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Evaluating synthetic vs. real data generation for AI-based 
selective weeding 
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Abstract: Synthetic data has the potential to reduce the cost for ML training in agriculture but poses 
its own set of problems compared to real data acquisition. In this work, we present two methods of 
training data acquisition for the application of machine vision algorithms in the use case of selective 
weeding. Results from ML experiments suggest that current methods for generating synthetic data 
in the field of agriculture cannot fully replace real data but may greatly reduce the quantity of real 
data required for model training. 
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1 Introduction 

As a response to the ever-rising demand for training data in Machine Learning (ML) 
applications, much research has been conducted on simplifying the process of data 
recording and labelling. This is also true for the agricultural domain, where e.g., various 
high-throughput field phenotyping systems for recording plant data have been developed 
in recent years [Bo21]. Different approaches have also been proposed to reduce the effort 
for data annotation, such as the deep interactive object selection method presented in 
[Xu16]. Given the laborious and costly nature of real data acquisition, it is no wonder that 
the use of synthetic data (SD) has become a popular alternative in recent years [Ni21]. 

However, synthetic data comes with its own pitfalls, first and foremost the inherent and 
sometime subtle difference between reality and simulation, commonly referred to as the 
(simulation) reality gap. This special case of a domain gap between data from various 
sources is the deciding factor in how useful SD can be for a particular ML use case, its 
impact depending on the characteristics of the used data and algorithms. It is thus difficult 
to predict how well SD can be used for any particular use case or algorithm, as the 
relevance of different aspects of the data may vary between contexts and inference targets.  

While synthetic data has been used in numerous applications, as reviewed by Nikolenko 
[Ni21], its application for machine vision tasks are of special interest in the context of 
agriculture, where current and future smart farming applications depend on the ability of 
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agricultural machinery and robots to make sense of camera data, e.g., for crop row 
detection or selective weeding. Aggravating the laborious nature of real data acquisition, 
agricultural contexts pose additional problems such as uncontrollable external factors 
(e.g., weather conditions) or seasonality of the objects of interest. Due to the fractal nature 
and thus complex shape of plants, data annotation can also become more costly or error-
prone in agricultural contexts, a point where ML models trained on SD could provide 
useful assistance even if their performance is not fully on par with models trained on real 
data. 

It is thus of little surprise that a number of recent studies have used synthetic data for 
different machine vision applications in agriculture. Ubbens et al. used synthetic plant 
models created via a Lindenmayer system to generate relatively simple image data for a 
leaf counting task, discussing how various aspects of the data impacted model 
performance [Ub18]. Barth et al. created synthetic data of pepper plants in a harvesting 
scenario, using an elaborate mix of procedural generation and 3D-scanned parts and 
training a segmentation model to facilitate autonomous harvesting with promising results 
[Ba18]. Carbone et al. even produced both RGB and infrared using the Unity game 
engine2, finding that the inclusion of synthetic near-infrared (NIR) data can improve 
segmentation results [CPN20]. Similarly using a game engine (Unreal Engine 43), Di 
Cicco et al. explored the use of synthetic data for crop and weed detection in sugar beets 
[Ci17]. These (and other) studies show the potential benefit of using synthetic data for 
various applications in the agricultural domain, often finding that the best results can be 
achieved when synthetic and real data are combined. 

In this study, we present our approaches for generating real and synthetic data for a simple 
selective weeding use case that requires differentiating between crop and weed plants in a 
maize field. Using state-of-the-art machine vision algorithms, we evaluate the benefits of 
synthetic data for future applications in this research area.  

2 Data acquisition 

2.1 Synthetic data 

To create a synthetic data set of a maize field, we used Syclops, a modular software 
pipeline allowing to generate synthetic data for agricultural environments. Syclops is 
currently under development in the Agri-Gaia4 project and is intended to be made available 
open-source over the course of the project. For the data used in this work, we utilized 
Syclops’ module interfacing it with the open-source 3D software Blender5. This allowed 
rendering photorealistic images using Blender’s raytracing engine cycles. Achieving a 
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quality of synthetic data close to photorealism helps to minimize the simulation-reality-
gap in the RGB data and realistically depict e.g., shadows or subsurface scattering 
(scattering of light in organic and other translucent materials such as plant leaves). 

A combination of commercially available and free assets was used in the 3D environments 
generated with Syclops. Models from the Maxtree [Ma22] plant library were utilized for 
the maize plants, adapting them to match the desired growth stages of their counterparts 
in the real data (Fig. 1). The weed models stem from the Graswald [Ha22] library and were 
similarly adjusted to fit the scene. Using Syclops’ tooling for generating agricultural 
scenes, the plant models were distributed on a virtual field environment in specific 
distribution patterns (rows for maize, scattering for weeds), using random transformations 
such as scaling and rotation to increase variability.  

 

Fig. 1: Rendering of 3D-Models of the virtual maize plants 

To simulate changing lighting conditions in real outdoor environments, lighting of the 
scene was set up using a large number of HDR (high dynamic range) images, randomly 
chosen for each output image. For this, HDR imagery was used that is freely available 
from Polyhaven [Za22]. Similarly, ground materials were varied for each image, also 
using Polyhaven assets, thus sampling from a collection of soil and dirt textures to 
reproduce realistic backgrounds for the plants. Additionally, an elevation map was used 
to create micro-displacements of the ground to better simulate ground structures such as 
pebbles, tire tracks, or clods of soil. Finally, a shadow caster object was created in the 
virtual scene representing the recording setup of the real data set (Section 2.2), further 
facilitating a close match of real and synthetic data. 

Overall, the combination of these elements results in a data set with variable composition 
and illumination, as shown in Figure 2. In total, 6500 images were rendered (matching the 
resolution of the real data set, see section 2.2) with their associated bounding boxes for 
the two classes Maize and Weed, totaling 45997 and 119316 instances respectively. 
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Fig. 2: Example images from the generated synthetic data set, illustrating different lighting 
conditions for identical perspective (top), different ground textures for identical lighting with 

simulated shadows from hardware (middle) and overall variability (bottom row) 

2.2 Real data 

Several data sets of maize for ML applications have been published, e.g. [La22], [Li22], 
and [MS22]. However, existing data sets exhibit limitations such as low variability of 
growth stages, controlled constant lighting, missing annotations for weeds, low weed 
levels due to conventional herbicide treatments or simply small data set size. We therefore 
made use of an experimental field established at Hof Fleming (Löningen, Germany) within 
the Agri-Gaia project to record our own training and reference data. The experimental 
field consists of 32 rows of maize with a length of 40 m. Two measuring campaigns were 
conducted between May and August 2022, capturing early growth stages of maize 
following two seeding applications. Herbicide treatment was varied within the rows to 
create variable weed pressure. 

A manually driven wheeled sensor carrier was constructed to serve as a non-invasive 
phenotyping platform, consisting of an aluminum frame mounted on bike wheels (Fig. 3). 
A sensor box is mounted at the center, containing a JAI FS3200T multispectral camera in 
nadir view and a processing unit running ROS Noetic. The overall carrier is lightweight 
and maneuverable and can be operated by a single person, while the large tires make it 
possible to leave taller crops undisturbed. Additional equipment includes a tablet to control 
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the ROS setup, an RTK-GPS receiver for georeferencing and an LTE/WIFI router. 
 

 

Fig. 3: The developed manually driven sensor carrier with various attachments 

The image data was recorded with a resolution of 2047 x 1525 pixel, resulting in a spatial 
resolution at ground level of 0,36 mm/pixel. Data was captured on three time intervals 
after seeding (day 11, 15 and 17), covering different growth stages of the maize as well as 
environmental conditions such as weed coverage, soil texture or illumination (Fig. 4). 

Fig. 4: Some example images of the recorded dataset showing the variability of the data regarding 
illumination conditions, weed intensity and growth stages 

The open-source software CVAT [Cv22] was used for annotation. The data was labelled 
with bounding boxes of the same classes as the synthetic data, Maize and Weed. The 
labelled dataset contains 731 images with the two class IDs exported in both COCO 
annotation format and YOLO annotation format (Tab. 1). Most of the weed instances have 
areas of less than 30,000 pixels, while the maize instances have much larger areas, mostly 
around 100,000 pixels. It is intended to open-source this data set in the near future. 
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 Maize Weed Total 
Day 11 1061 9743 10804 

Day 15 696 14508 15204 

Day 17 537 5435 5972 

Total 2294 29686 31980 

Tab. 1: Number of instances of Class IDs Maize and Weed across growth stages among Day 11, 
Day 15, and Day 17 after the initial seeding of the maize plants 

3 Evaluation experiments 

To conduct our deep learning experiments, we chose two state-of-the-art ML networks: 
Yolov5m (medium-sized) with ResNet50 backbone (see [Jo22], [RF18]) and FCOS with 
ResNet50 backbone (see [Ti20], [De22]). YOLOv5m uses anchors tuned to plant 
detection, while FCOS does not need any predefined anchors, thus comparing these 
models provides an insight into overall accuracy when there are no anchors involved. Both 
networks use a ResNet50 backbone which was pretrained on the ImageNet data set. We 
used the initialized weights from that pretraining as a starting point for all our experiments.  

For each network, we ran eight experiments falling into four categories: training on 
synthetic data and testing on synthetic data (experiment Y1 and F1), training on real data 
and testing on real data (Y2/F2), training on synthetic data and testing on real data (Y3-
7/F3-7), and training on a mix of synthetic and real data and testing on real data (Y8/F8). 

The intention of experiments Y1/F1 and Y2/F2 was to establish a baseline of performance 
that could be achieved with our data sets and chosen models (with the added element of 
sanity-checking our synthetic data). Most experiments, however, are focused on 
evaluating how well the models performed when mainly or exclusively trained on 
synthetic data in this use case, thus exploring the impact of the domain gap between real 
and synthetic data. Following the recommendation of Nowruzi et. al. [No19], we 
implemented the idea of bootstrapping the network, i.e., first training the network only on 
synthetic data and then retraining it on a very small subset of the target domain data. 

The networks were trained for at maximum 150 epochs, with some training cycles being 
stopped early when no progress was made on the loss values. We used the default 
hyperparameter values during training which are provided in the model repositories (see 
[De22], [Jo22]). Due to the small area of the weeds in the image, we downscaled the 
images to a resolution of 1312 x 1312 pixel. Any further downscaling compromises the 
detection accuracy by a large margin. Therefore, all of the following experiments are 
performed at a resolution of 1312 x 1312 pixel for both training and testing. 
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We split the synthetic data set into 5000 images for training and 1500 images for testing. 
For some of the experiments only the first 500 out of the 5000 images for training were 
used. The images were not shuffled in order to ensure comparability. 

The 731 real images from all days were split into fixed subsets of 400 images for training, 
150 images for validation and 150 images for testing. This was done as opposed to 
randomly picking subsets to prevent data leakage. For each day, images from different 
rows of the field were selected to exclude the possibility of individual plants re-occurring 
between days. Within these rows, data was spatially split between training and 
validation/test images to avoid overlap between consecutive images affecting separation 
of the data subsets. To ensure comparability, we used the same subsets of real data for all 
experiments. We combined training, validation and testing images into one subset for 
those experiments where the models were purely trained on synthetic images to increase 
the amount of available real images.  

4 Results and discussion 

Table 2 shows the results of all experiments, while Figure 5 shows an example output of 
a trained YOLO model. For training and validation on synthetic data, both YOLO and 
FCOS achieve high accuracy for both classes (see rows Y1 and F1), with higher values 
overall in the case of synthetic data. This establishes an upper bound on model accuracy 
in the absence of a domain gap and validates our synthetic data generation setup. Similarly, 
when the models are trained on real data, it yields high accuracies on the real validation 
data (see Y2/F2). The values of e.g., 95.6 and 90.5 on maize for YOLO and FCOS, 
respectively, are a high baseline to be reached for mixed training setups. 

Overall, experiments with the models trained on synthetic data show a lower performance 
on the real test data compared to the experiments using only real data, indicating a 
substantial domain gap between the two data sets. This may indicate an insufficient level 
of realism in the synthetic data in some respects, e.g., the variability of the rendered plant 
models. However, it is also to be noted that the synthetic data contains a larger variability 
in backgrounds and illumination, given that the real data set was recorded on only a few 
days and on the same soil. This may also be an explanation for the observation that training 
on larger synthetic data sets does not lead to an increase in performance (see row Y3, Y4 
and F3, F4), again also indicating the limited variability and thus number of features in 
the plant models.  
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Model Exp  
Training 
data set 

Eval 
data set 

mAP50 
All 

mAP50 
Weeds 

mAP50 
Maize 

YOLO
v5m 

Y1 5000 syn 1500 syn 97 98.1 95.9 

Y2 400 real 150 real 85.6 75.3 95.9 

Y3 5000 syn 700 real 52.4 29.6 75.1 

Y4 500 syn 700 real 61.8 44.6 78.6 

Y5 500 syn  304 real d11 63.1 37.2 89.0 

Y6 500 syn 240 real d15 62.3 51.2 72.3 

Y7 500 syn  187 real d17 53.9 42.8 65.0 

Y8 500 syn + 31 real  700 real 75.3 66.1 84.5 

 

FCOS 

F1 5000 syn 1500 syn 93.09 94.5 92.05 

F2 400 real 150 real 79.15 67.8 90.5 

F3 5000 syn  700 real 38.89 20.70 57.60 

F4 500 syn 700 real 47.33 24.00 70.66 

F5 500 syn 304 real d11 53.60 25.40 81.80 

F6 500 syn 240 real d15 49.76 26.23 73.28 

F7 500 syn 187 real d17 23.49 12.95 34.04 

F8 500 syn + 31 real 700 real 55.99 48.86 63.12 

Tab. 2: Comparison of mAP50 for two object detectors trained on real and synthetic data sets and 
evaluated on different evaluation splits 

Furthermore, the networks perform with varying degrees of accuracy on different growth 
stages of maize plants (Y5-7/F5-7), hinting at different degrees of accuracy to which the 
growth stages in the real data were reproduced with our set of 3D models. That 
performance is overall worse on weeds than on maize (best mAP 66.1 for YOLOv5m and 
48.86 for FCOS) is an indicator for the higher variability in the weeds. The presence of 
grassy weeds (monocotyledons) in the real data which were not labelled and are part of 
the background may contribute to this, as they are both misclassified as weeds or maize, 
in both cases with low confidence values. 
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When the models are trained on synthetic data and then trained on a small subset of the 
real data set (see row Y8 and F8), the performance of training the model on large sets of 
real data (Y2/F2) is not reached. YOLO reaches higher accuracies compared to purely 
training on synthetic data and testing on the whole real data set (Y8: 84.5 vs. Y4: 78.6). 
Similar behavior is not observed for FCOS (F8: 63.12 vs. F4: 70.66). One possible 
explanation for this is the anchor-less architecture of the FCOS. Since FCOS has no prior 
knowledge of the target domain in terms of anchors, it needs more data to perform well 
on that data. Compared to FCOS, YOLO learns faster with a small number of data points, 
which could be explained by its use of anchors. 

5 Conclusion 

We presented two data sets of a selective weeding use case, one obtained with established 
methods on a real field, the other generated using a synthetic data pipeline based on state-
of-the-art 3D rendering tools. Our results show lower performance of current object 
detection models trained in a naïve way on synthetic data compared to models trained on 
real data, indicating a substantial reality gap. However, when using combinations of 
synthetic data with small sets of real data, accuracy can be improved, at least if the 
underlying model is able to adapt quickly to new data. It can be expected that reducing the 
domain gap apparent in the data from other experiments can further bolster performance, 
but more research is required to quantify the effects of the domain gap or the ratio of 

Fig. 5: Example image from real data set showing predictions for both Maize (blue) and Weeds 
(red) by YOLOv5m trained on 500 synthetic images, with the respective confidence values 
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synthetic and real data in mixed data sets on the achievable results. 

Future work in this area should focus on identifying adequate metrics to quantify the 
domain gap between synthetic and real data sets, as well as on developing methods to 
further eliminate it, e.g. by improving the utilized 3D models – work that is under way in 
the Agri-Gaia project. This may open the door to significantly reducing the effort to collect 
and label real data if the performance of mixed training setups can consistently reach the 
performance of models trained on large amounts of real data. Even if this cannot be 
reached, the level of accuracy demonstrated here already makes this approach useful for 
the purpose of assisting in labelling real data, thus reducing overall labelling effort. 
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