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Abstract: Distributed hash tables are a common approach for fast data access. For this kind of
application, a synchronization scheme with Readers and Writers semantic is well suited. This paper
presents the design of an implementation of MPI passive target synchronization with Readers and
Writers semantic. The implementation is discussed for the Single-Chip Cloud Computer, a non-cache-
coherent many-core CPU with shared memory.
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1 Introduction and Motivation

Distributed hash tables (DHT) are a common approach for fast data access in big data and
data analytics applications. However, DHTs imply dynamic communication which makes
an implementation using two-sided communication, i.e. with SEND and RECV operations,
cumbersome. In contrast, one-sided communication is a suited programming model for
DHT. It allows to specify the communication parameters by the local process only and does
not require knowledge about the communication on the remote side.

The Message Passing Interface standard (MPI) defines one-sided methods to perform
remote memory accesses (RMA) which enable a shared-memory-like programming style.
Gerstenberger et al. showed that implementing a DHT with MPI RMA can efficiently scale
up to 32k cores on Cray machines [GBH13].

Concerning the process coordination, a DHT application follows the Readers & Writers
model: reads may occur concurrently while inserts have to be done exclusively. Hence, a
resource has to be locked before it is updated. Typically, writers are given preference to
avoid readers reading old data. This coordination scheme maps on MPI’s passive target
synchronization which offers exclusive locks (one writer) and shared locks (many readers).

Gerstenberger et al. published an approach for implementing passive target synchronization,
but the proposed scheme does not account Readers & Writers semantics [GBH13]. Rather,
a best-effort approach is used: Locks are acquired without respect to other processes. If an
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acquisition does not succeed, all data structures will be released and the process will try
again later with an exponential back off.

Regarding the RMA methods, the MPI standard also addresses non-coherent architectures.
Although caches are performance critical components in CPUs, maintaining the cache
coherence becomes a critical problem when both core counts and memory bandwidth
increase [Mor15]. Therefore, the investigation of algorithms for non-cache-coherent (nCC)
architectures becomes an important topic.

Consequently, this paper discusses the design for implementing passive target synchroniza-
tion inside the MPI library for the Intel Single-Chip Cloud Computer (SCC). This is an
experimental many-core chip that is comprised of 48 in-order Pentium (P54C) cores. It is
not a product but a research vehicle [H+10]. Each of the 48 cores has two integrated 16 KB
L1 caches – one for data and instructions – as well as an external unified 256 KB L2 cache.
There is no cache coherence between the caches of different cores.

Two cores are placed on a tile. In total, 24 tiles are arranged in a regular 6× 4 grid, to which
four memory controllers are attached as well. A tile also provides a fast 16 KB message
passing buffer (MPB) to the cores. The on-chip network allows to access both the MPBs as
well as the main memory by regular memory load and store instructions.

The next section introduces MPI one-sided communication with the focus on passive target
synchronization followed by a survey over related work. In Section 4, we present the design
of passive target synchronization with Readers & Writers semantic. Section 5 concludes
the paper and gives an outlook on future work.

2 MPI One-Sided Communication

Since version 2.0 the MPI standard defines one-sided communication (OSC) as an addi-
tional way to exchange data between processes. Different to point-to-point data exchange,
communication is separated from synchronization. In addition, only one process (called
origin) specifies the parameters (destination and message size, e.g.) of the communication.
The target process is not involved in the communication from the API level.

Data is exchanged via a window that exposes parts of a process’ address space to other
processes. A window object serves as a handle for accessing all windows that have been
collectively created by a group of processes. Combined with the process identifier (rank),
the window object identifies the destination of communication operations.

An origin communicates with operations like PUT and GET to either replace or fetch window
data. Additional operations like ACCUMULATE or FETCH_AND_OP combine the data in the
window with the provided buffer atomically using pre-defined operations.



2.1 Passive Target Communication

To communicate successfully, origin and target processes have to synchronize each other.
The MPI standard defines two different classes for this purpose: active and passive target
synchronization. Opposite to the active variant, target processes do not have to issue synchro-
nization routines in the passive variant. This enables a shared-memory like programming
style even on distributed memory machines.

The API defines locks as means for passive target synchronization. Before an origin process
issues communication operations (see previous subsection), it has to issue a synchronization
method, like MPI_WIN_LOCK. This opens an access epoch at the window of a given single
process. Exclusive and shared locks can be acquired. With an exclusive lock, conflicting
accesses can be avoided as this lock type allows only one process at a time to lock a window
of a certain process. In contrast, a shared lock allows several processes to access a window.
Shared locks are suited for concurrent read operations.

A process can lock all windows of the window object by using MPI_WIN_LOCK_ALL, but this
sets a shared lock only. After the communication has been finished, the access epoch needs
to be closed with MPI_WIN_UNLOCK or MPI_WIN_UNLOCK_ALL, respectively. The MPI standard
defines that RMA operations issued during the epoch will have completed both at the origin
and the target when the call that closes the access epoch returns [Mes15, p. 447].

2.2 An RMA based Implementation of a DHT application

In this section, the implementation of a distributed hash table where inserts and lookups are
based on MPI RMA operations and passive synchronization is outlined.

In a DHT application that uses MPI RMA functionality, each process reserves (equally-
sized) parts of its local address space as storage for a part of the distributed hash table as
shown in Figure 1. Using MPI windows, a global address space is created which allows to
access the distributed data via the window object.
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Fig. 1: Usage of MPI windows for a distributed hash table.

In such an application, the hash function returns two information: the process and the offset
at which the table’s entry could be found. In case data needs to be looked up, the application



computes the hash and acquires a shared lock for the window at the determined process.
Using an MPI_GET call, the hash table entry is fetched from the offset provided by the hash
function. The lock is released by calling MPI_WIN_UNLOCK. Special values or markers of the
fetched data may indicate the absence of a valid table entry. For a write, an exclusive lock
and MPI_PUT is used to update the hash table. Both cases are illustrated in Figure 1.

2.3 Classification of Implementations

With respect to the synchronization calls, the MPI standard gives an implementer much
freedom to realize the above methods [Mes15, p. 448]. The only guarantee is that commu-
nication is completed when an UNLOCK operation returns.

Gropp and Thakur [GT05] identified two classes of implementation options: immediate
and deferred. For immediate synchronization a call like MPI_WIN_LOCK blocks until the
according locks is acquired. This method is prone to process skew because the delay of
another process may delay the synchronization. However, as soon as the processes are
synchronized communication can be performed promptly which is beneficial especially
for shared memory systems [GT05]. This also enables overlap of communication and
computation. For the deferred scheme, the reverse applies. Here, the synchronization is non-
blocking and the execution of the communication operations is delayed until the closing
synchronization. While this is more tolerant to process skew, communication is lately
performed and no overlap with computation is possible.

In previous work, we identified the trigger-only scheme as favorable since it combines the
advantages of the other schemes: it is less prone to process skew but enables overlap of
communication and computation [CS16]. In the trigger-only scheme, the process tries to
acquire the lock at the beginning of an access epoch. If it does not succeed immediately it
will not try again until a communication method (PUT or GET) is invoked.

For nCC many-core processors with shared memory, a deferred scheme does not provide
advantages. Both immediate or trigger-only schemes should be considered. The scheme of
Gerstenberger et al. [GBH13] is an immediate method. Jiang et al. [JLJ+04] propose that
MPI_WIN_LOCK should be non-blocking, i.e. it should not wait until the lock is acquired,
supporting a trigger-only solution.

While there may be applications where computations are performed inside a pair of LOCK

and UNLOCK calls (access epoch), we assume that this is barely the case in a DHT application.
Thus, a process only performs communication with a single target process during an access
epoch with no chance for overlap. Hence, a trigger-only approach will provide no benefits.
Consequently, an immediate method is considered in the remainder of this paper.



3 Related Work

RCKMPI [UGT12] is a tuned MPI implementation for the SCC that is based on MPICH.
It uses messages which are transferred via the SCC’s on-chip Message Passing Buffers.
One-sided communication including the all synchronization styles is supported, but is
based on messages as well. An implementation scheme for RMA communication for many-
core architectures that avoids messages is discussed in [CS17]. In case of MPI’s general
active synchronization, Christgau and Schnor have shown that an implementation using
shared memory and uncached memory accesses outperforms the message-based approach
significantly [CS16]. Similar, Reble et al. discuss one-sided communication for the SCC,
but focus on the active target fence synchronization style which they implement on top of
an efficient barrier [RCL13].

Gropp and Thakur present general concepts for implementing MPI one-sided synchroniza-
tion operations [GT05]. Träff et al. [TRH00] mention a message-based MPI implementation
for the nCC NEC SX-5. In case of passive target synchronization, the target has to check
for synchronization messages in every of its MPI calls. Gerstenberger et al. [GBH13]
present a design for contemporary Cray supercomputers that relies on the atomic RDMA
operations provided by the hardware architecture. Similar work is provided in the earlier
work of Jiang et al. [JLJ+04] for InfiniBand clusters. The authors also discuss general
design issues for passive one-sided communication. Santhanaraman et al. investigate an
implementation for clusters based on InfiniBand’s atomic operations [SNP08] with cache
coherent multi-core nodes [SBG+09]. However, Cardellini et al. [CFF16] state that despite
these efforts MPI libraries, like MVAPICH and Open MPI, use two-sided approaches which
require participation of the targets to implement the synchronization.

Recently, Schmid et al. have proposed a scheme for Readers & Writers locking dedicated
for distributed memory architectures with RMA capabilities [SBH16]. The synchronization
data structures are organized hierarchically in a distributed tree.

Subsuming the related work, the usage of atomic operations is common to optimized
schemes. Nevertheless, there are no efforts in passive target synchronization for nCC
many-core CPUs with shared memory like the SCC.

4 Passive Target Synchronization with Readers &Writers Semantic

For the implementation of a DHT, a Readers & Writers (R&W) semantic is beneficial
and an implementation of MPI’s RMA synchronization supporting this semantic would
be preferable. The MPI API offers the suited methods: The writer may lock a resource
exclusively via MPI_WIN_LOCK with the lock type MPI_LOCK_EXCLUSIVE, and a reader may
check whether reading is allowed by calling MPI_WIN_LOCK with lock type MPI_LOCK_SHARED

(see section 2.2). In the following, the data structures and algorithms for the MPI library
are discussed.



Mellor-Crummey and Scott presented different synchronization algorithms for shared-
memory multiprocessors [MS91b]. The essential advantage of the presented algorithms is
that each process owns a local data structure which is used for spinning in case a lock could
not be acquired immediately. Compared to shared objects on which all waiting processes
spin (as used by Gerstenberger [GBH13]), this avoids contention on the memory interface.
In the following, we show that the approach of Mellor-Crummey and Scott, using the same
data structures for synchronization, can also be applied to nCC architectures.

Since the DHT application (cf. section 2.2) follows the R&W semantic and therefore does
not need global locks (provided by MPI_WIN_LOCKALL), the proposed design can be built
upon a classical R&W solution like given in [MS91b]. Among the presented algorithms
in [MS91b], schemes for reader or writer preference are discussed. Depending on the
workload, either type may be adequate for a DHT application. However, we focus on a
writer preference lock algorithm in this paper in order to allow readers to fetch the most
recent data.

4.1 Data Structures

The algorithm is built on a lock data structure Li that is allocated per each local window at
process i (see Figure 2) in shared memory. The lock data structure was proposed in [MS91b]
and contains distributed linked lists, known from MCS locks [MS91a], that serve as wait
queues for readers and writers.
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Fig. 2: Data structures for Readers & Writers synchronization.

In order to ensure that writers gain precedence over readers, an unsigned integer variable
state in the lock Li is used. It counts the number of active readers, but also records
the presence of writers and interested readers with flags. Interested readers are blocked
upon arrival when an active or interested writer is present. This ensures that writers gain
preference over readers that arrive later.

For the protoype implementation of MPI’s passive target synchronization, each MPI process
manages locally an array entry to store an entry element for every possible target. An entry
element consists of a boolean flag blocked that indicates whether the process is blocked. A



process which has to wait spins on this flag until it is set to unblocked by another process.
Additionally, the entry contains a pointer to the next list entry within the corresponding
wait queue. A list entry is allocated in shared memory to allow distributed wait queues, but
it is local to the calling process (see Figure 2).

4.2 Algorithm

Algorithms 1 and 2 show the usage of distributed readers and writers lock of Mellow-
Crummey and Scott [MS91b] inside the MPI implementation. The re-used functions
start_read, start_write, end_read and end_write have two parameters. The first pa-
rameter is the lock L of the target window and the second parameter points to the entry
element describing the calling process.

If a reader or writer arrives at the lock, it enqueues itself to the appropriate wait queue
by creating a new list entry e (see Algorithm 1) and inserting itself atomically into the
list (within start_read and start_write), respectively. Figure 2 illustrates an example,
where three writers want to access the window at rank 0 and where rank 0 successfully
obtained the lock. The entering process indicates its intention by setting the according fields
in the state variable of the target’s lock L. If the process obtains the lock immediately, the
process’ wait queue entry is set to unblocked. If a reader becomes unblocked, it also wakes
up all other readers that entered before the next writer to allow concurrent read operations.

In addition, the lock type is stored in the list entry e (see Algorithm 1) to call the corre-
sponding routine in the unlock method.

As soon as a process releases a lock, it unblocks its successor (either reader or writer)
by setting the boolean flag in the successor’s entry element to false. This is done within
end_read and end_write. From the target rank the entry element e of the calling process
can be derived which is the second parameter in end_read and end_write.

4.3 Implementation on the SCC

The algorithms presented in [MS91b] require five atomic operations for the manipulation
of the flag variable of a lock Li : fetch_and_{store,or,and}, atomic_add, compare_-
and_swap. On the SCC, all these operations can be built using the single test-and-set register
that is available on every core.

The shared data structures are accessed with uncached memory operations to account the
nCC aspects of the SCC. This is achieved with the help of an SCC-specific device driver
inside the Linux kernel that enables to map arbitrary memory regions with specific caching
policies. Uncached reads and writes prevent, e.g., infinite waits caused by reading cached
blocked variable of a list entry that has been updated in the RAM but was not updated in the



Algorithm 1 Lock Acquisition
function lock_shared(target, win)

e = entry[target] = alloc_list_entry()
e.lockState = SHARED
start_read(win.locks[target], e)

end function

function lock_exclusive(target, win)
e = entry[target] = alloc_list_entry()
e.lockState = EXCLUSIVE
start_write(win.locks[target], e)

end function

Algorithm 2 Lock Release
function unlock(target, win)

e = entry[target]
if e.lockState == SHARED then

end_read(win.locks[target], e)
else

end_write(win.locks[target], e)
end if

end function

Fig. 3: Algorithms for R&W lock implementation. The {start|end}_{read|write} functions are
reused from Mellow-Crummey’s and Scott’s solution [MS91b].

cache due to the missing coherence. Hence, on the SCC the processes are not doing local-
spinning. This seems to be a drawback, but the synchronization data structures are allocated
in the memory which is closest to the process. Therefore, the spinning is distributed over
all the four memory controllers.

Experiments on the SCC prove the scaling of this approach. Figure 4 shows the speedup of
an application including synchronization depending on the location of the synchronization
data. The latter is varied between a distributed variant and centralized versions which use
one of the four memory controllers. The baseline for the presented speedup is the sequen-
tial version of the application. Application data is always distributed across the memory
controllers. So, memory accesses causes by the application (not by the synchronization)
from the MPI ranks 0 to 11 go to controller 0. Controller 1 handles application traffic for
process 12 to 23, and so forth.

The results in Figure 4 clearly show that synchronization data should be distributed and the
SCC architecture sustains the traffic generated by both the applications memory accesses
and the uncached ones caused by the synchronization. The centralized versions using only a
single memory controller (labeled as controller x in the Figure) suffer from contention on the
memory controllers. Here, the memory traffic from the application plus the synchronization
traffic apparently cause to much load on the memory controllers. Due to the distributed
application data, the performance degradation depend on the number of MPI processes.

Alternatively to the conventional RAM, the data structures could be stored in the fast
on-chip Message Passing Buffer (MPB) which is local to the cores. This would enable
pure local spinning. However, the MPB is used by the MPI implementation for two-sided
communication and therefore not available for other purposes.
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Fig. 4: Scalability depending on the allocation strategy of the synchronization data.

4.4 Discussion

We have shown that the data structures and algorithms proposed by Mellor-Crummey and
Scott can also be applied to nCC architectures.

The presented approach has the following characteristics:

Concurrency Each window of a process has its own lock data structure Li . Therefore,
concurrent accesses of different processes on different targets are possible.

Per-process RW semantics The accesses to the same target window are synchronized
with readers and writer semantic.

Contention avoiding spinning Since the wait list elements (e) are allocated in a dis-
tributed fashion and located close to the spinning process/core (according to
[MS91b]), spinning on these structures avoids contention.

Jiang et al. [JLJ+04] state design issues for efficient passive target synchronization. It should
only add little overhead, and when there is high contention on the lock there should be as
little delay as possible. The presented measurement results show that this is fulfilled on the
SCC by distributing the spin load over all four memory controllers.

Further, origin processes should be able to continue with their operations without participa-
tion of the targets. The design for the SCC exploits the possibility to create shared memory
by LUT re-configuration. Hence, the synchronization data structures can be accessed di-
rectly without any participation of the respective target process. This also avoids both
the usage of asynchronous agents [Mes15], such as threads, and the usage of messages,
which have been proven to introduce higher latencies in case of active target synchroniza-
tion [CS16].



5 Conclusion and Future Work

This paper shows how a classical Readers & Writers solution can be reused to implement
MPI’s passive target synchronization. The implementation is discussed for the SCC, a
shared memory non-cache-coherent many-core processor. Synchronization data structures
are allocated in shared memory, but accessed with uncached read/write operations. We argue
that an immediate scheme is best suited for passive synchronization in a DHT application.

The presented approach fulfills the requirements from [JLJ+04]: little overhead under
contention (due to distributed spin load), no participation of targets, and co-existence of
point-to-point and one-sided communication.

Currently, we are working on a prototype. Further, we are working on a proposal for MPI
RMA where an application may specificy the locking semantic, for example, Readers or
writers preference.
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