolled
imprint in partially optimal position to the POI of the first rolled imprint without (blue circles) and
with (violet triangles) rescaling, or to latest plain control (green diamonds); horizontal dashed lines
correspond to quartiles.

the same information. There, we also plot the relative improvement against the predicted

factor, showing that they correlate strongly with Spearman’s rank correlation being 0.63.

This clearly demonstrates that one gains the more by rescaling the more growth is pre-

dicted, as was to be expected.

We conclude that the proposed model transforms the younger fingerprint to match the size

of the older one, allowing to compare the two as if they were taken at the same age.

5 Summary and Outlook

Using extensive statistical analyses, we have demonstrated that fingerprints essentially

grow isotropically by an amount proportional to the growth in body height. Furthermore,

the latter can be read off population-based growth charts of boys and girls, whence the

growth model could be successfully constructed without using any training data. We em-

ployed R [R D09] for all statistical analyses; in particular, the Procrustes analysis was car-

ried out using package shapes [Dry09], the mixed effects model using package nlme

[PBD+09]. The findings thus obtained have been corroborated by a series of verification

and identification tests which are described in detail in [GHL+11].

For the future, we plan to repeat the above statistical analyses on an independent data set,

testing the hypothesis that rescaling as proposed leads to a reduction in minutiae distances

and improves upon error rates obtained without rescaling.

Since most of the participants in this study were more than 11 years old, the results ob-

tained only apply to adolescents from that age onwards. It would be most interesting to
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perform similar analyses using children’s fingerprints; indeed, the different way in which

younger children develop may also lead to anisotropic effects. Another point worth inves-

tigating is whether the growth predictions become more accurate when measurements of

the person’s true body height can be used instead of the population’s median body height

at that age. Otherwise, noting that the growth charts [KOG+02] we used were based on

United States National Health Examination Surveys, it is conceivable that one might ben-

efit from growth charts which are specific for the population under consideration.
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