
RadarGun: Toward a Performance Testing Framework

Sören Henning, Christian Wulf, and Wilhelm Hasselbring
Software Engineering Group, Kiel University, Germany

(sh,chw,wha)@informatik.uni-kiel.de

Abstract

We present requirements on a performance testing
framework to distinguish it from a functional testing
framework and a benchmarking framework. Based on
these requirements, we propose such a performance
testing framework for Java, called RadarGun. Radar-
Gun can be included into a continuous integration
server, such as Jenkins, so that performance tests are
executed automatically during the build process. We
conducted a feasibility evaluation of this approach by
applying it to the continuous integration infrastruc-
ture of the Pipe-and-Filter framework TeeTime.

1 Introduction

The performance of Java program sections can differ
significantly from run to run [1, 3]. One cause is the
on-demand class loader of the Java Virtual Machine
(JVM). The first access on a particular class takes
more time than all successive ones. Another cause is
the Just-In-Time compiler that recompiles and opti-
mizes the Java bytecode at runtime based on gained
knowledge about the execution behavior. Hereby, the
JVM decides non-deterministically which of its many
optimization strategies it should apply.

Hence, it is necessary to execute and measure the
program section of interest multiple times: At first, to
warm up the JVM and, subsequently, to calculate a
mean value. Moreover, the JVM as a whole needs to
be executed repeatedly to reduce the influence of its
non-deterministic choice of optimization strategies.

Functional testing frameworks like JUnit1 and Cit-
rus2 do not provide sufficient support for measuring
performance in this way. Likewise, benchmark frame-
works such as JMH [6] and MooBench [4] are not suf-
ficient since they lack support for automatically com-
paring and evaluating the measurement results.

With this paper, we make the following three con-
tributions: First, we define requirements on a per-
formance testing framework in order to distinguish
it from a (unit/integration) testing framework and
a benchmark framework. Second, we present a pro-
totype implementation of such a performance test-
ing framework, called RadarGun. Third, we evaluate
RadarGun by applying it within the continuous inte-
gration environment of the TeeTime project [7].

1http://junit.org
2http://www.citrusframework.org

2 Requirements

A performance testing framework should fulfill the fol-
lowing four requirements: (1) The framework must be
able to automatically and repeatedly execute the JVM
and the program section of interest to gain statistical-
ly significant and stable measurement results. (2) The
framework must be able to automatically aggregate
measurements to a single, representative measurement
score, e.g., the minimum, the median, the maximum,
or the average. This measurement score serves as the
base for the subsequent comparison with the expected
execution time. (3) The framework must provide an
assertion mechanism which checks whether the mea-
surement score is within a time interval. Besides the
influences caused by the JVM (see Section 1), there
are additional influences, such as the operating sys-
tem’s scheduler, which can cause small, but unavoid-
able variations in the final measurement score. Note
that a sole definition of an upper bound, like in JU-
nit, is often not sufficient. A sudden, unintended im-
provement in performance can also be an indicator of
an erroneous behavior. For example, a method can
return prematurely due to an invalid argument ex-
ception and thus takes less time than usual. Hence, a
reasonable assertion for a performance test must de-
fine a time interval instead of a single time value. (4)
The framework must automatically differentiate be-
tween different machines on which the measurements
are collected. The measurement score of a particular
performance test highly depends on the actual exe-
cuting machine so that the expected score must be
specified and loaded in a machine-dependent way.

3 The RadarGun Framework

We developed RadarGun3, an open-source perfor-
mance testing framework for Java, which meets all
of the requirements from Section 2. Its main idea
is to execute JMH [6] benchmarks and compare the
results with predefined performance assertions asso-
ciated with the machine which executed the bench-
marks.

By using JMH, we do not have to implement a test
execution engine in order to perform multiple runs of
the benchmarks. JMH automatically performs mul-
tiple JVM forks, warm-up runs, and actual measure-

3https://github.com/SoerenHenning/RadarGun

http://junit.org
http://www.citrusframework.org
https://github.com/SoerenHenning/RadarGun

ment runs. Moreover, we do not have to implement
an own mechanism to measure and to aggregate the
execution times of performance tests. JMH automati-
cally computes all relevant measurement metrics men-
tioned in Section 2. Finally, JMH benchmarks are
often already used in Java projects for performance
experiments. These benchmarks can thus be used by
RadarGun without any modification.

Different execution times on different machines are
handled by individual assertions that must be defined
for each machine executing the tests. These asser-
tions are specified in a text file. After executing a set
of benchmarks, RadarGun automatically loads the as-
sertions associated with the underlying machine from
this text file and checks whether the results lie within
the specified time intervals. In this way, tests are eval-
uated as successful or failed, respectively. In Section 4,
we describe this approach in more detail.

RadarGun can be used in two different ways: ei-
ther via the command line or via its Java API. In
both cases, it obtains a set of performance tests as
input and returns information about the results of
the tests as output. Internally, it consists of a Pipe-
and-Filter architecture with one filter for each of the
three processing steps mentioned above: executing
the passed benchmarks, comparing them with their
corresponding assertions, and generating the report
of the results. Listing 1 shows an example console
output for three runs of the performance test named
teetime.benchmark.Port2PortBenchmark.queue.

[SUCCESSFUL]
teet ime . benchmark . Port2PortBenchmark . queue
Expected s co r e i n t e r v a l : [3 0 . 0 , 3 5 . 0]
Actual s co r e : 32 .777 ± 1 .982 ns/op (c i =99.9%)

[FAILED]
teet ime . benchmark . Port2PortBenchmark . queue
Expected s co r e i n t e r v a l : [3 0 . 0 , 3 5 . 0]
Actual s co r e : 40 .386 ± 1 .637 ns/op (c i =99.9%)

[FAILED]
teet ime . benchmark . Port2PortBenchmark . queue
Expected s co r e i n t e r v a l : [3 0 . 0 , 3 5 . 0]
Actual s co r e : 18 .613 ± 4 .536 ns/op (c i =99.9%)

Listing 1: RadarGun console output for build #59, #69,
and #76, respectively.

4 Performance Assertions

Since assertions for performance tests depend on the
machine which executes these tests, we first describe
how RadarGun identifies and distinguishes different
machines. Subsequently, we describe where and how
performance assertions are specified.

Machine-Dependent Assertions A clear identifi-
cation of machines is difficult. On the one hand, from
a theoretical point of view, it is difficult to find a def-
inition for equality or similarity of machines. On the
other hand, even if we had such a definition, it would
probably state something like: two machines are equal
if and only if all of their components and configura-

tions are equal. Then, a corresponding implementa-
tion would be difficult as it is technically challenging
to read out all components and configurations of a sys-
tem and to compare them. Note also that when using
virtual machines, details of the associated hardware
resources are often not fully disclosed.

For this reason, we have opted for a more practi-
cal approach by making the process of machine iden-
tification configurable and exchangeable. RadarGun
defines a Java interface MachineIdentifier which
potential identifiers have to implement. The single
method testMachine() of an identifier supplies a
boolean value indicating whether the executing ma-
chine matches this identifier or not. In this way, mis-
cellaneous identifiers can be implemented that differ
in accuracy. We provide two machine identifiers with
RadarGun: one based on the network address and one
based on the MAC address. By using the described
identifier interface, it is possible to extend RadarGun
by further, custom identifiers.

Location of Assertions We decided to fully sepa-
rate the benchmarks from the assertions so that exist-
ing benchmarks can directly be used as performance
tests without any modifications. Moreover, bench-
marks therefore do not need to be recompiled if we
change an assertion or add assertions for new ma-
chines. Finally, this approach also increases the main-
tenance for performance testers because all assertions
for a single machine are located at a central position.

Format of Assertions Assertions are defined in
a text file which conforms to the YAML data se-
rialization standard4. We selected this file format
since its syntax is designed to be human-readable. A
YAML file consists of multiple YAML blocks where
each block, beginning with three hyphens, describes a
set of assertions for a certain machine. Listing 2 shows
an example of such a YAML file containing one block.
It defines the machine by an identifier class (Line 2)
and associated constructor parameters (Line 3). Af-
terwards, all assertions are declared by the fully qual-
ified name of the benchmark and the lower and upper
bound for the permitted benchmarks result (Line 4-7).

1 −−−
2 i d e n t i f i e r : MacAddres s Ident i f i e r
3 parameters : [0 1 : 2 3 : 4 5 : 6 7 : 8 9 :AB]
4 t e s t s :
5 teet ime . benchmark . PipeBchmk . run : [7 0 , 90]
6 teet ime . benchmark . StageBchmk . run : [6 . 4 , 6 . 7]
7 teet ime . benchmark . PortBchmk . run : [1300 , 1400]

Listing 2: Example of a YAML file that declares assertions

5 Feasibility Evaluation

The Pipe-and-Filter framework TeeTime [7] has a
fully automated build infrastructure5. On a daily ba-
sis, a Jenkins server builds a snapshot version from the

4http://www.yaml.org/spec/1.2/spec.html
5https://build.se.informatik.uni-kiel.de/jenkins/

view/TeeTime

http://www.yaml.org/spec/1.2/spec.html
https://build.se.informatik.uni-kiel.de/jenkins/view/TeeTime
https://build.se.informatik.uni-kiel.de/jenkins/view/TeeTime

latest version of the source code. To ensure its high
performance shown in [5], TeeTime already provides
JMH benchmarks6. In this section, we show that and
how RadarGun can utilize these benchmarks in order
to integrate performance tests into TeeTime’s existing
build environment. Especially, we show how Radar-
Gun visualizes passed and failed performance tests.

Methodology and Test Scenarios Currently,
TeeTime provides three benchmarks. Each of them
measures the performance of a different way to read
elements and termination signals from a pipe. We
converted these benchmarks to performance tests by
adding assertions for each of them in a correspond-
ing YAML file. Afterwards, we created a new Jenkins
project which automatically executes these tests with
RadarGun when a new build of TeeTime has finished.

In this paper, we only consider one benchmark
since the benchmarks do not differ in their methodol-
ogy. Therefore, we selected the Port2PortBenchmark.
To simulate deviations in performance, we intention-
ally decelerate the benchmarks by using JMH’s black-
hole feature. It burns CPU cycles according to the
given workload value (in our case: 10). Afterwards,
we executed the benchmark multiple times in order
to identify a valid lower and upper bound for a suc-
cessful test. We measured an average score in all runs
between 30 and 35 nanoseconds per operation (ns/op).

We evaluated three different scenarios with this
benchmark. In the first scenario (S1), we consider
a run whose average score lies within the assertion
bounds. This test should pass successfully. In the
second and third scenario (S2 and S3), we consider
a run whose average score is above the upper asser-
tion bound and, respectively, below the lower asser-
tion bound. Thus, both tests should fail.

In total, we performed 20 builds which trigger the
following scenarios: ten times S1, one time S2, six
times S1 again, one time S3, and finally two times S1
again. In this way, we expect to obtain a realistic plot.
Since S1 is executed 18 times in total, we evaluate its
output representatively by the first build.

We executed all of the evaluation scenarios on a
non-virtual machine (Intel Xeon E5620, 16 GB RAM)
with Jenkins 2.64 and Oracle’s Java virtual machine
1.8.0 40. The benchmarks were written with JHM
1.9.2 and are built with Maven 3.2.3.

Results Figure 1 shows the result chart generated
by Jenkins. It illustrates the individual measurement
scores of the 20 builds (red color) as well as the associ-
ated lower (green) and upper (blue) assertion bound.

The values for the lower and the upper bound
are constant at 30 and 35 ns/op, respectively. This
corresponds to the predefined assertions. For most
builds, the score fluctuates slightly, but stays within
the assertion bounds. At build #69, the score exceeds

6https://build.se.informatik.uni-kiel.de/teetime/

teetime-benchmark

Figure 1: The result chart generated by Jenkins

the upper bound and reaches approximately 40 ns/op
whereas at build #76, it goes down to approximately
18 ns/op. These results correspond to our expecta-
tions for S1-S3. Moreover, the values from the con-
sole output (see examples in Listing 1) perfectly com-
ply with the values displayed in the chart. Thus, we
conclude that our approach works as desired.

6 Conclusions

In this paper, we identify requirements for a perfor-
mance testing framework and present a corresponding
prototype implementation, called RadarGun. Perfor-
mance tests are based on JMH benchmark enriched
with machine-dependent time interval assertions. We
showed that RadarGun can be integrated into the
build process with a continuous integration tool to
execute those performance tests automatically.

As future work, we plan to integrate RadarGun
into Kieker’s [2] build infrastructure and to develop
an improved, interactive Jenkins plot plugin that eases
the usability of performance testing charts.

References

[1] A. Georges, D. Buytaert, and L. Eeckhout. “Sta-
tistically Rigorous Java Performance Evalua-
tion”. In: Proceedings of the OOPSLA. 2007.

[2] A. Van Hoorn, J. Waller, and W. Hasselbring.
“Kieker: A Framework for Application Perfor-
mance Monitoring and Dynamic Software Anal-
ysis”. In: Proc. of the ICPE. 2012.

[3] V. Horký et al. “DOs and DON’Ts of Conducting
Performance Measurements in Java”. In: Proceed-
ings of the ICPE. 2015.

[4] J. Waller, N. C. Ehmke, and W. Hasselbring.
“Including Performance Benchmarks into Con-
tinuous Integration to Enable DevOps”. In: SIG-
SOFT Softw. Eng. Notes 40.2 (2015), pp. 1–4.

[5] C. Wulf, C. C. Wiechmann, and W. Hasselbring.
“Increasing the Throughput of Pipe-and-Filter
Architectures by Integrating the Task Farm Par-
allelization Pattern”. In: Proc. of CBSE. 2016.

[6] OpenJDK. Java Microbenchmarking Harness.
http://openjdk.java.net/projects/code-tools/jmh. 2017.

[7] C. Wulf, W. Hasselbring, and J. Ohlemacher.
“Parallel and Generic Pipe-and-Filter Architec-
tures with TeeTime”. In: Proc. of ICSA. 2017.

https://build.se.informatik.uni-kiel.de/teetime/teetime-benchmark
https://build.se.informatik.uni-kiel.de/teetime/teetime-benchmark
http://openjdk.java.net/projects/code-tools/jmh

	Introduction
	Requirements
	The RadarGun Framework
	Performance Assertions
	Feasibility Evaluation
	Conclusions

