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Inter-Query Parallelism on Heterogeneous Multi-Core CPUs

Experience Report

Felix Schuhknecht! Tamjidul Islam?

Abstract:

Traditional multi-core CPU architectures integrate a set of homogeneous cores, where all cores are
of exactly the same type. With the release of Intel’s 12th generation Core x86_64 processors, this
setup has finally changed in the realm of commodity hardware: Apart from so-called performance
cores, which provide a high clock frequency, hyper-threading, and large caches, the architecture also
integrates so-called efficient cores, which are less performant but rather energy efficient. Obviously,
such a performance-heterogeneous architecture complicates task-to-resource scheduling and should
be actively considered by the application that schedules the tasks. In this experience report, we
discuss our first steps with this new architecture in the context of parallel query processing. We
focus on inter-query-parallelism, where whole transactions/queries are the unit of schedule, and
investigate which type of core fits to which type of workload best. To do so, we first perform a
set of micro-benchmarks on the cores to analyze their different performance characteristics. Based
on that, we propose two scheduling strategies that actively schedule tasks to different core types,
depending on their characteristics. Our initial findings suggest that the awareness of heterogeneous
CPU architectures must indeed be actively incorporated by the task scheduler within a DBMS to
efficiently utilize this new type of hardware.
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1 Introduction

For many years, multi-core architectures used to be homogeneous in that they consist of
a set of compute cores that all have exactly the same characteristics. This simplified the
scheduling problem, as the choice to schedule a task to a specific core was solely determined
by the current load and the locality of work to the core.

This situation drastically changed with the advent of heterogeneous multi-core architectures,
a development largely driven by the so-called dark silicon effect [Hal1]. This effect describes
that thermal and energetic limitations force the CPUs developers to tune down compute
units, if they want to increase the overall core count. Initially, heterogeneous designs added
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specialized cores with vastly different feature sets. For instance, the Sparc M7 [Co23]
combines general-purpose x86_64 cores with ASIC data analytics accelerators that support
only scans, selections, and semi-joins. Such feature-heterogeneous designs require a careful
rethinking of the scheduling mechanism [Dul9] as it has to factor in which tasks can
actually be carried out by which core. Last year, even mainstream CPUs started to implement
heterogeneous multi-core architectures in form of the AlderLake architecture, which
resembles Intel’s 12th generation Core consumer processor. Therein, while all cores are
general-purpose x86_64 chips, the architecture separates them into performance cores and
efficiency cores. While the faster performance cores are meant to take over highly demanding
compute tasks, the efficiency cores should save energy when executing less demanding or
less performance-critical tasks. In this sense, they implement a performance-heterogeneity
instead of a feature-heterogeneity, on which we will focus in the following report.

As shown in Figure 1, the two core types of an AlderLake i9-12900K highly differ in
clock-speed range, cache hierarchy/cache sizes, and whether hyper-threading is available or
not, potentially resulting in very different performance characteristics.
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Fig. 1: A modern heterogeneous multi-core architecture (Intel AlderLake 19-12900K).

Therefore, we advocate that even though all cores implement the same instruction set, a
scheduler should still be aware of the performance difference of both types of cores and
assign tasks actively to the most fitting core type, as we visualize it in Figure 2. Note that
operating systems such as Windows 11 and Linux (since kernel 5.18) recently became
aware of the heterogeneous design and try to schedule tasks based on classification (a
concept marketed as Thread Director [SP22]). In recent years, alternative general-purpose
OS-level task scheduling mechanisms tailored to heterogeneous CPU architecture have been
proposed [Fa21, SNN22, Ni22, THWO02, CJ09, Cr12, AA17]. Typically, they are designed
to optimize arbitrary heterogeneous architectures outside the database context and focus on
limiting energy consumption, the amount of thread migration, and the runtime of a batch of
tasks. We also want to point out that Intel’s new architecture is not the first performance-
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heterogeneous CPU: The ARM big.LITTLE, released several years ago, followed a similar
principle. In this regard, [Mii14] analyzed how to schedule DBMS-pipelines efficiently to
the different core types to optimize for energy-efficiency. With the concept now arriving on
commodity x86_64 CPUs, we see the topic worth to be revisited.

The question remains whether multi-threaded applications such as DBMSs should ad-
ditionally actively schedule threads on specific performance-heterogeneous cores based
on their available domain knowledge on these new processors. As queries have vastly
different characteristics, e.g., being compute-bound, bandwidth-bound, short/long-running,
or read/write-heavy, it is likely that certain query types will utilize a certain type of core
best.
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(a) Homogeneous multi-core architecture. (b) Heterogeneous multi-core architecture.

Fig. 2: Task scheduling on uniform architectures (2a) vs heterogeneous architectures (2b).

1.1 Contributions and Structure

Therefore, in the following, we would like to investigate the following questions, which also
mark the contributions of this experience report:

(1) Is there a sufficient performance difference between performance cores and efficiency
cores that would justify a manual core-type-aware scheduling within a DBMS?

(2) Which type of tasks perform well on which type of core? For which type of tasks is the
core choice irrelevant?

(3) Do core-type-aware scheduling strategies (push-based vs pull-based) perform better
than a completely unaware strategy?

The experience report is structured as follows: In Section 2, we first perform an initial
benchmarking of the AlderLake architecture, in which we identify how different workloads
map to the available cores. In Section 3, we present and evaluate two heterogeneity-aware
scheduling strategies and compare them against an unaware strategy. In Section 4, we outline
possible next steps in this topic and conclude with our early findings.
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2 Benchmarking the Architecture

We start by performing a set of micro benchmarks on our performance-heterogeneous
AlderLake CPU to identify which workload fits to which type of core. For all upcoming
experiments, we use an Intel 19-12900K with 8 performance cores of up to 5.2GHz (with
SMT aka hyper-threading) and 8 efficiency cores of up to 3.9GHz (without SMT). This
results in a total of 16 physical and 24 logical cores. The machine is equipped with 128GB
of DDR4-3200 RAM. As operating system, we use Arch Linux running kernel 5.17.5. Note
that in this kernel version, the scheduler was not yet aware of the heterogeneous architecture
— for our experiments, this does not matter as we manually perform all thread assignment in
our code. A comparison with a heterogeneity-aware scheduler on a newer kernel is left for
future work.

Figure 3 shows the results for executing four different workloads on each available logical
core individually. Note that logical cores 0-15 resemble the (logical) performance cores,
whereas cores 16-23 are the efficiency cores. No parallelism is happening here as only one
core is active during each measurement. To get an intuition for the architecture, we perform
the following set of micro-benchmarks on 300M integers in total: In Figure 3a, we schedule
the sorting of an array with integers using std: :sort. In Figure 3b, we copy randomly
selected integers from one array into a second array. In Figure 3c, we copy the entire array
of sequentially into another array using memcpy. In Figure 3d, we read the entire array
sequentially to compute the sum of all integers. As we can see, the tasks have a different
runtime on the individual logical cores, where some tasks are highly affected by the type of
core while other tasks hardly show a performance difference at all. The sorting task, being
compute heavy and containing random access clearly benefits from being executed on a
performance core (core 0-15). Also, random copies perform better on performance cores,
although the difference being less prominent. When looking at the sequential tasks, we
interestingly hardly notice any difference between the core types anymore, as these tasks
are rather bandwidth bound than compute bound.

Overall, this gives us a first recommendation on how to utilize the cores: Compute-bound
tasks or tasks that contain random access should preferably go to performance cores, while
sequential tasks, that are mostly bandwidth-bound, could also be scheduled on efficiency
cores.

3 Heterogeneity-aware Scheduling

With the gained knowledge, in the following, we build and evaluate a simple scheduling
mechanism for parallel query processing using two different scheduling strategies.

3.1 Setup and Task Types

We set up a table of n integers columns in row-layout represented by a two-dimensional
vector and support two types of tasks on this table: (a) Updating transactions that modify
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Fig. 3: Executing different types of workloads of each available logical core.
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a certain number of rows of the table. These resemble a task from a traditional transactional
workload. (b) Read-only queries that select a specific value of a specific column and
count how often this value has been seen. These could represent a typical query from an
analytical workload. When creating a test workload, we specify the ratio of tasks of type (a)
in relation to tasks of type (b) and fill two pools of pending tasks of each type accordingly.
Our scheduler then executes these tasks using a specific scheduling strategy.

3.2 Scheduling Strategies

We compare three different strategies in the following. The first strategy is push-based and
simply ignores the heterogeneous architecture, as it uniformly distributed tasks of both types
to available cores. It will serve as our baseline. Figure 4 visualizes the setup for a batch of
100 tasks. Each core maintains a pool for update transactions and read-only queries.

Batch with 100 tasks ‘

Read-Pool:
40 Reads
C

Ce— s
>

Pools for K14 Pools for K15 Pools for K16 Pools for K17

'\'\"\U\l\é?@/ ’

Logical Cores

Fig. 4: Architecture of the push-based scheduler. As distribution strategy, we test both a non-aware
strategy, which uniformly distributes tasks to all cores and an aware strategy, which tries to schedule
update transactions to performance cores and read-only queries to efficiency cores.

The second strategy is also push-based and resembles the architecture of Figure 4, but does
not uniformly distribute tasks across cores. Instead, it is aware of the heterogeneity and tries
to assign update transactions to performance-cores and read-only queries to efficiency cores.
Only if no core of the respective type is currently available, the task is scheduled on the
other type of core. The availability of cores is recorded in status flags that are accessed by
the scheduler and updated by the threads running on the cores.

The third strategy is also heterogeneity-aware, but follows a pull-based approach as visualized
in Figure 5. Here, the performance cores preferably pull from the pool containing update
transactions, while the efficiency cores pull from the pool containing read-only queries.
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Only if no work is left in a pool, the other pool is considered. A mutex protects each pool to
avoid races during the pulling of tasks.

Update
Pool
r T r b
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for Updates for Reads
Logical Cores

Fig. 5: Pull-based scheduler that is aware of the heterogeneous architecture.

Let us now see how the three scheduling strategies perform in comparison. We fire a batch
of 180 tasks and vary the mixture between update transactions and read-only queries in
steps of 25%. We use a table with 60M rows and 150 columns. Every update transaction
updates 12M randomly selected rows. We observe that the strategy indeed has a significant
impact on the runtime. The more update transactions we have in our batch, the more the
strategy matters and the heterogeneity-aware strategies win. This makes sense, as update
transactions must be actively scheduled to performance cores to yield the best runtime.
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Fig. 6: Comparison of scheduling strategies under a varying mixture of update transactions and
read-only queries.

To get a deeper insight in the behavior of the task scheduling, in Figure 7 we additionally plot
heatmaps for the cases of 25% update transactions and 75% read-only queries (Figure 7a)
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respectively 75% update transactions and 25% read-only queries (Figure 7b) that show
the assignment from task (type) to logical core. Additionally to the total latency of batch,
we plot the time the first task of the batch finishes as well as the average task time. We
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Fig. 7: Comparison of scheduling strategies under different workloads.

observe that the strategy indeed makes a significant impact on the scheduling behavior. Both
heterogeneity-aware strategies indeed try to assign update transactions to the performance
cores and read-only queries to the efficiency cores. However, we also see differences between
the strategies. In Figure 7a, we observe that the push-based strategy primarily distributes
update transactions to performance cores, while it also assigns read-only queries to both
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types of cores. The reason for this is that due to the low number of update transactions, the
performance cores are soon unused and can be used to answer read-only queries as well.
This behavior is different for the pull-strategy, where read-only queries are pulled only by
efficiency cores in the run. In Figure 7b, we see a similar picture, however, more compute-
intensive update transactions must be handled. These are indeed primarily scheduled to the
performance cores by both strategies. When analyzing the whole batch, we also observe
that using heterogeneity-aware strategies homogenizes the latency of individual tasks in a
batch. For the naive strategy, the minimum and maximum latency differs highly, while this
difference is much smaller for the aware strategies, showing that the hardware resources are
efficiently utilized.

4 Outlook and Conclusion

In this experience report, we presented our initial steps in understanding the impact of
a performance-heterogeneous CPU design on parallel query processing. To simplify the
analysis, we focused on inter-query parallelism, i.e., we scheduled whole transactions/queries
to individual cores and evaluated two strategies that try to cleverly assign fitting tasks to
a specific core type. We tested two simple heterogeneity-aware scheduling strategies and
showed that even on this coarse-grained level, a measurable performance boost can be
observed over an unaware strategy.

Of course, this report marks only the very first step towards query parallelism on this type
of hardware. As modern DBMS schedulers typically break down a transactions/query into
more fine-granular compiled pipelines and schedule these individually [Le14, NF20, Ne21],
a next step is to extend such a pipeline scheduler with heterogeneity-awareness. This
involves on-the-fly classification of (arbitrary) pipelines, finding a suitable mapping between
pipelines and core types, handling dependencies between pipelines, and ensuring a constant
utilizations of all cores. Also, an important baseline for any fine-grained approach will be the
new OS-level heterogeneity-aware scheduler. Here, we see a major advantage of a manual
approach by being able to include domain knowledge, such as detailed transaction/query
behavior, into the scheduling process. However, such a comparison is left for future work.
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