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Abstract: We introduce the concept of an operating system for platforms that consist
beside memory and peripheral devices of FPGAs as the only computational resource.
Applications can be developed independent from each other and due to device drivers
with little dependency on the platform. The OS supports the multitasking execution of
applications using static as well as dynamic resource assignment. A main focus of the
paper is the management of the resource memory. Memory management as part of the
OS is introduced which allows multiple tasks to access the same memory banks using
virtual addressing and dynamic memory allocation. Access conflicts are solved by a
priority based scheduling. Since no microprocessor is part of the system, the entire OS
including its memory management is executed on the FPGAs.1

1 Introduction and Related Work

Reconfigurable hardware devices such as field-programmable gate arrays (FPGA) and
coarse grain architectures are general purpose computing devices. Consequently, we can
build up computer systems which use reconfigurable hardware devices instead of micro-
processors as main computing resource.

The convenient development and execution of applications for such a system requires ab-
straction form platform details and the management of the system resources. These two
major requirements,abstractionand resource management, are usually provided by an
operating system (OS).

This work introduces our concept of an OS for FPGA based computers in section 2. Sev-
eral steps lead to an OS, which is able to dynamically assign platform resources to multiple
applications consisting ofhardware tasks. The second part of the paper deals with the man-
agement of the resourcememory(section 3). We introduce our memory management unit
(MMU) which allows central memory banks to be shared along several running tasks. The
concepts ofvirtual addressingas well asdynamic memory allocationare implemented.
Before this, we review some related work.

[De96] was one of the first work that investigated the computing capabilities of recon-
figurable architectures and compared them to processors following the Von Neumann
paradigm. The results have shown, that reconfigurable architectures are general purpose
computing devices and that they can overcome Von Neumann processors in performance
and efficiency for applications with certain characteristics. Many theoretical work has
been done in the field of multitasking on FPGAs. [JTY+99] deals with the supports of

1This work was partly developed in the course of the Graduate College 776 -Automatic Configuration in
Open Systems- and was published on its behalf and funded by the Deutsche Forschungsgemeinschaft.
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Figure 1: Architecture of FPGA Based Com-
puter Platform
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Figure 2: Abstraction Layer to Support Ab-
straction from Platform Details and Device
Function

concurrent applications in a multi FPGA-system by reconfiguring entire FPGAs. Most of
the work assuming partial reconfigurable FPGAs [LP02] is based on a model, where ap-
plications consist of a set of tasks and each task requires a certain rectangular shaped area
of the FPGA. For an application specified as a directed acyclic graph of tasks with given
area consumption and execution time [TFS00] introduce an optimal off-line scheduling
and placement algorithm. Heuristics for on-line and off-line scheduling were analyzed in
[BKS00]. The termoperating systemtogether with partial reconfigurable FPGA was first
used in [Br96]. There, the OS supports an application running on an host processor with
hardware accelerators that could be reconfigured on an FPGA. [BD01] presents a sim-
ple first fit scheduler for a one-dimensional FPGA resource model, which is implemented
onto the FPGA itself. Advanced work on OS for reconfigurable devices is presented by
the authors of [WP03] and [WK01].

2 FPGA Operating System Overview

2.1 Platform Overview

The task of the OS is to support the development and execution of applications on FPGA
based computers. Fig. 1 gives an overview of our target architecture. The computing
resource consist of one or many FPGAs. These can consist just of a pure array of logic cells
and routing resources but can although include dedicated resources like block memories or
multipliers on the chip. The FPGAs can either allow only the entire reconfiguration of all
logic cells or allow partial reconfiguration of some logic cells while the others keep their
configuration. The later method is often restricted to reconfiguration of one of many entire
columns of logic cells. The FPGAs are connected to the memory resources which consist
of volatile memory like e.g. multiple banks of static random access memory (SRAM) and
of non-volatile memory like for instance FLASH memory. In addition, the platform has
interfaces for devices of various types.

The next three subsections introduce concepts which stepwise extend the support to exe-
cute applications on a platform described above. Similar to application tasks of a conven-
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Figure 3: OS Layer for multi tasking with static or dynamic task set

tional computer system, here the applications consist of digital circuits emulated by the
FPGA which are referred to ashardware tasksor just tasks.

2.2 Abstraction from Platform and Devices

Applications targeting such platforms are usually implemented using a hardware descrip-
tion language like VHDL or Verilog to define a digital circuit. The code is synthesized
into an appropriate configuration bit-stream which can be loaded to the FPGA to define its
behavior. If no additional support is used, the application designer has to deal with many
platform details and the application code becomes much platform dependent. Moreover,
the appropriate control of each device used by the application has to be implemented from
scratch. Therefore the first step to facilitate the application development is the abstraction
from the physical platform details as well as the abstraction from the functional details of
the devices. This is done by introducing an abstraction layer between the application and
the underlying hardware as shown in fig. 2. On the bottom there are the various FPGA
based platforms like e.g. the RC100 system from Celoxica or an extended version of the
SPYDER system from X2C. The abstraction layer consists of a part that is specific for
every platform and a platform independent part. The first part includes things like the
available resources and connectivity details of the particular platform (e.g. a PS2 connec-
tor is attached to the pins{x,y,z} of the first FPGA). The second part includes a set of
services in form of pre-developed circuits in a library (e.g a circuit implementing a PS2
protocol stack). The application on top of the abstraction layer can now be developed
mostly platform independent and can be synthesized for various target platforms.

2.3 Multi Tasking with Static Task Set

Due to the parallel nature of the FPGA, it can simultaneously execute multiple independent
applications. In this case usually the code of all applications is combined and synthesized
into one FPGA configuration. The synthesis tools assign separate FPGA logic cells to
each applications, but the designer has to be aware that no conflict is produced by the
use of all other kinds of resources (e.g. memory and devices). Fig. 3 shows, how an
OS layer can manage these resources and resolve conflicts. The bottom of the figure
shows the physical platform and its resources. At the top, there is the application layer
with a fix set of independent user applications which should run simultaneously on the
platform. The OS layer shows the mechanisms to manage the platform resources. Since
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Figure 4: left: Partial reconfiguration using a column wise reconfigurable FPGA. right: Pseudo
partial reconfiguration using a full reconfigurable FPGA.

the set of applications is static, the FPGA logic cells can be assigned off-line during the
synthesis process by themap & place & routetools. In contrast to that, the off-chip
memory resources have to be managed on-line. Even if each application requires a static
amount of memory which can be assigned off-line, a conflict can occur when more than
one application accesses memory of the same physical RAM bank in the same clock cycle.
A memory management which resolves such conflicts using priority based access and
furthermore allows dynamic memory allocation is introduced in the next section. A similar
exclusion mechanism is required for the interfaces. Here, the device driver and the I/O
management is responsible to guarantee a proper handling of the devices.

2.4 Multi Tasking with Dynamic Tasks Activation

This extension of the OS functionality allows that application tasks can enter the system
and become activated2 at runtime. Since the set of active tasks is now unpredictable, the
reacquired computing resources (FPGA logic cells) of each task have to be assigned on-
line. This involves a re-configuration of the FPGA during runtime. If a task becomes
active the OS has to identify free FPGA resources and to re-configure them which the
configuration bit-stream of the appropriate task. If there are not enough free resources on
the FPGA the task cannot beplacedand has to bescheduledfor later execution.
In this scenario the MMU has to support dynamic memory allocation. Even if each appli-
cation task requires a static amount of memory, the MMU has to be able to assign memory
to a new activated task and to release it when the task terminates. The management of
the devices can be extended byon demand drivers. The driver of a certain device, which
itself is some configuration bit-stream to be executed on the FPGA, is placed on the FPGA
only when an application task requests this device. Therefore the resources required by an
device driver can be used by other tasks if no task is using the device.

2.5 FPGA based computer using reconfiguration

Fig. 4 illustrates two different reconfiguration techniques how tasks can be executed on
an FPGA. The tasks are showed as 3D-boxes which occupy a certain x-y-rectangle of

2A task is set to be active if it has entered the system and is ready for execution. The activation can be result
of an external event e.g. a user input or some internal event.
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Figure 5: Architecture of an FPGA based computer. Multi tasking is done using the pseudo partial
reconfiguration method. The tasks can access external memory using a MMU.

FPGA area during their execution time. The hatched boxes denote that this FPGA area is
currently reconfigured.

Fig. 4 (left) shows partial reconfiguration on a column-by-column reconfigurable FPGA.
These devices allow to reconfigure a partition of the logic cells during runtime while the
other partitions continue their operation. The constraint is, that only entire columns of
logic cells can be reconfigured together. Therefore the resources of each task span the
whole y-dimension of the FPGA area. In the initial configuration task t1 and t2 are placed
on the FPGA. When task t2 terminates the area is reconfigured with task t3 without dis-
turbing the execution of task t1. Later, when t1 terminates its occupied area is reconfigured
with task t4.

Fig. 4 (right) shows pseudo partial reconfiguration on a FPGA which allows only the entire
reconfiguration of its logic cells. Task t1 and t2 are loaded with the initial configuration.
When task t2 terminates and task t3 should be started, the system suspends all other run-
ning tasks (here t1). The entire FPGA is reconfigured with a new bit-stream that contains
the configuration data of task t1 and task t3. Task t3 is started and task t1 resumes its ex-
ecution. Later t1 terminates and t3 is interrupted to load a new configuration that contains
task t4 and t3. Using this method, the tasks do not have to span entire columns of the
FPGA but can occupy rectangular shaped resources. The disadvantage is, that all tasks are
interrupted if a new task is activated. Two major technical obstacles have to be solved to
implement this reconfiguration model. 1. Since it is not predictable at design time which
tasks have to run on the FPGA simultaneously, the system has to be able to generate a full
bit-stream as a combination of bit-streams of single tasks during runtime. 2. The state
of the task has to be preserved during its interruption. This can be solved in two ways.
A) The current FPGA configuration including the state of all registers of the suspended
tasks is read back before the reconfiguration via the FPGA configuration interface. During
the generation of the new bit-stream the state information of the tasks which have to be
resumed is build in. B) A kind of suspension procedure stores all state registers of the task
in an external memory. When the task should be resumed this information is read back to
the all task registers before the normal execution resumes.

Fig.5 presents the architecture of an FPGA based computer using the pseudo partial recon-
figuration mode. The configuration bit-streams of the tasks are stored in a Flash memory.
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The initial configuration of the FPGA includes a task named OS-kernel that controls which
tasks should be executed on the FPGA and in which area. If it has been decided to execute
a certain task, the appropriate bit-stream is loaded from the Flash and combined with the
configurations of the tasks which are currently running. This new bit-stream is stored in
the Full Context Buffer. After that, the execution of all tasks is stopped and the entire
FPGA is reconfigured from this buffer.

3 Memory Management

This section presents amemory managementof an OS for FPGA based computers. Since
the OS consists of emulated hardware there is no physicalmemory management unit
(MMU). Here, we refer to MMU as the part of the OS which handles the memory man-
agement. Some concepts of the memory management of ordinary computer systems are
adopted while other techniques are new due to the special characteristics of the system.

Like in other computer systems, the memory is a resource to be shared by several active
tasks. In general the tasks are designed independently and at design time it is not known
which combination of tasks will be executed together at runtime. Therefore the MMU
should supportvirtual addressing.

On the other hand there are several differences in the organization of this computer system
which effect the memory management.

• The program memory (here configuration memory) and the data memory are phys-
ically separated. The configuration memory is distributed on the chip and can be
accessed via a configuration interface. Data memory of a task can be a combination
of task registers which are distributed on the FPGA and dedicated memory which
can be on-chip or off-chip RAM. Therefore the MMU presented here manages only
the use of dedicated data RAM.

• The presented FPGA computer architecture has no hierarchy of data memories with
different size and performance. Therefore, up to now there is no need for memory
caching.

• The FPGA computer can run multiple tasks simultaneously which can cause con-
flicts when more than one task wants to access the same memory bank at the same
time. It is the task of the memory management to resolve this conflicts.

• In general, the architecture has multiple memory banks which can be accessed in
parallel. The memory management should take advantage from this in an efficient
manner.

• The tasks of the FPGA computer differ from tasks of a sequential CPU in the way,
that they usually process data synchronous and in parallel. This means that the
execution time of the parallel operations should be fit to guarantee a correct com-
putation. Since multiple tasks use the same memory banks, they have either to be
designed to be able to handle delays of the memory access or the system has to
guarantee that each task can access the memory before some deadline.
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Figure 6: Mapping the virtual address of a task to the physical address using a page table
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The next subsections show how we implemented the concepts ofvirtual addressingand
dynamic memory allocation, how the memory accesses of multiple tasks are scheduled.

3.1 Virtual Addressing

The goal is, that the data memory addressing of a task becomes independent of other tasks
running in the system. Therefore each task gets a memory space assigned that begins at a
virtual address 0x00. . . 0 and ends at a certain value. If the memory requirement of each
task is static and all tasks are known at design time, the virtual addresses of each tasks can
be translated to physical addresses by a preprocessor tool before the synthesis happens.
To do this at runtime, the MMU has to store information how to map the virtual addresses
of each task to physical addresses. In our implementation the memory space of physical
RAM bank is divided into fix number of pages of the same size. Every task gets memory
assigned in form of one or more pages. Which pages belong to which tasks is stored by
the MMU in form of a page table (fig. 6). When a task makes a memory access using a
virtual address, the hi-word (upper part) of the virtual address together with the task-id
is used to address the page table. The output of the page table is used as hi-word of the
physical address and is equal to the base address of the page. The low-word (lower part) of
the virtual address is used as the low-word of the physical address and equals the address
inside the page. The width of the hi-word and low-word depends on the chosen page size.
Using this simple virtual mapping mechanism the page-size has to be a power of two.
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3.2 Dynamic Memory Allocation

Dynamic memory management allows task to allocate and de-allocate memory at runtime.
This is useful when new tasks can enter the system at runtime or when a task itself has a
dynamic memory requirement. Our MMU supports this in form of pages which can be
requested or released by the tasks. Therefore, the MMU stores the set of the free memory
pages and modifies the page table if tasks get new pages assigned. To be able to allocate
and de-allocate a page in one clock cycle, the set of free pages as well as the set of pages
assigned to each task (page table) are organized as stacks. Fig. 7 shows the stack of free
pages as well as the operations of requesting and releasing a page which can be executed
in one clock cycle. Therequest(taskID)function pops the pageID from the top of the free
page stack and pushes it on the page stack of the particular task (the row in the page table
with this taskID). After this, the task has one more page assigned to its address space and
there is one page less on the free page stack. Therelease(taskID)function does the same
in the opposite direction.

3.3 Priority based Scheduled Memory Access

To let multiple tasks access the same physical memory bank, the address bus and the data
bus have to be multiplexed (fig. 8). By changing the control signalc, the MMU decides
which task can access the memory. If a task requests a read or write access to the memory,
the MMU switches the multiplexers to the particular task and the access can be done in
the same clock cycle.
If more then one task requests an access to the memory during the same time, a scheduling
of the memory accesses has to be done. To be able to guarantee timing constraints, the
schedule can be done based on priorities. If multiple tasks request the memory during the
same clock cycle the MMU connects the task with the highest priority. The request of the
other tasks is delayed and is served, when no other task with a higher priority requests the
memory.
To be able to guarantee an satisfactory schedule, the moments of memory access of each
task has to be modeled. In our first approach we distinguish between tasks with periodic
memory access and hard real-time constraints and tasks with aperiodic access. The time
interval of an access is only one clock-cycle. The tasks with periodic access usually repeat
frequently the same operation in some clock-cycles and request an memory access every
P (period) cycles (fig. 9). The memory request (upward arrow) happens at the end of the
clock-cycle when the address (and the data, in case of an write access) becomes ready. The
deadline (downward arrow) is at the end of the clock-cycle before the data register is read
or written. If a task requests the memory aperiodically without a deadline, it is designed
to wait with its processing until the memory access has been done.
Fig.10 shows a schedule where tasks with periodic and aperiodic memory accesses are
scheduled based on fix priority assignment. Taskt1 accesses periodically with a period of
P = D = 3, taskt2 andt3 with P = D = 4. Taskt4 accesses the memory aperiodic
without a deadline. The schedule is done using a fix priority assignment, starting with task
t1 with the highest up to taskt4 with the lowest priority. This concept is known as rate
monotonic scheduling. It can be seen in the figure, that every task meets its deadline. The
aperiodic requests are served when no periodic task requests the memory.
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Some tasks may require that the memory access is done in the clock cycle direct after
the request. An example is a read operation that happens every three clock-cycles but the
result is used in the next clock-cycle. This can be modeled by setting the deadlineD = 1.
Multiple tasks with accesses ofD = 1 are unfeasible, when the requests occur at the same
moment (fig.11, left). Often it may be sufficient if a task operates with a certain rate but
is started with a small delay (e.g. a audio-decoder). In this case a phase (delayed start
time) can be added to some tasks to make the schedule of the memory accesses feasible
(fig.11, right). This approach is limited since it is necessary that all periods are common
factors of the largest period.

The examples above have shown how multiple tasks can use the same memory bank with-
out disturbing each other. Up to now, the methods are based on a fix priority schedule
which is supported by the first prototype of our MMU. If the memory accesses of a task
set are not feasible, some extended techniques can be used:

• The required memory of some task can be located to a separate RAM bank.

• The earliest deadline first method using dynamic priority assignment can be applied.

• The tasks can be modified to extend their deadlines. For example a task that already
knows the address of the next read access can pre-load the data to atempregister.
This can extend the deadline fromD = 1 to D = P .
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t1
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Figure 11: left: Unfeasible schedule of tasks with periodic access. right: Same task set becomes
feasible due to adding appropriate phase to some tasks.
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4 Conclusion and Future Work
This paper presented a concept of an operating system for computer platforms, which use
FPGAs as central computational resource. Such platforms can be useful for a wide range
of applications where FPGAs show better characteristics than microprocessors. Several
concepts have been adopted from OS of conventional computer platforms, making the
system more convenient to use: Applications can be developed and compiled (synthe-
sized) independent of each other and with little dependency on the platform. The use of
devices drivers and OS services allows the application to be implemented on a high level
of abstraction. Due to the off-line and on-line management of the system resources, stat-
ical and dynamical sets of tasks can be executed. Since there is no microprocessor, the
entire OS is executed on the FPGAs.
A special concern has been taken to the management of memory. A MMU has been
introduced and implemented, which allows multiple tasks to access the same memory
bank. Virtual addressing as well as dynamic memory allocation is supported. To resolve
access conflicts, the MMU can schedule the memory requests based on fix priorities. This
allows periodically accessing tasks to meet their timing constraints.
Future work will deal with the refinement, implementation and overhead analysis of the
OS concepts. This includes the task execution model and the placement of tasks. The
techniques of the memory management will be extended to satisfactorily deal with multi-
ple memory banks and to improve the scheduling using dynamic priority techniques.
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