
Coercion-Resistant Internet Voting in Practice

Christian Feier, Stephan Neumann, Melanie Volkamer

Technische Universität Darmstadt / CASED

Hochschulstrae 10

64289 Darmstadt

name.surname@cased.de

Abstract: Internet voting continues to raise interest both among research and society.
Throughout the last decades, many Internet voting schemes have been developed, each
one providing particular properties such as receipt-freeness or end-to-end verifiability.
One attractive scheme is the JCJ / Civitas scheme due to its property of making co-
ercion attacks ineffective. Neumann and Volkamer [NV12] analyzed the scheme and
identified significant usability issues. To overcome these drawbacks, the authors ex-
tended the original work by integrating smart cards. In a follow-up work, Neumann
et al. [NFVK13] conducted a theoretical performance analysis for this extension and
improved the extension towards its applicability in real-world elections. Their anal-
ysis left several real-world considerations open for future work. The present work
addresses these gaps: We present a prototype implementation of the revised exten-
sion and assess its real-world performance. Based on this contribution, we are able to
conclude that the revised extension is feasible to be used in real-world elections.

1 Introduction

Internet voting continues to attract interest both among research and society. Starting

with Chaum’s seminal work [Cha81], throughout the last decades, many Internet voting

schemes have been developed. e.g. FOO [AF92], Helios [Adi08], and the Estonian In-

ternet voting scheme [MM06]. One scheme of particular relevance is the JCJ / Civitas

scheme [JCJ05, CCM08] due to its promised coercion-resistance property. Coercion is

one of the crucial problems that accompanies the conduction of remote elections such as

Internet voting [KV06]. While the JCJ / Civitas scheme addresses the highly valuable se-

curity requirements of coercion-resistance, the scheme lacks usability due to sophisticated

credential handling as outlined by Neumann and Volkamer [NV12]. To overcome this

shortcoming, Neumann and Volkamer revised the scheme. Their extension builds upon

the integration of smart cards to simplify the credential handling to improve the usabil-

ity. While their proposal certainly improves the JCJ / Civitas scheme from a usability

perspective, it turns out that their extension does not take performance into account. As

a consequence thereof, it includes several routines which cannot be implemented suffi-

ciently performant on smart cards, e.g. the proof of well-formedness. In a follow-up work,

Neumann et al. [NFVK13] conducted an improvement of the extension towards its ap-

plicability in real-world elections by modifying or removing routines which do not run

1401

performant on smart cards. As a second part they made a theoretical performance analysis

for the revised extension. Their work did not consider varying variables like network- and

transmission time or smart card operations like copy data from non-persistent to persistent

storage.

To address these shortcomings, the present work takes up the [NFVK13] scheme. As a

contribution it analyzes the need of all changes made from [NFVK13] and provides some

alternative ways to improve its performance. In addition to that, the present work provides

ideas how to handle certificates and precises the calculations with respect to network traffic

for 2048 bit encryption. As a last contribution a prototype including all made modifications

will be presented.

The remainder of this work is structured as follows: In Section 2, we provide a short

overview about the [NFVK13] scheme. In Section 3, we explain the made design decisions

in terms of implementation details of the prototype followed by a short system design

explanation in Section 4. In Section 5, we reanalyze the performance with respect to

2048 bit encryption blocks and the suggested certificate handling. Furthermore we make

a practical test using our prototype and compare these results with the theoretical results.

Later on in Section 6 we present the interfaces of our prototype and guide through an

election. Section 7 concludes this work and possible directions for future research are

outlined.

2 The NFVK13 Scheme Overview

The [NFVK13] scheme builds upon the extension by Neumann and Volkamer [NV12].

The scheme proofed the feasibility for real-world elections by optimizing the registration-

and voting phase by changing and removing some unnecessary subroutines. In this section

we summarize the [NFVK13] scheme.

Setup Phase. The supervisor initialises the election and publishes all details on the bul-

letin board. The tabulation tellers generate a distributed ElGamal election key pkEK and

publish the corresponding public key on the bulletin board.

Registration Phase. As a first step a voter v personally consults the supervised regis-

tration authority (SRA). The authority checks that the voter is not under direct influence

of any coercers. The voter is then requested to insert her smart card into the card reader

and the SRA authenticates to the smart card as the SRA. In the next step she is asked to

set her personal owner PIN. Afterwards the SRA stores the private supervised credential

share cv
SRA on the voter’s smart card which is a normal credential share as used by the

registration tellers. The smart card will then calculate the coefficient cp =
cv

SRA

PIN
and store

it. This is the only value which is stored during this consultation. The voter leaves the

SRA afterwards.

To a later moment in time the voter connects to the election website to finish the regis-

tration process. She is asked to choose her preferred registration tellers out of all avail-

able registration tellers. After this all preferred registration tellers, from now on called

1402

trusted registration tellers (TRT(v)), will be saved on the smart card. Afterwards a con-

nection to each TRT will be established and the private credential share cv
RT along with

an encryption S′

i = {cv
RT }pkEK

and the used random r will be directly forwarded to the

smart card. At the same time the registration teller will publish the public credential share

Si = {cv
RT }pkEK

, which is a reencryption of cv
RT , on the bulletin board. The smart card

then verifies the DVRP proving that S′

i is a reencrypion of Si from the bulletin board.

After obtaining all private credential shares the smart cards calculates the credential factor

cfactor = cp ·
∏

i∈TRT (v)

cRTi

Voting Phase. After finishing the registration phase the voter can start the voting process.

To do this she visits the election website. On this website she can select the candidates

of her choice. After the selection is finalized the selection is forwarded to the smart card

which then encrypts the selection using the election key pkEK and asks the voter to enter

her owner PIN. The card then calculates the private credential as follows

c = PIN · cfactor

If she entered the real PIN it will result in the voter’s real credential to be calculated, if not a

fake credential is generated. This credential will be encrypted using pkEK and calculates

the proof of knowledge (PKCV) which shows that the voter knows both, the credential

and the vote. Furthermore the smart card computes h({vote}pkEK
||{c}pkEK

||PKCV) as

a verification code and displays this code on the card reader’s display. The ballot will then

be sent to all available ballot boxes.

Tallying Phase. In the tallying phase, all tabulation tellers retrieve the ballots from all

ballot boxes and the public credentials stored on the bulletin board. Zero-knowledge proofs

are verified, duplicates (due to vote-updating) and unauthorized votes (due to the use of

fake credentials) are eliminated. Finally, encrypted credentials of remaining ballots are

discarded and the respective encrypted votes are distributively decrypted. Each step of the

tabulation tellers is publicly verifiable based on a set of zero-knowledge proofs.

3 Design Decisions

[NFVK13] made some recommendations we did not keep. In this section we explain the

made design decisions.

Multos vs. Java Card. In [NFVK13] the calculations are on the basis of Java Cards

and the timings from [BCGS09]. As proposed in [NFVK13] Java cards only offer some

high level methods like RSA encryption, but do not offer any methods to directly calculate

modular operations like addition, subtraction, multiplication and division on the crypto

co-processor. Due to this for example the modular multiplication needs to be calculated

using a mapping on RSA CRT decryption. This means one modular multiplication on

1403

Java cards needs as long as one RSA CRT decryption which produces a big overhead.

Multos instead offers direct crypto co-processor access using MEL assembler commands.

Therefore on Multos cards it is possible to calculate modular operations directly on the

crypto co-processor which results in better timings.

Due to the advantages over Java cards we switched for our implementation from Java- to

Multos cards.

Protocol Revision. Neither [CCM08] nor [NV12] define protocols for the communi-

cation between registration teller and the bulletin board and communication between the

smart card and the bulletin board. Furthermore at the beginning of the implementation the

Multos C-API did not offer a mapping on AES. Therefore, the protocol has been changed

to use RSA encryption and signatures to authenticate and exchange data with the registra-

tion teller. [CCM08] uses Needham-Schroeder-Loewe protocol (NSL) to authenticate to

the registration teller and to exchange an AES key for further communication. The NSL

protocol needs two RSA encryptions to authenticate and exchange the AES key. The pro-

posed protocol change needs three RSA encryptions to authenticate and exchange all data.

Assuming that one RSA encryption is at most as slow as the data communication using

AES, the feasibility of the [NFVK13] protocol is shown if the feasibility with the modified

protocol can be proven. In the protocol we use the following notation: The entities are the

smart card (S), Registration Teller (RT) and BulletinBoard (BB). The used keys are the

public (pkX) and private (skX) RSA key of entity X and the public ElGamal election key

(pkEK). {T}K describes the encryption of T using the public key K and SigK(T) is the

signature of T signed with the private key K. Furthermore NX denotes the nonce generated

by entity X, IDX is the ID of entity X and si denotes the credential share of registration

teller i and Si is the ElGamal encrypted credential share using the public election key. A

protocol step is denoted by X → Y: T which means that entity X sends the message T to

entity Y. The modified protocol is described as follows:

1. S → BB: request registration teller certificate

2. BB → S: registration tellers certificate

3. S → RT: NV , IDV , trusted RTs, SigskV
(NV ||IDV ||trusted RTs)

4. RT → BB: {NRT , IDV }pkBB

5. BB → RT: pkV , pkEK , SigskBB
(pkV , pkEK , NRT , IDV)

6. RT → BB: N ′

RT , IDRT , IDV , trusted RTs, Si, SigskRT
(N ′

RT ||IDRT ||IDV trusted RTs||Si),
......................SigskRT

(trusted RTs, Si, IDRT)

7. RT → S: {(si, r)}pkV
, Si, SigskRT

(si||r||Si)

8. S → BB: Si, {N
′

V , IDV , trusted RTs}pkBB
SigskV

(Si||{N
′

V , IDV , trusted RTs}pkBB
)

9. BB → S: {True/False, T rue/False,N ′

V }pkV

In step 1 and 2, the specific registration teller certificate will be requested and loaded onto

the card. In step 3 the card authenticates to the registration teller due to its knowledge

1404

of skV . In step 4 the registration teller requests the public key of V which the bulletin

board responds in step 5. The registration teller can verify the identity of the card. If

the verification is successful it will send the trusted registration tellers and the encrypted

credential share of voter V to the bulletin board and sends the same encrypted credential

share and the credential share to the voter in step 7. To save performance only the private

credential share si and used randomness r are send encrypted. The public credential share

is sent unencrypted. To ensure its integrity, the data is signed. Due to the fact the the

resources of the smart card are limited, the signature of si||r||Si is generated so that the

card does not need to store {(si, r)}pkV
. After the card received the credential share

and verified that the encrypted credential share is a reencryption it sends a request to the

bulletin board in step 8. This request contains the trusted registration tellers and and the

encrypted credential share. The bulletin board will respond with if the encrypted credential

is on the bulletin board and if the trusted tion tellers are correct. The used nonce N ′

V which

was sent encrypted in step 8 is used as an integrity check. This nonce N ′

V will be resent by

the bulletin board in step 9. The smart card will check whether the nonce is the same and

only accept the credential share of registration teller i if the check passed successfully.

PIN Handling. To avoid side channel attacks to spy out the PIN code during the voting

process [NFVK13] recommends to calculate coefficients cp and cfactor so that the smart

card does not need to know the real PIN but be able to calculate the credential depending

on the entered PIN. As a drawback this way costs some performance. Through the security

model in [NFVK13] the smart card needs to be trusted. Therefore it is not necessary that

the card does not know the correct PIN as long as there is no way that the PIN leaves the

card. Therefore the implemented prototype is saving the real PIN and compares it with the

entered PIN. It will always compare the full PIN and will not stop at the first wrong digit.

If the entered PIN is correct the PIN will be hashed using SHA-1 and the real credential c
will be encrypted. If the entered PIN is wrong the PIN will be hashed and instead of the

real credential the hash value of the wrong PIN will be encrypted. Using this way the card

will always perform the same steps independent of the entered PIN which will prevent side

channel attacks. Additionally it is not necessary to calculate the coefficients cp and cfactor

which will result in a slightly better performance in the registration phase.

Certificate Handling. To ensure authenticity of messages from the authorities, namely

the registration tellers and bulletin board, an authentic RSA key is necessary. A card should

be used for several elections but due to the lack of space on the smart card only a small

number of certificates could be stored. To solve this problem only one certificate called

Root Certificate will be stored on the card. This Root Certificate could be set during the

production process of the card and can not be changed after it is set once.

To initialise a secure communication to an authority the, authority’s certificate needs to

be loaded on the card at first. The card contains a slim DER parser1 which extracts the

necessary information from the certificate. To be authentic a certificate needs to be signed

from the Root Certificate, must be valid and must match a subjectDN pattern e.g. the

common name CN must start with RT if the certificate belongs to a registration teller.

1Distinguished Encoding Rules parser after RFC 5280 http://www.ietf.org/rfc/rfc5280.txt

1405

Thereby, a trust chain will be built and only one certificate needs to be stored permanently

on the card and there is no restriction on how many elections can be held with the card. As

a drawback one should mention that the card needs to verify a certificate at every reload

which may lower the performance.

4 System Architecture

In Figure 1, the system design is depicted. The responsibility of each component will be

explained.

Figure 1: System Design

Civitas Server: The Civitas Server is a slim implementation of a real Civitas Server. It

contains the bulletin board and offers an interface to communicate with the bulletin board.

Furthermore this component includes the tallying module.

Civitas Registration Teller: The registration teller component is contacted by the voter to

receive her private credential share. Several instances of registration teller components can

run at different locations. The registration teller will be contacted remotely by the contact

RT panel component.

Civitas Contact RT Panel: This component is a JApplet which offers a graphical user

interface for the voter to contact a registration teller component and get her private creden-

tial share. This JApplet can directly communicate with the smart card.

Civitas Voting Panel: The voting panel is a JApplet which offers a graphical user inter-

face for the voter to make her vote. It can directly communicate with the smart card.

Civitas SRA Panel: This component offers a graphical user interface for the supervised

registration authority to authenticate to a smart card, allow the voter to set her owner PIN

1406

and set the supervised credential share to the smart card. Furthermore it transmits the cur-

rent election parameters to the smart card. The component can directly communicate to

the smart card.

Civitas Admin Panel: The administration panel offers a graphical user interface to ini-

tialize the smart card. It offers methods to set the UUID, set the root certificate and the

signed card certificate. The admin panel is an optional panel and is not necessary to run

an election. It can directly communicate with the card.

Smart Card: The smart card component is responsible to manage the credential shares, to

generate the ballot which will be send to the bulletin board and to generate the verification

code which will be shown on the card reader’s display.

Civitas Commons: The commons package is used by all components. It includes com-

monly used classes like communication messages, offers an interface to communicate with

the smart card and contains the whole cryptography methods.

5 Performance Analysis

In this section we concretize the formulas from [NFVK13] with respect to the changes

made to the protocol described in section 3 and present results for a practical run from our

prototype.

5.1 Smart Card Timings

The modular operations are addition (a + b mod p), subtraction (a − b mod p), multipli-

cation (a · b mod p), modular exponentiation (ab mod p) and modular division a
b

mod p =

a ·bp−2 mod p, which corresponds to 1 subtraction, 1 multiplication, and 1 exponentiation.

The measured timings for the operations are found in 1.

Card / Operation Addition Subtraction Multiplication Expo. Division

Java Card 1536 bit 0.082 0.082 0.517 0.430 1.029

Multos 1536 bit 0.038 0.038 0.047 0.421 0.506

Multos 2048 bit 0.056 0.058 0.066 1.272 1.396

Table 1: Java and Multos Timing comparison

5.2 Concretize Formulas

Registration Phase. The formulas proposed in [NFVK13] only considered asymmetric

cryptography operations like RSA and ElGamal encryption but did not consider the sym-

metric AES encryption which is used to secure the communication. The modified protocol

described in section 3 only uses asymmetric encryption schemes to ensure a secure com-

1407

munication. Furthermore as stated in section 3, for a communication to an authority the

certificate of the authority needs to be loaded on the card and then verified. To verify a cer-

tificate, a signature needs to be verified using SHA1WithRSAEncryption. The whole

process to transmit a 2048 bit RSA key certificate with SHA1WithRSAEncryption

signature, parse it and verify it takes approximately 4.4 seconds. For further reference, we

define the whole certificate verification process as tverify = 4.403 seconds.

We consider 2048 bit encryption which means that up to 255 bytes can be encrypted at once

using RSA. Also we only analyse all steps in which the smart card is involved, namely step

3, 7, 8 and 9. To initiate the communication, the registration teller certificate needs to be

loaded. To generate step 3 the card needs to generate one signature which results in one

modular exponentiation and one certificate verification. Assuming that the credential share

and the used randomness needs up to 255 byte, one RSA encryption and one signature gen-

eration is necessary to transmit the data. After decryption the reencrypted credential share

needs to be validated by performing one ElGamal encryption. Summed up step 7 needs

four modular exponentiations and one modular multiplication.

To perform step 8, communication to the bulletin board is required which means a new

certificate needs to be loaded and verified. Furthermore, one RSA decryption and one sig-

nature verification is necessary which results in two modular exponentiations and one cer-

tificate verification for step 8. For step 9, one RSA decryption which means one modular

exponentiation is required. After all registration tellers have been contacted, the credential

c can be generated by multiplying all credential shares si. In summary, the time needed

throughout the registration phase is given as follows:

tregistration = (1 · texp + 1 · tverify + 4 · texp + 1 · tmul + 2 · texp + 1 · tverify + 1 · texp)

· |TRT | + tmul · |TRT |

= (8 · texp + 1 · tmul + 2 · tverify) · |TRT | + tmul · |TRT |

Voting Phase. In order to vote the credential and the vote needs to be encrypted and

one proof of knowledge (PKCV) needs to be performed which results in four modular

exponentiations and two multiplications for the two ElGamal encryptions and two modular

exponentiations, two modular multiplications and two modular subtractions for the PKCV

proof. Hence, the needed time is given as follows:

tvoting = 4 · texp + 2 · tmul + 2 · texp + 2 · tmul + 2 · tsub

= 6 · texp + 4 · tmul + 2 · tsub

5.3 Practical Results

The results from section 5.2 do not consider network traffic and transmission time between

the client computer and the smart card. In this section we present our results from a live

test of our prototype. The test system consists of four computers (one voter client, two

registration tellers and one bulletin board) connected via a 100 Mbit LAN connection. The

used smart card is a Multos ML3 and the used card reader is an Omnikey 3821. The needed

time will be measured after all user interaction is done, means for the registration phase

1408

after the trusted registration tellers are chosen and the ’proceed’ button is pressed. For the

voting phase it means after all candidates are chosen and the PIN is entered. To contact

two registration tellers 46.782 seconds were needed, which means 23.391 per registration

teller and the voting phase took 12.979 seconds. The theoretical solution took with respect

to the timings from table 1 and tverify = 4.403 results in a registration time of 38.228
(i.e. 19.114 seconds per registration teller) and a voting time of 7.809 seconds. The

theoretical analysis differs from the practical results. This is reasonable due to the fact that

the theoretical analysis did not consider network and transmission traffic. Furthermore it

did only consider modular operations like modular addition and the time needed to verify

a certificate. Other processes on the card like hashing, copying data from non-persistent to

persistent storage, reset data and many other operations could not be considered. We think

that 30 seconds per registration teller and 13 seconds to vote are still feasible.

6 Interface

After the system has been implemented from a functionality perspective, user interfaces

have been developed. These have been developed in cooperation with interface design

experts and designers. In this section we present the first prototypes to guide a voter

through the voting process. The interface is placed in a webbrowser using HTML as a

markup language and a JApplet component to communicate with the card reader on the

clients computer. Using this way the voter just needs to connect to a website and does not

need to download additional software.

First, a voter connects to the election website (Figure 2). On this website the voter finds all

election related information, namely the electoral register, the candidates, the authorities,

the public authority keys, and the public election key. Furthermore, the voter can find all

received ballots and encrypted credential shares on the bulletin board. There are several

independent institutes which offer the voting software. The voter can decide over which

institute she casts her vote.

On the welcome site (Figure 3) of the voting institute the voter is asked whether she already

contacted her supervised registration authority. If not, she has to do this first and come back

to this site. Furthermore she can choose if she already contacted her trusted registration

tellers (for example in case of revoting). If she did not contact them before, she will be

directed to the trusted registration tellers contact site (Figure 4). On this site a JApplet

will be loaded. The voter will be instructed to insert her smart card into the card reader

and choose her trusted registration tellers by simply clicking on them in the JApplet. After

the voter made her choice, she confirms by the ’contact’ button. Thereafter, the smart

card contacts all chosen registration tellers and eventually returns a notifications once the

registration process has been finished. The voter can start the voting process by clicking

’proceed’.

On the voting site (Figure 5) another JApplet will be loaded. The voter is requested to insert

her smart card into the card reader if not already done and to decide which candidate/s she

wants to vote for. After pressing ’vote’ she will be asked to enter the candidates ID into

1409

the card reader’s PIN pad and submit it via the the card reader’s submit button. The card

asks for the owner’s PIN and correspondingly calculates the ballot as described in section

2. After the calculation process is done, the card will send the ballot to the bulletin board.

The corresponding verification code will now be displayed on the card reader’s display.

After casting her vote, the voter is directed to the last site (Figure 6). This site informs the

voter that her ballot is cast successfully. Furthermore it informs her that she can verify that

her vote by visiting the bulletin board and check if her verification appears.

7 Conclusion and Future Work

Throughout the last decades, many Internet voting schemes have been proposed in the

literature. One of these schemes is the coercion-resistant JCJ / Civitas [JCJ05, CCM08]

scheme. As shown by Neumann and Volkamer [NV12], the scheme builds upon a number

of trust assumptions and lacks in usability. Correspondingly, Neumann and Volkamer

presented a proposal [NV12] to overcome these shortcomings by incorporating smart cards

into the JCJ / Civitas scheme. Nevertheless, their work did not consider performance.

In 2013, Neumann et al. [NFVK13] therefore analyzed the previously named proposal

with regard to its feasibility. After slight protocol modifications, the authors were able to

theoretically conclude the feasibility of the JCJ / Civitas extension.

As a final step of the previously outlined history, the present work proves the feasibility in

a practical way. In the first part, we gave a short overview about the [NFVK13] scheme and

afterwards outlined further design decisions made throughout the implementation of the

scheme as well as the system design. In the second part, we refined the previous theoretical

performance analysis from [NFVK13] and made a practical analysis. Third, we presented

interface prototypes and provided a corresponding walktrough through the voting process.

Summing up these contributions, we are able to conclude that that [NFVK13] is feasible

to be applied in real-world elections.

In the future we plan to optimize the performance of the scheme. This can be done by

exchanging space for performance e.g. by caching the bulletin board certificate. This

would save one verification (currently 4 seconds) per registration teller in the registration

phase. Furthermore optimizations for specific card types are imaginable e.g. by using the

full non-persistent memory. This would save a few copy routines and would speed up the

whole routine.

Acknowledgment. This work has been developed within the project ComVote, which is

funded by the Center for Advanced Security Research Darmstadt (CASED), Germany. We

also thank the reviewers for their valuable comments that helped to considerably improve

the quality of this work.

1410

References

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In Paul C. van Oorschot, editor,
USENIX Security Symposium, pages 335–348. USENIX Association, 2008.

[AF92] K Ohta A. Fujioka, T. Okamoto. A practical secret voting scheme for large scale elec-
tions. J. Seberry and Y. Zheng, editors, Advances in Cryptology AUSCRYPT’92, page
244251, 1992.

[BCGS09] Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. Anonymous creden-
tials on a standard java card. In ACM Conference on Computer and Communications
Security, CCS ’09, pages 600–610. ACM, 2009.

[CCM08] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas: Toward a Secure
Voting System. In IEEE Symposium on Security and Privacy, pages 354–368. IEEE
Computer Society, 2008.

[Cha81] David L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-resistant electronic elec-
tions. In ACM Workshop on Privacy in the Electronic Society, pages 61–70. ACM,
2005.

[KV06] Robert Krimmer and Melanie Volkamer. Observing Threats to Voters Anonymity: Elec-
tion Observation of Electronic Voting. na, 2006.

[MM06] lle Madise and Tarvi Martens. E-voting in Estonia 2005. The first Practice of Country-
wide binding Internet Voting in the World. In Robert Krimmer, editor, Electronic Voting,
volume 86 of LNI, pages 15–26. GI, 2006.

[NFVK13] Stephan Neumann, Christian Feier, Melanie Volkamer, and Reto Koenig. Towards A
Practical JCJ / Civitas Implementation. Cryptology ePrint Archive, Report 2013/464,
2013. http://eprint.iacr.org/.

[NV12] Stephan Neumann and Melanie Volkamer. Civitas and the Real World: Problems and
Solutions from a Practical Point of View. In International Conference on Availability,
Reliability and Security (AReS 2012), pages 180–185. IEEE Computer Society, 2012.

1411

A Interface Mockups

Figure 2: Bulletin Board

1412

Figure 3: Vote Welcome Site

Figure 4: Contact Registration Teller Site

1413

Figure 5: Cast Ballot Site

Figure 6: Vote Cast Finish Site

1414

