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Abstract: Query-specific code generation has become a well-established approach
to speed up query execution. However, this approach has two major drawbacks: (1)
code generators are in general hard to write and maintain, (2) code generators lack the
ability to deal with custom operators. To overcome these limitations, we suggest to
return to the traditional execution approach with precompiled generic operators which
are parametrized and composed to query plans at query compile time. Nevertheless,
to optimize such plan operators and speed up their execution, we introduce a novel
specialization approach using reflective compiler techniques. Employing code annota-
tions and an additional compiler pass, we are able to track and replace low-level load
instructions that refer to operator parameters which remain constant during execution
time. By dissolving such up-to-now unknown constant variables, the compiler can
further optimize the code and is able to determine query-specific optimized operators
out of generic operator code. In our evaluation, we show that our approach speeds up
the execution of the traditional generic operator approach in terms of execution time
without facing the drawbacks of code generators.

1 Introduction

Due to the tremendous increase in the amount of data managed by today’s database sys-

tems, query optimization is still one of the most challenging issues in database research.

In disk-based database systems most of the time is spent for waiting on data from disk and

thus, the effective CPU computation time is more or less a negligible factor. However, the

ongoing trend towards in-memory databases shifted the bottleneck from disk access to the

main memory access, resulting in a higher bandwidth and a lower latency when accessing

data objects. Due to these decreased data access times, the effective CPU computation

time now takes a significant share of the overall query execution time in such in-memory

database systems. Therefore, besides determining an optimal query execution plan, the

efficient execution of query plans including all operators attracted attention in the domain

of in-memory database systems. The goal of this research is to execute query plans and its

operators with less instructions to save as many CPU cycles as possible.
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Figure 1: Comparison of Existing Query Compilation Approaches.

From a conceptual perspective, two different approaches for query execution have been

developed as illustrated in Figure 1. On the left side of the figure, the traditional approach

using a generic query operator code is shown. During each query compilation, a query

execution plan (after query optimization) is composed using a set of precompiled generic

operators and query-specific parameter settings for each plan operator. Afterwards, the

plan is executed without any further optimizations. On the right side of Figure 1, the

newly established generator approach is depicted, where a query±specific execution plan

is generated using two main components: (a) a code generator and (b) operator templates.

The advantages of such generator approaches are: (1) a highly specific query execution

code is constructed and (2) this query execution code is further optimized using a com-

piler such as LLVM. Nevertheless, the significantly reduced execution time requires the

costly development of hand-written code generators as well as operator code templates,

whereas code generator and templates are hard to maintain and to extend. An additional

disadvantage is the fact that the integration and optimization of custom code is challenging

and not solved in any way.

To overcome the disadvantages of the generator approach without losing its performance

benefits, we suggest in this paper to return to the traditional approach and extend it by a

novel specialization concept at query compile-time using reflective compiler techniques.

The general advantage compared to existing approaches is our novel architecture that com-

bines the generic way of developing operators with the option to specialize operators fully

automatically for a given execution plan which enables an easy development, maintenance

and extension of operators. Moreover, this architecture even allows us to easily specialize

a custom operator code which is not known at database compile time. To perform this spe-

cialization, we introduce code annotations to enable operator developers to mark certain

parameters in their code as remaining constant after query compilation. Using these code

annotations, the knowledge about the generic operator code and the actual parameters, we

are able to further optimize the code. This happens with the help of a novel compiler pass

that dissolves the constant behavior of parameters, so that we are able to generate query-

specific optimized operators out of generic operator code. As we are going to show, using

our constant annotations, we are able to specialize generic operators, which significantly

speeds up query execution.
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Figure 2: Hybrid Architecture Consisting of a Generic and Specializing Query Compila-

tion Path.

The remainder of the paper is organized as follows: In Section 2, we are going to describe

our hybrid architecture consisting of a generic and specializing query compilation path.

Based on this overview, we introduce our plan operator specialization in Section 3. In this

description, we use a minimal example to illustrate our approach, followed by a database

operator example. At the end, we present our new compiler pass for plan operator special-

ization. Our evaluation in Section 4 is based on micro benchmarks as well as on the star

schema benchmark to show the benefits. Before we conclude our paper in Section 6, we

review related work in Section 5.

2 Architecture

In this section, we introduce our novel hybrid architecture that employs two different

query compilation paths as depicted in Figure 2. The first path is the Generic Compi-

lation Path, which takes the traditional way of composing a query execution plan (QEP)

out of parametrized instances of generic plan operators. The additional second path is the

Specializing Compilation Path, which is able to replace generic operator instances of the

QEP by specialized query-specific ones. While current architectures either employ only

one of those paths ± facing their respective benefits and drawbacks ± or both paths in a

separated fashion, our novel architecture orchestrates both paths into a holistic query com-

pilation framework that is able to choose between both query compilation approaches at

the operator instance level. In the following we will detail on both compilation paths.

Generic Compilation Path This compilation path realizes the traditional way of QEP

generation, where plan operators are implemented in a highly generic fashion to allow

them to deal with all kinds of possible scenarios. Such generic operators are compiled to
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executable machine code at database compile time and are instantiated and parametrized

at query compile time to fit the actual requirements. Afterwards, all operator instances

are composed into an executable QEP. Nowadays, when in-memory databases are becom-

ing the standard, this traditional generic approach faces disadvantages in terms of query

execution time because generically implemented operators exhibit a significant instruc-

tion overhead. However, common scenarios exist where the generic compilation path still

outperforms the specializing compilation path due to the additional costs for invoking a

compiler during code generation, e.g., for short-running ad-hoc queries, simple operators,

or custom operators which can not be specialized by existing approaches.

Specializing Compilation Path This compilation path is able to transform parametrized

instances of a generic operator, which were generated by the generic compilation path, into

a specialized query-specific operator. Compared to existing approaches, which require

the implementation and maintenance of a separate code generator, our novel approach

tightly integrates with the generic compilation path. To do so, the first step is to enable

plan operator developers to add annotations to the generic operator code that mark certain

parameters as remaining constant after query compilation. As a second requirement, we

need a representation of the generic operator code at database runtime that is as low-level

as possible, but is still high-level enough to be efficiently optimizable. Hence, we decided

to choose the LLVM Intermediate Representation (LLVM-IR) which is an intermediate

result of the database compilation process and is used by the LLVM compiler infrastructure

to apply several optimization passes. Thus, besides shipping the binary code of the generic

operators with the DBMS, our framework additionally requires the inclusion of the LLVM-

IR operator code in combination with the aforementioned annotations to allow the database

system to reflect on its own operator code. To fully automatically compile specialized

query-specific operator code, we take the LLVM-IR of a generic operator, corresponding

annotations, as well as the actual parameters of a generic operator instance and feed them

into our enhanced LLVM compiler version, which adds an additional optimization pass

(cf. Section 3.3). Finally, we replace the generic operator instance by the specialized code

if this is beneficial for the overall query execution time. This operator code specialization

either happens synchronously at query compile time or asynchronously in parallel to the

query execution, where generic operators are hot-swapped as soon as the specialized code

is available.

3 Plan Operator Specialization

In this section, we will describe the process of plan operator specialization in three steps.

First, we will examine a minimal example to develop a concept of algorithmically spe-

cializing generic operator code. Second, we will show with an example that the cognition

obtained can also be applied to arbitrarily complex operators. Third, we describe how the

specialization is actually implemented using the LLVM compiler framework.
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3.1 Minimal Example

Generic operators in general consist of two parts: (1) A generic execution method and (2)

parameters. While the generic execution method is already available during database com-

pilation, the parameters are bound at query compile time. Figure 3 shows an operator after

query compile time: There is an instance of a generic operator on the left side that already

has its parameter bound. The generic execution method called evaluate (bottom of the

figure) is written agnostically to the actual value of the parameter x. When considering the

now known value of x, an other, smaller and therefore faster code would have the same

semantics.

Generic Operator

if(x == 1) {

return –y;

} else {

return y;

}

x: int = 1

evaluate(y: int): int

Specialized Operator

return –y;

evaluate(y: int): int

if(1 == 1) {

return –y;

} else {

return y;

}

Specialization

Load Replacement Reoptimization

Figure 3: Minimal Specialization Example using A Simple Generic Operator.

High level programming language source code is rather unsuitable for our considerations.

Such languages make use of a high variety of concepts. For instance, global variables, ar-

ray elements, elements of a struct and attributes of an object all describe different concepts,

but all describe a piece of memory that can be accessed through load instructions. For this

reason we translated the example in Figure 3 into a pseudo assembly language as shown

in Figure 4. This pseudo assembly only knows three kinds of instructions: arithmetics,

jumps and load/store commands. The if condition is translated into a load instruction, a

comparison and a conditional jump. The expression return y is translated into a load

instruction and a jump and return -y is translated into a load instruction, an arithmetic

instruction and a jump.

The left box of Figure 4 already shows an optimized assembly as it is spilled from a com-

piler. The problem with the generic operator is that it cannot be further optimized because

the load instructions introduce data dependencies that cannot be resolved at database com-

pile time. Since the parameter is known at query compile time, we propose to run the

code optimizer of our compiler again over the code after the values of the parameters are

known. To overcome optimization-blocking load instructions, we have to replace them by

actual values.

After replacing load x, %b by mov 1, %b, traditional compiler passes are able to

367



load x, %a

compare %a, 1

jne else

load y, %b

neg %b

ret %b

else:

load y, %b

ret %b

mov 1, %a

compare %a, 1

jne else

load y, %b

neg %b

ret %b

else:

load y, %b

ret %b

load y, %b

neg %b

ret %b

else:

load y, %b

ret %b

load y, %b

neg %b

ret %b

Load Replacement Reoptimization

Figure 4: Minimal Example in Pseudo Assembly.

optimize our example even further: The instruction combining pass of our stock compiler

is able to combine the mov and compare instruction and directly propagate equal in-

stead of computing a comparison. The conditional jump operation jne can therefore be

removed because the condition is never fulfilled. After removing the jump instruction, the

label else is never reached and can therefore be removed, too.

In summary, we are able to specialize an operator completely just by using simple code

transformation rules. We discovered that replacing load instructions of operator parame-

ters by the values of the parameters offers a method of automatically creating specialized

code without the need for writing a custom code generator.

3.2 Database Operator Example

The operator examined in section 3.1 is rather simple. Database operators are much more

complex. They contain loops, nested branches and virtual function calls where template

based code generators are likely to fail. This is not the case for our approach. We will show

that in general lots of code primitives occuring in database operators are load instructions

followed by some instructions that depend on the result of the load instruction. To make

this tangible, we provide an example in Figure 5, which shows a generic group operator.

For our example we choose the following parameters: group attributes has size 2.

The first element has a column of 2 and the second element has a column of 3. With

the size parameter known, we can construct a specialized version of the loop such as in

Figure 6. The method we used is called loop unrolling. It is a normal compiler pass that

is implemented in nearly all modern optimizing compilers. The only reason why the loop

cannot be unrolled was that group attributes.size() was unknown. However,

this value is constant and known for this operator instance after the query was compiled.

After replacing the load instruction from the size field of the vector, the loop has a

constant iteration count. The optimizer can now remove all control instructions and insert
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1 void GroupOpera to r : : e x e c u t e ( Tuple t u p l e ) {
2 Key key = h a s h i n i t i a l v a l u e ;

3 f o r ( i n t i = 0 ; i < g r o u p a t t r s . s i z e ( ) ; i ++) {
4 key . append ( t u p l e . e x t r a c t (

5 g r o u p a t t r s [ i ] . column ) ) ;

6 }
7 o u t p u t I n d e x . i n s e r t ( key , t u p l e ) ;

8 }

Figure 5: GROUP BY Operator Example Code.

1 void GroupOpera to r : : e x e c u t e ( Tuple t u p l e ) {
2 Key key = h a s h i n i t i a l v a l u e ;

3 key . append ( t u p l e . e x t r a c t (

4 g r o u p a t t r s [ 0 ] . column ) ) ;

5 key . append ( t u p l e . e x t r a c t (

6 g r o u p a t t r s [ 1 ] . column ) ) ;

7 o u t p u t I n d e x . i n s e r t ( key , t u p l e ) ;

8 }

Figure 6: GROUP BY Operator Example Code with Unrolled Loop.

the loop body n times. Figure 7 shows instruction-wise how big our savings are.

An interesting situation comes up when accessing arrays inside of loops. The upper exam-

ple accesses group attributess elements with the unknown index i. After unrolling

the loop, this index is known and therefore a concrete memory address can be derived.

Figure 8 shows the code of the group operator after specialization. Since this operator

code (group by) is executed inside of a loop, even small savings in the instruction count

yield remarkable speedups in the execution time. tuple.extract is a rather simple

function. Inlining it would open up even more optimization potential. The following code

patterns occur in real database operator code:

Loops with a Constant Number of Iterations Iterations over tuple elements are mostly

operation specific and can therefore be specialized. Applying the specialization removes

unneeded branching and unnecessary compare instructions. Also, unrolling loops opens

new possibilities to access different data in each loop iteration, e.g., type information for

each tuple element.

Constant Values (SQL Constants) Queries such as SELECT x+1 FROM t contain

constants such as 1 which are better to be inlined than fetched from somewhere. Generic

operators implement them as load instructions from some constant storage. Inlining these
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mov 0, %i

load size, %size

header:

compare %i, %size

jge exit

; Loop body

inc %i

jmp header

exit:

mov 0, %i

mov 2, %size

header:

compare %i, %size

jge exit

; Loop body

inc %i

jmp header

exit:

Load Replacement Reoptimization

mov 0, %i

header:

compare %i, 2

jge exit

; Loop body

inc %i

jmp header

exit:

mov 0, %i

; Loop body

mov 1, %i

; Loop body

Figure 7: Loop can be Unrolled Because of Resolved Load Instruction.

1 void GroupOpera to r : : e x e c u t e ( Tuple t u p l e ) {
2 Key key = h a s h i n i t i a l v a l u e ;

3 key . append ( t u p l e . e x t r a c t ( 2 ) ) ;

4 key . append ( t u p l e . e x t r a c t ( 3 ) ) ;

5 o u t p u t I n d e x . i n s e r t ( key , t u p l e ) ;

6 }

Figure 8: GROUP BY Operator Example Code with Unrolled Loop and Inserted Parame-

ters.

constants into the machine text also prepares other optimizations such as instruction com-

bining. By using our approach, a SQL expression such as 2+2*2 could be computed

during query compile time.

Virtual Function Calls Operators that are built calling virtual functions recursively.

With an inlining pass, we can remove call overhead and also have the ability to perform

interprocedural optimizations. One example is tuple.extract in Figure 8 where inlin-

ing the tuple extraction algorithm would open up additional optimization potential. Com-

bined with inlining key.append even more aggressive optimizations would be possible.

Fetching a function pointer from a virtual function table is a load instruction. We detect

this pattern and inline the function call. For ahead-of-time compilers, virtual function

inlining is not easy. In the worst case, all code has to be scanned, which is not always

possible. Given a specific runtime object, virtual function inlining hence is trivial.

Branches Branching occurs when compiling control flow statements such as if and

while. For branches that depend on operator parameters rather than input, we are able to

remove branching and therefore remove unnecessary comparisons, jumps and dead code.
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And a lot more Patterns ... Our approach does not handle constants, loop iteration

counts, data type selectors or tuple offsets as corner cases. We rather see that replacing

load instructions by constants, optimization passes already available in stock LLVM are

triggered and specialize the code independent from its structure. In summary, we are able

to deal with arbitrary complex generic operator code. All code is compiled to machine

code that contains load instructions, jumps and arithmetic instructions.

3.3 Specializing Compilation Path

In this section, we will present our novel compiler pass. In the first subsection, we will give

an overview on how this pass interacts with other passes inside the compilation process.

In the second section, we will describe the algorithm behind our pass.

3.3.1 The Compilation Process

C JavaC++ …Source Code

LLVM-IR

x86 ARMX86_64 …Machine Code

Database Startup

Analyze

Transform

Analyze

Transform

Load Replacement

Transform

Transform

Database

Compile Time

Query

Compile Time

Runtime Environment

Generic Operator Instance

… Parameters

Annotation

Callback Transformations

made Changes?
yes

Figure 9: LLVM Compilation Process with Operator Specialization.

The traditional database compilation process is restricted to database compile time. Our

approach also involves query compile time. The compiled code of the generic operators

in their intermediate representation is kept for further specializations. During each query

compilation, this code can be further specialized due to bound operator parameters.

We specialize operators by involving their already bound parameters. This happens by
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loading the already optimized generic code (created at database compile time) and run-

ning compiler passes over it (Figure 9). Except from our load replacement pass we did

not add any functionality to LLVM1. All optimizations are already known in compiler

construction science. The load replacement pass opens up new optimization possibilities

when traditional compiler passes can not further optimize the code. Therefore we try to

run all beneficial traditional compiler passes over the code until they resign. Then we run

our novel pass such that traditional passes can continue optimizing the code.

The first pass running over the code is the load replacement. We start with this pass

because it removes load instructions that blocked further optimizations during database

compile time and replaces them with compiler-friendly constants. After that, instruction

combining can do traditional constant propagation in order to partially evaluate branch

conditions and arithmetics. After that, control flow graph simplification can remove dead

code and reorder the basic blocks to an optimal order.

For more complex operators a different pass order is applied. Operators containing loops

have to be handled separately. We also begin with load replacement. After instruction

combining some loop counts are known, so a loop unrolling pass can be run. After that,

load replacement has to be run again because array access inside the loop makes use of the

control variable of the loop. A load instruction can only be replaced by a constant when

the memory address is constant which does not hold for addresses that are calculated from

the control variable. After unrolling, new load instructions can be resolved. After loops

are unrolled and their inner load instructions are resolved, instruction combining can be

run again and control flow graph simplification cleans up the specialized code. The overall

result after the specialization process is much smaller code. With less instructions, the

code fits better into the instruction cache and can be executed faster. To save time, we do

not run loop passes on rather simple operators such as arithmetics.

We also run the virtual function call inlining pass for functions that call other functions.

This pass is placed before the last instruction combining pass to reveal further optimizable

code patterns to the following passes. It enables us to inline deep expressions like (2*i)

+ 1 directly into one function.

3.3.2 Load Replacement Pass

This pass is the key part of our approach. It pushes operator parameters into the generic

operator code. In object oriented programming, a method is a function that operates in the

context of an object. Most programming languages implement this by passing a parameter

this to the function. The operators themselves are classes where some of the attributes

are operator parameters. To achieve operator specialization, the load replacement pass has

to be aware of the value of the this parameter of the operator method. Load instructions

relative to this load attributes of the object which can by chance be constant operator

parameters. To assure that an attribute of the object is in fact constant, we have to annotate

the memory somehow.

1virtual function inlining is also written by us because we want to inline already optimized operators into

their parent operators.
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The pass itself iterates over all instructions of a method and looks for load instructions.

For each load instruction it tries to resolve the memory address to load from. This is done

by reverse traversion of the code. The memory address is calculated from some base value

(e.g., this) and offsets. If some of the offsets are not constant but depend on a loop

control variable or a load instruction, we can not calculate the address. In case we found a

load instruction that loads from mem[this + offset], mem[mem[this + offset] +
offset] or any deeper indirection, calculating the address is possible. These addresses are

constructed from LLVM-IR’s instructions load, bitcast and getelementptr, as

well as %this at the end of the chain. By handling them in a recursive function, we can

resolve all memory addresses to attributes in the code. Once the address is calculated from

all offsets, we consult our annotation system whether there is a constant at this memory

location or not. If this is the case, the load instruction can be executed at compile time by

loading the value from runtime memory.

Generic Operator

memoryIsConstant(ptr): bool

Struct

a: int

b: int

; load attribute from Operator

%arrayptr = getelementptr %this, i32 0, i32 2

%array = load {i32, i32}*** %arrayptr

; pointer to Struct from array

%arrayelemptr = getelementptr %array, i32 4

%arrayelement = load {i32, i32}** %arrayelementptr

; fetch attribute b from Struct

%varptr = getelementptr %arrayelement, i32 0, i32 1

%var = load i32* %varptr

someParameter: array 1

2

3

1

2

3

Figure 10: Loading Operator Parameters in LLVM-IR.

Figure 10 illustrates what operator parameters could look like. The operator parameter

%var, in C someParameter[4]->b, is hidden behind two indirect loads. When the

value of %this is known (and the offset is constant), the address %varptr can be com-

puted. Computing the address is implemented by resolving %varptr recursively. load

instructions in indirect memory addressing such as %arrayelement have to be executed

during pass runtime. This is only allowed when the annotation system marks the loaded

memory constant. A getelementptr instruction simply adds an offset to a pointer.

The then computed address is passed to our annotation. If the annotation assures constant-

ness of the memory at this address, an integer constant can be fetched from the address

%varptr. This constant is packed into a LLVM value and all occurances of %var are

replaced by that constant. Subsequent passes will remove the instructions that compute

%varptr too when they are not referenced any more.

The annotation is managed by the operator (this) and is realized through a method called

bool memoryIsConstant(void *mem) which returns true for a given memory
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Figure 11: Execution Time Speedup of Ad-hoc Queries for Micro Benchmark with Dif-

ferent Data Sizes and Different Specialization Strategies.

location when there is a constant at this address. This way, the memory is mapped into

regions that can change and regions that remain constant. The granularity of this mapping

is byte-wise. The annotation system does not care about variables, attributes or data types.

It also is not compiled into the LLVM code. Instead, it just manages a mapping that tells

at which memory address there is a constant. Determining which address is constant is

delegated to the operator objects that know which of their attributes are constant. The

address ranges of the attributes are compared to the address queried by the annotation

manager.

4 Evaluation

In column stores, operators work vector-wise[RBZ13]. This reduces complexity and

makes it possible to generate all variations of operator parameters, such as input types,

with templates. However, this is not possible for tuple based operators since the number

of variations grows exponentially with the number of elements in a tuple.

We used two benchmarks to evaluate the performance of our specialized code. The first

one is a micro benchmark that covers all combinations of the sum aggregation with single

value addition. The second one is Star Schema Benchmark (SSB) which is widely used in

data base research[OOCR09]. As a test setup, we used DexterDB, which was developed

by the database research team of TU Dresden. It is an in-memory database, which has an

indexed table-at-a-time processing model[KSHL13]. We implemented our approach into

the already optimized operator system of DexterDB and measured what speedup we can

achieve with our additional operator specialization.
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4.1 Micro Benchmark

The micro benchmark consists of 5 queries which cover simple aggregation, aggregation

combined with arithmetics (several bracketings), aggregation with a condition on each

input tuple and a simple join with a table of 5 elements. All queries are executed together

to get a median over some common queries. The benchmark varies over the size N of one

input table.

All queries are executed 32 times with each of these four specialization strategies: Never

strategy does never specialize and reflects the unoptimized result of the generic opera-

tors. Always reflects the result with specialized operators. Decide tries to find a balance

between execution and preparation effort and only specializes when the input tables are

big enough (threshold of N). Async runs the specialization in an extra thread and asyn-

chronously swaps methods when the query runs a long time but cancels specialization if

the query was faster.

The test machine is an Intel(R) Core(TM) i7-3960X CPU with 6 cores each 3.30 GHz with

a total of 12 hyperthreads running linux. L1 instruction and data cache are 32 KiB each.

L2 cache is 256 KiB and L3 is 15360 KiB.

One measurement consists of executing all 5 queries 32 times with table size N. On each

execution two measures are taken: prepare and execute time. Prepare time is the time from

parsing the statement, optimizing and specializing until it is ready for execution. During

prepare time no data is touched. Prepare time is also the time it would take when a prepared

statement is created. Execution time is the time it took to execute. Executing an ad-hoc

query would take prepare+execute time while executing prepared statements would only

take the execute time.

Preparing unspecialized queries took about 0.2-0.5 ms in total. However, preparing spe-

cialized queries however took about 95-99 ms for all five queries, which is quite costly
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in comparison to unoptmized queries. Figure 12 shows that code generation is expensive,

which especially concerns small queries. Therefore two additional strategies for handling

small queries were introduced: Decide and Async. As one can see in Figure 11, these

strategies give good results for both big and small queries. Figure 11 shows how they

combine the advantages of both code paths: the generic execution path and the specialized

operator path. While decide ammortizes relatively late, the asynchronous strategy already

starts gaining advantage at about 100,000 items. The downside of the Async strategy is

that each query takes some extra milliseconds for synchronization. Async has to stop the

specialization thread which is not possible at any time.

4.2 Star Schema Benchmark

The Star Schema Benchmark[OOCR09] (SSB) is a benchmark derived from TPC-H. It

aims at benchmarking database products that run classical data warehouse applications.

The benchmark consists of 8 tables and 13 queries containing aggregations, joins and

selections.

Generic Specialized

Nr. Prepare Time Execution Time Prepare Time Execution Time

Q1.1 0.20 ms 8,312.01 ms 41.29 ms 4,979.34 ms

Q1.2 0.21 ms 8,734.92 ms 43.43 ms 5,319.47 ms

Q1.3 0.21 ms 8,692.01 ms 45.43 ms 5,357.07 ms

Q2.1 0.20 ms 10,900.00 ms 77.29 ms 9,117.51 ms

Q2.2 0.22 ms 7,758.99 ms 80.77 ms 6,098.14 ms

Q2.3 0.18 ms 5,508.16 ms 78.31 ms 3,907.43 ms

Q3.1 0.22 ms 11,163.30 ms 91.54 ms 8,766.37 ms

Q3.2 0.22 ms 7,285.59 ms 91.87 ms 5,690.01 ms

Q3.3 0.23 ms 5,574.93 ms 91.80 ms 4,131.47 ms

Q3.4 0.22 ms 5,805.91 ms 90.81 ms 4,121.73 ms

Q4.1 0.25 ms 10,382.60 ms 99.21 ms 8,203.17 ms

Q4.2 0.30 ms 9,797.42 ms 112.60 ms 7,742.18 ms

Q4.3 0.28 ms 6,896.63 ms 108.98 ms 5,174.66 ms

Figure 13: Results of the SSB-Benchmark.

The benchmark is executed with scale factor 20 which fits into 32 GiB RAM of the test

machine. Figure 13 shows the results of our measurements. When executing queries with

a large ammount of data, the average 70 ms of prepare time does not influence the overall

result that much. Figure 14 especially shows that, in contrast to the micro benchmark, the

difference in speedup between prepared statements and ad-hoc queries is not remarkable

for big data queries like those from the SSB. This is also confirmed in Figure 15 where we

ran SSB with different scale factors.

Figure 15 shows two SSB queries (Q1.1 and Q2.2) that we benchmarked with different

scale factors both with and without indices. Figure 16 illustrates the speedup from Fig-
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Figure 14: Speedup of Specialized SSB Queries.
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(a) SSB Query 1.1 w/o Indexing
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(b) SSB Query 2.2 w/o Indexing
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(c) SSB Query 1.1 w/ Indexing
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(d) SSB Query 2.2 w/ Indexing

Figure 15: Execution Times of SSB Queries for Different Scale Factors and Storage Con-

figurations.
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Figure 16: Speedup of Specialized SSB Queries 1.1 and 2.2 w/ and w/o indexing for

Different Scale Factors.

ure 15’s runs in one chart. While the run of Q1.1 without indexing has a rather constant

speedup, speedup sinks in the other runs. Q1.1 does not have joins and therefore just iter-

ates over a big ammount of data. We achieve the highest speedup with this setting. With

enabled indexing, speedup is worse but still good. The declining speedup for enabled in-

dexing and Q2.2, which consists of some joins, can be explained with smarter algorithms

that avoid raw computations and therefore do not offer large optimization potential.

Our approach achieves a speedup between 1.2 and 1.6 in DexterDB for SSB which is a

favorable result. Especially Q1.1, Q1.2 and Q1.3 perform great which can be attributed

to their heavy algebraic load. The other queries rely more on multi way joins. With an

additional recursion unroller, which we did not write, we could further speed up joins.

5 Related Work

There are various approaches to achieve low-level optimized operators. One approach

is to transform and specialize existing code. An other approach is to generate already

specialized code using code generators.
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5.1 Code Specialization Approaches

Our approach is one instance of partial evaluation2. Our compiler pass partially executes

generic operator code and generates the leftover specialized code. While we work with

annotations for marking constants, there are also approaches to have partial evaluation

as a language feature. The Java Programming language[GJSB05] for instance supports

the final flag for variables which has exactly the semantics of our annotation. A Java

Runtime Engine could specialize methods of an instanciated object in a background thread

and inline the actual values of the final fields into the method code. The problem with this

feature is that it is hard to decide whether a specialization is beneficial. Speculatively

specializing code often yields performance penalties. A runtime engine can not determine

how often code is executed in general. However, in our domain we have this information

and use it to decide whether to specialize or not.

Partial evaluation is something Veldhuizen[Vel99] already described in 1999. Veldhuizen’s

approach is based on C++ templates which are restricted to integers at compile time. What

he predicted is that it will be possible to do partial evaluation based on bind time data. Our

approach is even better, since it can do partial evaluation during program runtime.

One approach did come close to ours. Skye Wanderman-Milne and Nong Li[WML14] pro-

posed a complete architecture for code snippet composition based on LLVM called Cloud

Impala. Parts of their code is generated by a hand-written code generator while other parts

are C/C++ or Python code compiled to LLVM-IR and specialized for specific operator

parameters. They make very specialized differenciations between conditionals, constant

loads, runtime type information and try to manually specialize prepared code based on

variable names. However, we discovered that any of these patterns contains a unresolved

load instruction. Based on memory annotation, we can tell which load instructions can be

resolved. Therefore we don’t need extra variable loaders and can instead read out our run-

time memory which makes our solution much more elegant. Also, their approach requires

a completely new infrastructure for generic operators, which is not optimal for unspecial-

ized code. Our approach allows further specialization of already optimized legacy generic

operators.

5.2 Code Generators

Zhang et al.[ZSD12] introduced the term micro-specialization in DBMSs. While most

optimization approaches focus on high level components, they focussed on parameterized

operators in the classical operator approach. They focussed on variables - typically schema

metadata or query-specific constants - that are invariant to the query evaluation loop. Mi-

cro optimizations remove unnecessary operations in frequently taken execution paths. The

paper states that micro specialization is not possible using traditional compiler techniques

2Partial Evaluation means to not evaluate a statement or a piece of code completely. Instead, parts of the code

are executed and the code left to execute is returned. For instance partially executing an if statement would

mean to evaluate the branch condition and return only the code of the chosen path.
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since the invariants are only known at runtime. Until this point the paper does not distin-

guish from this work. The difference is that Zhang et al. work with hand-written code

templates while we derive our information from the original source code of the DBMS

using compiler techniques. For us, the generic operator code is the template. Also, they

are still restricted operator boundaries while we can inline code. They used code templates

for some hot code operators which have to be specified by the developer. The developer

has to define code snippets that are then assembled to so called bee routines. The gcc

compiler is used to create the precompiled bee routines. Constants are inserted with pre-

processor macros. For some values, so called magic numbers (1000, 1001, 1002) are used

to be replaced by constants after loading the machine text into memory. The bee routines

are loaded into memory and are then further specialized with constant values. Integrated

into PostgreSQL they got a performance gain of about 12%, in rare cases even 33%. One

thing that their paper does better than this paper is the preparation time. Loading a piece

of machine code into RAM and replacing some constants is much faster than generating

specialized code from the beginning.

Rao et al.[RPML06] implemented a query compiler for the Java Virtual Machine (JVM).

They used it in their in-memory database called JAMDB. Besides interpreting a Query

Execution Plan they generate java bytecode. Their implementation is said to run faster

than the non-specialized C/C++ code from DB23. They implemented both an interpreted

engine and a JVM based compiler. This led to double expense of maintaining code and

optimizing parts of the code. They admitted that this is harder to code and harder to

maintain than simple interpreters.

Neumann[Neu11] proposes a completely new architecture of query processing that tries to

keep all values of a processed tuple in CPU registers. This way, highly effective pipelining

of multiple operations can be achieved. They used the LLVM framework to merge oper-

ations into one machine code function. They used a code generator to build specialized

query plans on demand. Their generated code is said to be near optimal assembly code.

Their code generator for full SQL-92 operators is about 11,000 lines of code which is not

a lot in their perception. We used about 1,000 lines of code with our generalized approach

(plus the code of the interpreted operators) which is even better.

The big advantage of our approach is flexibility. While other approaches have to maintain

code generators which are harder to write, we can stick to generic operator code. Extend-

ing the execution engine with new operators consisting of custom code is possible and

easy with our approach since every operator behaves like custom code to us. By using

compiler techniques we are able to create optimized code with a minimal invasive pro-

gramming model. The downside is a higher preparation time. Transforming generic code

to specialized code is slower than generating only the needed parts of the optimal query

execution code.

3It ran with a large bufferpool to have in-memory characteristics.
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6 Conclusion and Future Work

We developed a hybrid architecture that can be put on top of traditional generic operator

systems. This architecture enables us to specialize operators to their parameters when the

benefit exceeds the effort of the specialization. This way we can speed up long running

database queries.

Our framework takes the intermediate code of generic operators after database compilation

and specializes them to a specific instance of that operator. This is done by resolving

load instructions. Since the pointer to the instance of an operator is known to us, we

know the memory locations of immutable operator parameters and can therefore resolve

load instructions that load from these memory locations. This way, we are able to push

additional information about the operator into the generic operator code, which enables

further optimizations on the code to traditional compiler passes.

Adopted to a database which runs operator code millions of times, we measured speedups

ranging from 1.2 to 2.0 in query processing. With these speedups, we revived the classical

operator model and modernized it to meet the needs of modern in-memory databases.

An implementation of about 1,000 lines of code is able to specialize arbitrarily complex

operators independent of their semantics. This is useful especially when dealing with

custom operators.

Our approach solves the same problem as hand-written code generators. However, we

provide a much more elegant way to achieve a specialization. DBMS implementors do not

have to write code generators from scratch to get speedup. They can just put their generic

operator code into our algorithm and our enhanced compiler will specialize it to a certain

environment, in this case to bound operator parameters.

This approach is not restricted to DBMSs. Load replacement enables to specialize generic

code to any situation that can be encoded in memory. The reason why it is not widely

adopted by scripting language interpreters, regular expression interpreters, image filters

and other possible applications is the high effort for compilation. A problem with an

automation of the specialization, for instance as a feature of a language’s runtime, is to de-

cide how often some specializable code is executed, which often depends on the size of the

input. Compilation is expensive and speculative specialization can slow down execution

when the specialized code is only executed a few times.
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