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Abstract: A fundamental challenge in human health is the identification of disease-
causing genes. Recently, several studies have tackled this challenge via a two-step
approach: first, a linkage interval is inferred from population studies; second, a com-
putational approach is used to prioritize genes within this interval. State-of-the-art
methods for the latter task are based on the observation that genes causing the same
or similar diseases tend to lie close to one another in a network of protein-protein or
functional interactions. However, most of these approaches use only local network in-
formation in the inference process. Here we provide a global, network-based method
for prioritizing disease genes. The method is based on formulating constraints on the
prioritization function that relate to its smoothness over the network and usage of prior
information. A propagation-based method is used to compute a function satisfying the
constraints. We test our method on gene-disease association data in a cross-validation
setting, and compare it to extant prioritization approaches. We show that our method
provides the best overall performance, ranking the true causal gene first for 29% of the
1,369 diseases with a known gene in the OMIM knowledgebase.

1 Introduction

Associating genes with diseases is a fundamental challenge in human health with appli-
cations to understanding disease mechanisms, diagnosis and therapy. Linkage studies are
often used to infer genomic intervals that are associated with a disease of interest. Priori-
tizing genes within these intervals is a formidable challenge and computational approaches
are becoming the method of choice for such problems. Prioritization methods are based on
comparing a candidate gene to other genes that were implicated with the same or a similar
disease. Recently, several methods were suggested that use physical network information
for the prioritization task, and these were shown to outperform other approaches to the
problem. The basic paradigm underlying these methods is that genes causing the same
or a similar disease tend to lie close to one another in a protein-protein interaction (PPI)
network.

Previous approaches to prioritizing disease-causing genes can be roughly classified ac-
cording to whether prior knowledge on some of the genes (or genomic intervals) underly-
ing a disease of interest is assumed or not. Approaches in the first category are based on
computing the similarity between a given gene and the known disease genes. Such a simi-
larity can be based on sequence [G+06], functional annotation [PIBAN07], protein-protein
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interactions [O+06, F+06] and more. The reader is referred to [OB07] for a comprehen-
sive review of these methods.

Approaches in the second category, which is the focus of the current work, are often based
on a measure of phenotypic similarity (see, e.g., [vD+06, L+07]) between the disease of
interest and other diseases for which causal genes are known. Lage et al. [L+07] scores a
candidate protein w.r.t. a disease of interest based on the involvement of its direct network
neighbors in a similar disease. Kohler et al. [K+08] group diseases into families. For a
given disease, they employ a random walk from known genes in its family to prioritize
candidate genes. Finally, Wu et al. [W+08] score a candidate gene g for a certain disease
d based on the correlation between the vector of similarities of d to diseases with known
causal genes, and the vector of closeness in a protein network of g and those known disease
genes.

In this work we suggest a global, network-based approach for predicting disease-causing
genes. Our method falls under the second category and is able to exploit information on
known genes for the disease of interest or for other similar diseases. The method receives
as input a disease-disease similarity measure and a network of protein-protein interactions.
It uses a propagation-based algorithm to infer a strength-of-association function that is
smooth over the network (i.e., adjacent nodes are assigned similar values) and exploits the
prior information (on causal genes for the same disease or similar ones).

Methodologically, we make a three-fold contribution: (i) we suggest a transformation from
textual-based disease similarity values to confidence values that are learned automatically
from data and better captures the probability that similar diseases share genes that lie
close to one another in the network; (ii) we provide a propagation-based method for gene
prioritization that takes into account, in a global manner, confidence values for disease
similarity and a PPI network in which interactions are weighted by their reliability and
the degrees of their end points. (iii) we re-implement three state-of-the-art methods and
perform a comprehensive comparison between those methods and ours on the same input
data.

On the practical side, we apply our method to analyze disease-gene association data from
the Online Mendelian Inheritance in Man (OMIM) [H+02] knowledgebase. We test, in
a cross-validation setting, two possible applications of our method: (i) prioritizing genes
for diseases with at least two known genes; (ii) prioritizing genes for all diseases (with at
least one known gene). We compare the performance of our method to two state-of-the-
art, recently published methods [K+08, W+08], as well as to a simple shortest-path based
prioritization method. In all our tests the propagation-based method outperforms the other
methods by a significant margin.

2 Our Algorithmic Approach

Preliminaries. The input to a gene prioritization problem consists of a set A of gene-
disease associations; a query disease q; and a protein-protein interaction network G =
(V, E, w), where V is the set of proteins, E is the set of interactions and w is a weight
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function denoting the reliability of each interaction. The goal is to prioritize all the proteins
in V (that are not known to be associated with q) w.r.t. q.

For a node v ∈ V , denote its direct neighborhood in G by N(v). Let F : V → represent
a prioritization function, i.e., F (v) reflects the relevance of v to q. Let Y : V → [0, 1]
represent a prior knowledge function, which assigns positive values to proteins that are
known to be related to q, and zero otherwise.

Intuitively, we wish to compute a function F that is both smooth over the network, i.e.,
adjacent nodes are assigned with similar values, and also respects the prior knowledge,
i.e., nodes for which prior information exists should have similar values of F and Y .
These requirements often conflict with each other, e.g., when two adjacent nodes have
very different Y values. Formally, we express the requirements on F as a combination of
these two conditions:

F (v) = α[
u∈N(v)

F (u)w (v, u)] + (1 − α)Y (v) (1)

where w is a normalized form of w, such that u∈N(v) w (v, u) ≤ 1 for every node
v ∈ V . Here, the first term expresses the smoothness condition, while the second term
expresses the prior information constraint. The parameter α ∈ (0, 1) weighs the relative
importance of these constraints w.r.t. one another.

Computing the prioritization function. The requirements on F can be expressed in
linear form as follows:

F = αW F + (1 − α)Y ⇔ F = (I − αW )−1(1 − α)Y (2)

where W is a |V | × |V | matrix whose values are given by w , and F and Y are viewed
here as vectors of size |V |. Since W is normalized, its eigenvalues are in [0, 1]. Since
α ∈ (0, 1), the eigenvalues of (I − αW ) are in (0, 1]; in particular, all its eigenvalues are
positive and, hence, (I − αW )−1 exists.

While the above linear system can be solved exactly, for large networks an iterative propagation-
based algorithm works faster and is guaranteed to converge to the system’s solution.
Specifically, we use the algorithm of Zhou et al. [Z+03] which at iteration t computes

F t := αW F t−1 + (1 − α)Y

where F 0 := 0. This iterative algorithm can be best understood as simulating a process
where nodes for which prior information exists pump information to their neighbors. In
addition, every node propagates the information received in the previous iteration to its
neighbors. In practice, as a final iteration we apply the propagation step with α = 1 to
smooth the obtained prioritization function F .

We chose to normalize the weight of an edge by the degrees of its end-points, since the
latter relate to the probability of observing an edge between the same end-points in a
random network with the same node degrees. Formally, define a diagonal matrix D such
that D(i, i) is the sum of row i of W . We set W = D−1/2WD−1/2 which yields a
symmetric matrix with row sums ≤ 1, where Wij = Wij/ D(i, i)D(j, j).
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Incorporating disease similarity information. As observed by several authors [L+07,
OB07], similar diseases are often caused by proteins in the same complex or signalling
pathway; therefore, such proteins tend to lie close to one another in the network. This
empirical observation motivated us to use disease similarity information to determine the
prior information vector Y .

We used the similarity metric computed by van Driel et al. [vD+06], which spans 5, 080
diseases in the OMIM [H+02] knowledgebase. Each disease entry in OMIM was scanned
for terms taken from the anatomy (A) and the disease (C) sections of the medical subject
headings vocabulary (MeSH). A disease was then represented by a binary vector specify-
ing the terms associated with it. Similarity between diseases was computed by taking the
cosine of the angle between the corresponding vectors.

van Driel et al. also tested the predictive power of different ranges of similarity values by
calculating the correlation between the similarity of two diseases and the functional relat-
edness of their causative genes. According to their analysis, similarity values in the range
[0, 0.3] are not informative, while for similarities in the range [0.6, 1] the associated genes
show significant functional similarity. These empirical findings motivated us to represent
our confidence that two diseases are related using a logistic function L(x) = 1

1+e(cx+d) .
We constrained L(0) to be close to zero (0.0001) which determines d (as log(9999)), and
tuned the parameter c using cross validation (see Parameter Tuning Section below). We
used L to compute the prior knowledge Y in the following way: for a query disease q and
a protein v associated with a disease d, we set Y (v) := L(s), where s is the similarity
between q and d. If v is associated with more than one disease, we set s to be the maximal
similarity between q and any of those diseases.

3 Experimental Setup

We extracted 1, 600 known disease-protein associations from GeneCards[R+97] spanning
1, 369 diseases and 1, 043 proteins. We considered only disease-protein relations that
included proteins from the network and such that the relations are known to be causative
to avoid associations made by circumstantial evidence.

We constructed a human PPI network with 9, 998 proteins and 41, 072 interactions that
were assembled from three large scale experiments [R+05, S+05b, E+07] and the Human
Protein Reference Database (HPRD) [P+04]. The interactions were assigned confidence
scores based on the experimental evidence available for each interaction using a logistic
regression model adapted from [S+05a]. We used the obtained scores to construct the
adjacency matrix W .

To simulate the case of prioritizing proteins encoded by genes inside a linkage interval,
we followed [K+08] and artificially constructed for each protein associated with a disease
an interval of size 100 around it. We used the F values obtained from the output of the
algorithm to prioritize proteins residing in that interval.
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Comparison to other methods. In order to perform a comprehensive comparison of
our approach to extant ones on the same input data, we re-implemented two state-of-the-
art approaches for gene prioritization: the random-walk based method of [K+08] and the
CIPHER [W+08] algorithm. In addition we implemented a simple shortest-path based
approach for the problem. We describe the implementation details below. We note that we
could not compare our method to that of Lage et al. [L+07], as code or input data for the
latter method were not readily available.

The random-walk based approach requires disease grouping information. To allow it to run
on the more comprehensive disease similarity data we had, we generalized the approach to
use these similarities (transformed by the logistic function L) as initial probabilities for the
random walk. The parameter r of the method, which controls the probability for a restart,
as well as our transformation parameter c, were optimized using cross-validation (as in the
Parameter Tuning Section below). Note that Kohler et al. suggested a second, diffusion-
kernel based approach, which was shown to be inferior to the random walk one, hence
we did not include it in our comparison. Also note that our propagation-based method
reduces to a random walk under appropriate transformations of the edge weights and prior
information.

The CIPHER method [W+08] is based on computing protein closeness in a PPI network.
Two variants of the algorithm were suggested: CIPHER-DN, which considers only direct
neighbors in the closeness computation, and CIPHER-SP, which is based on a shortest path
computation. The former was shown to outperform the latter, and hence we implemented
this variant (CIPHER-DN) only.

In addition, we implemented a simple shortest-path (SP) based approach, in which a can-
didate protein is scored according to the most probable path to a disease-related protein.
Formally, define the probability of a path connecting a candidate protein to a causal protein
v, as the product of the normalized weights w of the edges along the path and Y (v). The
score of a candidate protein is then the score of its best path.

Performance evaluation. To evaluate the performance of the different methods we tested,
we used a leave-one-out cross validation procedure. In each cross-validation trial, we re-
moved a single disease-protein association < d, p > from the data, and in addition all
other associations involving protein p. An algorithm was evaluated by its success in re-
constructing the hidden association, i.e. by the rank it assigned to protein p when querying
disease d. The reason we hid all associations of p was to avoid “easy” cases in which p is
also associated with other diseases that are very similar to d.

We evaluated the performance of an algorithm in terms of overall precision vs. recall
when varying the rank threshold 1 ≤ k ≤ 100. Precision is the fraction of gene-disease
associations that ranked within the top k% at some trials and are true associations. In other
words, it is the number of trials in which a hidden association was recovered as one of the
top k% scoring ones, over the total number of trials times k% of the interval size. Recall
is the fraction of trials in which the hidden association was recovered as one of the top k%
scoring ones.

In addition, we used two other measures for quality evaluation. The first, is the enrichment
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measure [L+07] which is defined as follows: If the correct gene is ranked in the top m%
in n% of the trials then there is a n/m-fold enrichment. For example, if the algorithm
ranks the correct gene in the top 10% in 50% of the cases, a 5-fold enrichment is achieved,
while random prioritization of the genes is expected to rank the correct gene in the top
10% only in 10% of the cases, yielding a 1-fold enrichment. The second, is the average
rank of the correct gene throughout the cross-validation trials. Note that when m = 1,
recall, precision and enrichment measures are all equal.

4 Results

We implemented our propagation algorithm and tested its performance in recovering known
disease-gene association both on 150 diseases for which more than one causal gene is
known, and the entire collection of 1,369 diseases. We report these results and compare
our algorithm to previous state-of-the-art algorithms for the prioritization problem.

Parameter tuning. Our algorithm has three parameters that should be tuned: (i) c –
the parameter controlling the logistic regression transformation; (ii) α – controlling the
relative importance of prior information in the association assignment; and (iii) the number
of propagation iterations employed. We used the cross validation framework to test the
effect of these parameters on the performance of the algorithm. The precision-recall plots
for the general disease case are depicted in Figure 1. By Figure 1(a) the optimal regression
coefficient is c = −15, implying that similarity values below 0.3 are assigned with very
low probability(< 0.002), in accordance with the analysis of [vD+06]. The algorithm is
not sensitive to the actual choice of α as long as it is above 0.5 (Figure 1(b)). Finally, the
algorithm shows fast convergence, achieving optimal results after only ten iterations (data
not shown). Similar results were obtained in the tuning process for diseases with more
than one known gene.

Diseases with more than one known gene. Our first set of tests focused on 150 diseases
for which more than one causal gene is known. For such diseases we first checked whether
our algorithm gains in performance when incorporating information on similar diseases,
compared to when using information on the disease of interest d alone. For the latter case
we set Y (v) := 1 if protein v is associated with d and Y (v) := 0 otherwise. As evident
from Figure 2 the disease similarity information improves the quality of predictions.

Next, we compared the performance of our algorithm to those of the random-walk and
CIPHER methods, as well as to our SP variant. The results are depicted in Figure 3 and
summarized in Table 1. Our algorithm achieved the best performance, ranking the correct
gene as the top-scoring one in 50.9% of the cases. Interestingly, SP was the second-best
performer with 43.7% correct top-1 predictions, while the method of [K+08] and CIPHER
attained lower success rates of 40.9% and 37.5%, respectively.
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(a) (b)

Figure 1: Effect of parameters on our algorithm’s performance, as measured in cross-validation on
the set of 1,369 diseases with a known gene. (a) Precision vs. recall plots for different c values, as
well as for a simple identity transformation in which values below 0.3 are ignored. (b) Performance
comparison for different α values.

Figure 2: The effect of incorporating disease similarity information on prioritizing genes for 150
diseases with more than one known gene.
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Figure 3: Performance comparison on 150 diseases with more than one known gene.

General diseases. Our second set of tests concerned all 1,369 diseases with a known
gene in the OMIM database. The results of applying the different methods are depicted in
Figure 4 and summarized in Table 1. Again, our algorithm achieved the best performance,
ranking the correct gene as the top-scoring one in 28.7% of the cases. SP, CIPHER and
random-walk methods all achieved inferior results with 26.8%, 22.6% and 21.7% success
rates, respectively.
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