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Abstract. Multilevel modelling approaches tackle issues related to lack of flexibility and mixed levels of
abstraction by providing features like deep modelling and linguistic extension. However, the lack of a clear
consensus on fundamental concepts of the paradigm has in turn led to lack of common focus in current
multilevel modelling tools and their adoption. In this paper, we propose a formal framework, together with
its corresponding tools, to tackle these challenges. The approach facilitates definition of flexible multilevel
modelling hierarchies by allowing addition and deletion of intermediate abstraction levels in the hierarchies.
Moreover, it facilitates separation of concerns by allowing integration of different multilevel modelling
hierarchies as different aspects of the system to be modelled. In addition, our approach facilitates reusability
of concepts and their behaviour by allowing definition of flexible transformation rules which are applicable
to different hierarchies with a variable number of levels. As a proof of concept, a prototype tool and a
domain-specific language for the definition of these rules is provided.
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1 Introduction number of modelling levels, consequently suffer-
ing from mixed levels of abstraction, the need to
encode a synthetic typing relation among model
elements in the same level (Kiihne and Schreiber
2007), and the difficulty to maintain and under-
stand such models due to convolution.

Model-Driven Software Engineering (MDSE) is
a means for tackling the increasing complexity
of software development processes through ab-
stractions (Brambilla et al. 2012). In MDSE, the
main aspects of software are usually modelled
using mainstream modelling approaches which
conform to the oma standards, such as EcLIPSE
MobEeLLING FRAMEWORK (EMF) (Steinberg et al.
2008). These approaches provide high reliability,
a modelling ecosystem and good tool coverage.

Multilevel modelling (mLm) addresses the is-
sues of fixed-level metamodelling approaches by
enabling an unlimited number of levels, deep hier-
archies, potencies and linguistic metamodels and
extensions. Employing a multilevel modelling
stack has proven to be the best approach in many
application scenarios (Juan de Lara et al. 2014),
not to mention its resemblance to real world do-

However, they are usually restricted to a fixed
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mains, which are not necessarily restricted to a
certain number of abstraction levels. The idea
of multiple levels of abstraction applied to MDSE
started to gain momentum in the 2000s (Atkinson
and Kiihne 2001a,b; Atkinson and Kiihne 2002,
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2008; de Lara and Vangheluwe 2010; Rossini et al.
2014), however, using several abstraction layers
was already a well-established technique for the
specification of information systems. Some ex-
amples are Atkinson (1997), Bézivin and Lemesle
(1997), Borgida et al. (1984), Mylopoulos et al.
(1990, 1980) and Odell (1994, 1998).

Nevertheless, multilevel modelling also has
several challenges which hamper its wide-range
adoption, such as lack of a clear consensus on
fundamental concepts of the paradigm, which has
in turn led to lack of common focus in current
multilevel tools. As response to these challenges,
in Atkinson and Kiihne (2008), de Lara and Guerra
(2010a) and Rossini et al. (2014), the authors have
proposed formalisations of multilevel modelling—
sometimes also called deep metamodelling. In this
paper, we revise some of these concepts. So, in
order to define the scope of this paper, we introduce
and briefly explain how this work relates to other
MLM approaches in the following.

One of the most mature approaches for multi-
level metamodelling is MELANEE (Atkinson and
Gerbig 2016), which is based on the concept of
clabject (Atkinson 1997). While this framework
has some similarities and shares some of our goals,
we take a different approach in some of the formal
aspects. Furthermore, our tools aim at integrating
seamlessly into EMF, instead of creating a new set
of modelling tools from scratch. Similarly, we
share some commonalities with the tool META-
DeprtH (de Lara and Guerra 2010a), but redefine
some of the concepts in the interest of high flexibil-
ity in the specification of behavioural languages—
models—and semantics—model transformations.
This work is conceived as an evolution of the
DiagraM PrEDICATE FRAMEWORK (Rutle et al.
2012). In Sect. 6 we discuss these three works, as
well as other related approaches.

In this paper we propose a revised conceptual
framework that tackles some of the open chal-
lenges of the MLM community. Some examples
of these challenges are the usage and conceptual
meaning of linguistic metamodels, the nature of
the elements that conform to the models, the pos-
sibility of having more than one type for each
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element, or how to specify model transforma-
tions (MT) in a MLM environment. The formal-
isation presented in this paper aims at covering
the fundamental aspects of MLM, especially those
regarding flexibility of the specification. Further-
more, we show some practical applications of
such a framework for MmLM and mLM model trans-
formation specification. Our focus is reusability,
hence the stress on flexibility in every aspect of the
framework: design of flexible MmLM hierarchies,
reuse of multilevel model transformation and com-
bination or integration of different independent
hierarchies so that common structure and beha-
viour could be reused. We apply these concepts in
the field of Domain Specific Modelling Languages
(psmL) for behavioural modelling. The concept
of psmL is that of a Domain Specific Language
(psir) (Fowler 2011; Kelly and Tolvanen 2008),
specified by means of modelling techniques.

In the first sections of this paper, we provide
mathematical definitions for central concepts in
multilevel modelling. Our objectives are: (1) to
formalise these concepts, giving a concise and
precise meaning to them and checking their con-
sistency prior to implementation; (2) to establish
a common conceptual ground for researchers, tool
developers and model designers, who come from
different fields, to discuss and find solutions for
the problems addressed by the paper; and (3) to
build a bridge to the expertise of theoreticians and
practitioners in other relevant areas, like graph
transformations. Our definitions and formalisa-
tion are based on graphs, which are the basic
structure shared by most kinds of models. This
is also a paradigmatic choice: our mathematical
formalisation will enable us to convey, in a well-
structured way, our ideas, definitions, and results
to more complex graph-based structures, such as
attributed graphs or E-graphs (Ehrig et al. 2006,
2004).

We also present in this paper prototype imple-
mentations of the main two aspects of the frame-
work, namely building modelling hierarchies and
specifying model transformations in a multilevel
setting. Hence, the contributions that we present
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in this paper are: (1) a formal framework for flex-
ible MLM, presented in Sects. 2 and 3, (2) formal
multilevel model transformations used for defini-
tion of behavioural semantics, presented in Sect. 4,
and (3) two tools that realise these formal frame-
work and techniques: the MuLTECORE tool to
build modelling hierarchies and a textual editor
for the specification of such mT, in Sect. 5.

2 Multilevel Metamodelling Hierarchies

In this paper, we choose to focus on behaviour
since the definition of behavioural metalanguages
(level 0), languages (level 1), specific models
defined using these languages (level 2) and the
state of such models through time (level 3)
provides a scenario which inherently requires
multiple levels of abstraction. This comes in
addition to the fact that organising the metalan-
guages and the languages in a multilevel hierarchy
(i. e., through modularisation and locating abstract
concepts and their behaviour at higher levels and
their refinement and customisation to fit specific
domains at lower levels) would enhance reusability.
Due to this, some definitions in this section might
seem to be more generic than required. However,
we want to leave the door open for multilevel
model-driven engineering and multilevel model
transformations in general. Similarly, the goal of
the defined model transformations is to serve as
execution semantics for the behavioural languages
that the models define, as the examples illustrate.

The building blocks of our proposed framework
are models. Our models are represented by means
of graphs, since graphs are widely used to repres-
ent software models due to the fact that graphs
are a very natural way of explaining complex
situations on an intuitive level, e. g. for data and
control flow diagrams, for entity relationship and
uML diagrams, for visualization of software and
hardware architectures, etc. (Ehrig et al. 2006).
These graphs are organised in a hierarchical man-
ner. In this section, we introduce the kind of
graphs used to represent our models, as well as the
way to organize them in hierarchies, by means of
relations among graphs and the elements—nodes

and arrows—that they contain. We use an excerpt
of the case study presented later on in the paper as
an illustrative, incremental example. This example
defines concepts from the domain of process lan-
guages, applied to the definition of behaviour for
simple, autonomous robots using the Lego EV3
and Arduino platforms (Banzi 2008; Monk 2011).
Note that some of the names in the example are
shortened for display purposes when compared
with the full version presented in Sect. 3.1.

The terminology used in some MLM approaches
may vary, depending on the authors (Gerbig et al.
2016). In order to avoid confusion, we will use
the following terms, related to the fact that we in-
ternally represent models as directed multigraphs
(see Sect. 2.1):

* For every representation of a concept in a model,
we will use the word node, since they are repres-
ented internally as graph nodes. This concept is
named clabject in METADEPTH and MELANEE,
or also entity in the latter.

* For every relation between two nodes, represen-
ted as a graph arrow—sometimes also named
edge—we will use the term arrow.

* We do not use a special representation for attrib-
utes and their data types, but represent them as
nodes, in a similar fashion to Mylopoulos et al.
(1990). See Sect. 3.3 for more details about
attributes and data types.

2.1 Directed multigraphs

Our multilevel metamodelling approach is based
on a flexible typing mechanism. Therefore, we will
consider models abstractly as graphs, represented
with a name, usually G. Specifically, we work
with directed multigraphs. These graphs consist of
nodes and arrows. A node represents a class, and
an arrow represents a relation between two classes.
Hence, an arrow always connects two nodes in the
same graph, and any two nodes can be connected
by an arbitrary number of arrows. Arrows with
source and target in the same node (loops) are
also allowed, and a node can likewise have any
number of loops. We will use the word element to
refer to both nodes and arrows, and assume that all
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elements are named and identified by such name.
For this reason, the names of any two nodes in the
same graph must be different. For the arrows, we
allow for equal names as long as either the source,
the target or both are different, in order to be
able to differentiate them. Hence, the arrows are
considered, in such a way, as triples (s, a, t) with
a an arrow name and s, t the names of its source
and target nodes, respectively. For a given graph
G, we denote by GV its set of nodes, and by G4
its sets of arrows. Furthermore, a graph requires
for its definition two mappings sc® : GA — GV
and 1g¢ : G* — GV that assign to each arrow
its source and target node, respectively. These
two morphisms must be total for the graph to be
considered valid. That is, we can define a graph
as a quadruple G = (GN, G4, 5¢©, 1g%). Figure 1
shows a small graph named robot_1. This graph
contains three nodes, I, T and GF, represented
as yellow squares. The arrows connecting these
nodes are labelled with their names, in and out.

robot_1

in out
I «— T —— GF

Figure 1: Directed multigraph with named elements

The relations between graphs, like typing and
matching—explained in the next sections —, are
defined by means of graph homomorphisms. A
homomorphism ¢ from graph G to graph H is
given by two maps ¢V : GV — HV and ¢* :
G4 — HA that are compatible with the involved
source and target maps, respectively.

Due to the use of graphs as the underlying
representation of models, both terms ‘graph’ and
‘model’ could be used interchangeably in this
paper. We will however differentiate by using the
former for the definitions in this section, and the
latter when discussing examples in the next ones.

2.2 Tree shaped hierarchies, abstraction
levels and typing chains

We assume that our graphs (models) are organized
in a tree-shaped hierarchy with a single root graph
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(in the sequel, it becomes clear that we will indeed
get a tree-shaped hierarchy since typing is unique
within each hierarchy). Implicit in that assumption
is the fact that each graph, except the one at the
root, has exactly one parent graph in the hierarchy.
Also, we allow for arbitrary finite branching in the
tree, so that each graph can have none or arbitrary
finite many sibling graphs.

The hierarchy has /+1 abstraction levels where [
is the maximal length of paths in the hierarchy tree.
Each level in the hierarchy represents a different
degree of abstraction. Levels are indexed with
increasing integers starting from the uppermost
one, with index 0. Each graph in the hierarchy
is placed at some level i, where i is the length of
the path from the root to the graph. We will use
the notation G, to indicate that a graph is placed
at level i. Level O contains, in such a way, just
the root G, of the tree. For any graph G; we call
the unique path TC(G,) = [G,G,_,,..., G, G,]
from this graph to the root graph of the hierarchy
the typing chain of G,.

Possible candidates for the root graph G, are
Ecore (Steinberg et al. 2008) and the (Fode ) DArmow
graph. For implementation reasons, we use Ecore
as root graph in all hierarchies since Ecore is
based on the concept of graph which makes it
powerful enough to represent the structure of
software models. Although it might be more ap-
propriate, conceptually, to use Ecore as a linguistic
metamodel (Atkinson and Kiihne 2001b), we leave
Ecore on top of our hierarchy since (i) Ecore does
not provide any concepts for defining levels and
typing between levels and (ii) our implementation
strives to minimise the threshold for migration
from fixed-level EMF-based modelling to MLM.
While the modelling hierarchies presented in this
paper have a mixture of linguistic and ontological
nature, it is out of the scope of this paper to discuss
the relations between ontological and linguistic
hierarchies and their purposes. Nonetheless, these
hierarchies are not necessarily ontological since
they may also exist as prescriptive models for
software implementation (ABmann et al. 2006).
It is also important to note that, in the actual
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status of implementation, level numbers are re-
placed by references from a model to its immediate
metamodels, since the numbers are only needed
for formal constructions. In the hypothetical case
where these numbers were introduced and needed
to be updated when new levels are added on top of
them, traversing the hierarchy and updating them
would be automatic and almost trivial.

In Fig. 2, we show several graphs that constitute
a tree-shaped hierarchy, included the one already
presented. We locate the graph robot_1, rep-
resenting a particular configuration for a robot,
in level 3, together with another graph robot_2,
defining a different configuration for another ro-
bot. These two graphs, although conceptually
similar, are independent from each other in the
sense that they neither belong to the same branch
of the tree nor share their parent graph—that is,
their metamodel. They serve the role of parent
graphs, respectively, for robot_1_run_1 and
robot_2_run_1, located at level 4. Since we
in this paper focus on behavioural modelling lan-
guages, the models we define evolve through time,
representing the execution of the modelled system.
Thus, the purpose of robot_1_run_1 is to store,
at any particular point in time, the state of the exe-
cution of the specific process defined in robot_1;
likewise for robot_2_run_1 and robot_2.

Back to our hierarchy, the parent graphs of
robot_1 and robot_2 are located at level 2,
where most of the types of their elements are
defined. These two parent graphs, legolang and
arduinolang, define the type of elements that
we can use to define a specific process for a robot
designed in the Lego EV3 or Arduino platforms,
respectively. Both models share the common par-
ent graph robolang, located at level 1. This
language contains basic concepts for process mod-
elling, independently from the robot hardware or
platform. Finally, as we previously mentioned, we
locate Ecore, the topmost graph and root of the
tree, at level 0. This graph is the parent graph of
robolang.

It could be argued that using specialisation and
generalization (Borgida et al. 1984; Kiihne 2009;
Mylopoulos et al. 1980) could reduce this whole

hierarchy into two levels. While it is outside
this paper’s scope to illustrate the advantages
of MLM as an alternative or to take a stand on
the classification vs generalization question, we
enumerate below some arguments for why we have
chosen MLM for this example.

* Separation of concerns: robots which do not
have certain capabilities—say, flying—would
not need a language with F1yUp and F1lyDown
tasks, hence specialisation of Task in a single
level would pollute the metamodel and weaken
the domain-specificness of the languages.

* Reusability: concepts and behaviour defined at
a higher level can be reused or overridden at
lower levels in the hierarchy.

» Extendibility: extending a metamodel with
other elements in the future would give some
challenges wrt. modification of editors and other
artefacts which are created from that metamodel,
while adding a new metalevel below (or above)
makes the extension independent on other mod-
els and does not affect past or future updates of
other artefacts.

* Modularization: each metamodel in the hier-
archy can be used as a module for itself without
paying much considerations to neighbouring
branches.

* Specification of behaviour: The approach that
we present here would be infeasible in 2-level
modelling. If the whole language for robots
is collapsed into one level, the instances and
their states would also have to exist in one
single model. Defining behaviour by means of
model transformations in such a scenario would
require more complex rules to keep consistent
the defined behaviour and current state by other
relations than typing, polluting the model, and
leading to a bigger set of rules, as illustrated in
Sect. 4.

In Fig. 2, we use red horizontal lines to indicate
the separation between two levels, and blue dashed
arrows indicating the sequences of graphs that
constitute typing chains and provide the required
tree shape. Note that the contents of both graphs
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arduinolang, robot_2 and robot_2_run_1 are
not displayed since they are not relevant for this
example, but serve to illustrate the tree shape. The
diagram with the full left branch of the hierarchy
is displayed in Fig. 7, where we also explain in
more detail the concepts defined in the graphs.

Ecore

Level EReference

0 EClass
robolang
Level in
1 Task I T
out
legolang arduinolang
Level
2 Initial GoFwd
A A
robot_1 robot_2
Level .
in out
3 I «—— T GF
T T
robot_1_run_1 robot_2_run_1
Level
4 i

Figure 2: Tree-shaped hierarchy of graphs with levels
and typing chains

2.3 Individual typing

Any element e in any graph G, has a unique type
denoted by ty(e). In that case, we can say that e is
typed by ty(e) or, equivalently, that e is an instance
of ty(e). The ty(e) has the semantic meaning of the
‘class’ of e, e.g. ty(Task) = EClass. Although
this relation, i.e. classification, is conceptually
different from specialisation (Kiihne 2009), we do
not put any restrictions on how a model designer
would organise the concepts in her hierarchy, and
leave room for the definition of good and bad
practises in a similar fashion to object-oriented
patterns and anti-patterns. Hence, some modelling
engineer may consider that ry(Initial) = Task
should be replaced by specialisation, although we
chose the former for flexibility and illustration
purposes.
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To achieve the necessary flexibility, we allow
typing to jump over levels. That is, for any e in
a graph G, with i > 1, its individual type ty(e)
is found in a graph TG(e), which is one of the
graphs [G,_,,...,G,,G] in the corresponding
typing chain. Note that the types of different
elements in G; may be located in different graphs.
By df (e) we denote the difference between i and
the level where TG(e) is located. In most cases,
this difference is 1, meaning that the type of e is
located at the level directly above. In short, we
can say that, for any element e in a given graph
G,, with i > 1, its type ty(e) is an element in the
graph Gi_df(e), where 1 < df(e) < i.

Figure 3 displays our example hierarchy, includ-
ing the type of each element. To avoid polluting
the diagram with too many arrows, we use altern-
ative representations for them. For every node,
its type is identified by name and depicted in a
blue ellipse attached to the node. For example,
the type of I is Initial, which could also be
represented as an arrow between these two nodes.
For the arrows, the type is represented as another
label with the name of the type. This label is
distinguished from the one with the element’s own
name by using italics font. For example, the type
of the out arrow in robolang is EReference,
located in the Ecore graph.

To ensure that every element has a type, we
assume that the root graph G, has a self-defining
collection of individual typing assignments. In
other words, we have that if e € G, then ty(e) €
G,- We use the more relaxed term self-defining
instead of reflexive since the former just requires
that all the elements in the graph are typed by
elements in the same graph, whereas the latter
means that every element is strictly typed by itself.

From a more general point of view, we obtain
for any e in G, a sequence

e >1y(e) —ny’(e) b -+ 1y™(e)
m m m Mm

Gi Gl—df(e) Gi—dfz(e) Gl-_dfse(e) = GO

of typing assignments of length 1 < s < i with
(i —df*:(e)) = 0. The number s, of steps depends
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Ecore

Level 1. EReference

0 EClass
EReference
robolang
Level Ectass in EReference .,
1 Task I Trn
out EReference
legolang arduinolang
Level
Taskc Task
2 Initial GoFwd
A
robot_1 robot_2
Level .
1 ip T out GoFsd
3 I <~— T —— GF
in out

robot_1_run_1 robot_2_run_1
Level

T
4 i

Figure 3: Graph hierarchy with typed elements

individually on the item e. For convenience, we
use the following abbreviations:

1y*(e) = ty(ty(e))

ty’(e) = ty(ty(ty(e)))

df*(e) = df (e) + df (ty(e))
df’(e) = df*(e) + df (1y*(e))

Let us consider an arbitrary arrow x 5 y,
together with its source and target nodes, in a
graph G, (note that we will just use f to refer to
that particular arrow, to simplify the notation). It
may happen that the types of the three elements are
located in three different graphs; e. g. the edge in
in the graph at level 3 in Fig. 3 has its type at level
1, while the type of its source is also at level 1, the
type of its target is at level 2. The typing of arrows
should, however, be compatible with the typing of
sources and targets. A natural requirement would
be that the source and the target of 7y(f) € G,_ 45
are provided by the type of x and the type of y,
respectively; i. e., referring to the above mentioned

example, the type of the type of the target of in
is also located at level 1 and the edge is indeed
allowed between these two types. Specifically,
we require that the following non-dangling typing
condition is satisfied: There exist 1 < my < sy
and 1 < my < sy such that

* df"™(x) = df"™(y) = df (f) and
e 1y"*(x) is the source of ry(f) and
o ty"™¥(y) is the target of ry(f).

Hence, the typing chains of the arrow and its
source and target nodes must look as follows:

K

G G G

i—df (X) i—df (Y) i—df (f)
w w w w
x| ty (x) t e ty"" % (x)
f J ty(£)
v ty(y) | b ty™Y (y)

2.4 Typing morphisms and domains of
definition

Our notions of flexible multilevel typing can be
described for graphs—hence, in a more abstract
and compact way—by means of a family of typing
morphisms. That is, we can define typing relations
between any two graphs, in a typing chain, as an
abstraction of the individual typing that we define
for their elements in Sect. 2.3. The vocabulary
defined for individual typing can be reused here,
so that a graph can be an instance of another graph,
or be typed by it. These relations among graphs
are defined by means of graph homomorphisms.
Since the individual typing maps are allowed to
jump over levels, two different elements in the
same graph may have their type located in different
graphs along the typing chain. Hence, the typing
morphisms established between graphs become
partial graph homomorphisms, cf. Rossini et al.
(2014).

Our characterization of individual typing en-
sures that, for any levels i, j such that 0 <
i < j <1, there is a partial typing morphism

: G; —> G, given by a subgraph D(T ) E G;,
called the domam of definition of 7; and a total
typing homomorphism T D(T ) — G;. In
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abuse of notation, we use the same name for both
morphisms since they represent the same typing
information. Using the same syntax as the ex-
amples, Fig. 4 depicts these concepts in a generic
manner.

G;
Level
i
G; ] .
Level 'D(7yi)
j L

Figure 4: Typing morphisms and domain of definition

Given that a graph is given by its set of nodes
and its set of arrows, we can define the concept of
domain component-wise. Forany 0 <i < j </
we can define the set D(T]{\Z.) c G}V of all nodes in
Gj that are recursively typed by nodes in G,. That
is, e € D(Tﬁ.) iff there exists 1 < m < se such
that j —i = df™(e), and thus ty"*(e) € va. We set
Tﬁ(e) := ty"(e) for all nodes in D(T]].,\Z.) and obtain,
in such a way, a morphism 7%, : D(7]}) — G}.
This total morphism defines a partial morphism
TJ].’Vi : Gj.v —e—>GfV with the domain of definition
D(T]{\i.).

We can follow an analogous process for the set
of arrows G4 to obtain a partial morphism ij‘l. :
G]A —> Gf‘ with domain of definition D(T;‘l.).

The non-dangling typing condition is now
equivalent to the requirement that the pair
(D(T]{\C.), D(ij‘[.)) constitutes a subgraph D(t; )
of G e Consequently, the pair of morphisms
(TJ{Vi, Tﬁi) provides a total graph homomorphism

T D(Tj,i) — G; and thus a partial typing

morphism Tt Gj —->G;.

Special Issue on Multilevel Modeling

All the typing morphisms Tio" G fla G, are
total, since every element has a type. The unique-
ness of typing is reflected on the abstraction level
of type morphisms by the uniqueness condition:
Forall 0 <i < j < k, we have that T ST <7
The symbol < means whenever an element in G,
is recursively typed by an element in Gj such that
this element in G g is, in turn, again recursively
typed by an element in G, then the element in G,
is also recursively typed by an element in G, and
both ways provide the same type in G;,.

The other way around, we can reconstruct in-
dividual typing from a family of partial typing
morphisms between graphs that satisfy the totality
and the uniqueness condition. For any item e in
a graph G, there exists a maximal, least abstract
level 0 < i, < k such that e is in D(Tk,ie) but not
in D(Tk’j) for all ie < j < k, since Tiols total and
k a finite number. Hence, the individual type of e
is given by ty(e) := Tk’ie(e) and df (e) := k — ie.

In Fig. 5, we represent the typing morphisms
between all the graphs in the hierarchy. Note that
the morphism from robolang to Ecore is total,
since all the types used in the former can only
be defined in the latter, and all elements must
have a type. Moreover, it is possible to define a
total morphism from any graph in the hierarchy to
the root graph via composition of partial typing
morphisms with respect to the individual typing
morphisms that they represent.

In summary, we define multilevel typing, first,
by individual typing of graph elements, and then
by abstracting it away by means of partial typ-
ing morphisms. This more abstract and concise
definition of multilevel typing can be conveyed
straightforwardly to other structures, and we have
outlined a proof showing the equivalence of both
views for graphs. In this section, we have used
the definitions to identify precisely which con-
ditions the typing relations should satisfy, e. g.
the uniqueness condition and the non-dangling
condition.

2.5 Potency

In this subsection, we introduce our modification
and formalisation of the concept of potency of
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Figure 5: Graph hierarchy with typing morphisms

an element originally defined in Atkinson and
Kiihne 2002. Potency is used on elements as a
means of restricting the length of the jumps of
their typing morphisms across several levels. The
reason for this is that the formalisation presented
so far is aimed at classifying graphs in tree-shaped
hierarchies as a means to get a clear structure of
the concepts defined, but the hierarchy is built
based on the individual typing relations, which
do not have any restrictions regarding levels. Due
to this fact, levels become less useful in practice
if the individual typing relations are unbounded,
hence the necessity of potencies to restrict the
jumps of typing morphisms across levels.

Other authors represent the potency of an ele-
ment with just a number, whereas we employ an
interval that allows for a higher degree of express-
iveness, using the notation min--max. These
values may appear after the declaration of an ele-
ment, using @ as a separator. In the cases where
min = max, the notation can be simplified to show
just one number. Such is the case with the default
value of potency: @1-1 = @1. Furthermore, some
existing realizations of potency have different ef-
fects on classes than on attributes. However, we
do not require to differentiate between them since

attributes and their data types are also represented
as nodes and arrows (see Sect. 3.3).

The formal definition of potency as a range is
as follows. For any element x in G; we require
min < df(x) < max where ty(x)@min--max is
the declared potency of the type 7y(x) in G,_ s
This condition can be reformulated using partial
typing morphisms. For any element y in G f with
a potency declaration y@min--max we require
that T;l.l (y) is empty for all j with j —i < min
or j —i > max. In all other cases, that is, min <
Jj —1 < max, there is no strict requirement. T;} (y)
may be empty or not.

For the typing relations used in our example to
be correct, and given that we assume the default
potency @1--1 unless otherwise specified, we
require the node Trn and the arrows in and out in
robolang to have increased potency (see Fig. 6).
That way, it becomes possible to use them as types,
respectively, for T, in and out; located two levels
below, in the robot_1 graph. Besides, and to
ease the interpretation of a diagram, the type of an
element which is specified in a level different from
the one immediately above reuses the @ notation
to indicate it. For nodes, the annotation is located
in the blue ellipse. For arrows, the ty (e)@df (e)
annotation is displayed in the declaration of the
type (in italics). In both cases, we also define a
non-graphical representation of the element and its
type in the form e: ty(e)@df(e). For the default
value 1, used in all the other cases, the notation
e:ty(e) is used as a shorthand for e: ty(e)@1l.
Figure 6 shows the final version of the example
hierarchy in which potencies have been added to
the elements aforementioned.

Note that the potencies of the Ecore elements
EClass and EReference are not the default 1--1,
defined for ‘user-accesible’ levels but, ®--*. The
minimum potency of 0 is required to allow for
self-definition and the maximum value of *—
unlimited—is required to be able to create direct
instances of Ecore elements at any level below,
without forcing the creation of an intermediate

type.
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Figure 6: Full graph hierarchy with potency

2.6 Inheritance and multiplicity

These two techniques allow to further control the
processes of specification and further instantiation
of the elements defined in a model.

The inheritance (i. e. specialisation) relation is a
special type of arrow among any two nodes within
the same level, which imposes on the child node
the same typing and potency as the parent node.
Moreover, the inheritance relation gives the child
node access to the incoming and outgoing arrows
of the parent node, while still allowing the child
node to define additional attributes or arrows.
However, in order to avoid conflicts, the child
node cannot redefine an arrow of its parent node
by reusing its name. Using the concepts defined
in the previous subsections, we can reformulate
this requirement as follows: for any two nodes
X,y € G;.V and 0 < i < j, if x inherits from y, then
it is required that T]].X.(x) = TJ].’Vi (y). Furthermore,
cyclic inheritance and inheritance between arrows
are forbidden.

In the case of multiplicity (i. e. cardinality) of
arrows, we consider them as an additional an-
notation that can be added on top of the arrow
to further control the instantiation process. That

Special Issue on Multilevel Modeling

is, the formalisation presented above does not
constrain the amount of direct instances of an
arrow that can be created. For this purpose, we
introduce the concept of multiplicity of arrows.
So, the same way as potency allows the modeller
to control where instantiation can happen, mul-
tiplicities serve the purpose of specifying how
many times a direct instance of an arrow can, or
should, be created. Multiplicities are expressed in
this work in the traditional notation of min. .max,
where the min (max) value restricts the minimum
(maximum) number of direct instances of the ar-
row in the context of its source node. The default
value for multiplicity is 8. .n, where n represents
unbounded.

Both techniques are straight-forward and dir-
ectly enforceable in the tool implementation.

3 A Three-Dimensional Framework

All the concepts defined in Sect. 2 are used to
specify a single hierarchy that contains a family of
related models with different levels of abstraction
but a common domain—Iike Robolang, used in the
examples so far. Nevertheless, complex scenarios
from behavioural modelling may comprise more
than one domain. For example, it could be useful
to introduce verification aspects into the language,
so that we can specify correctness properties, or
enhance it with logging capabilities that gather
information about the behaviour of a particular
instance. In addition, data types—such as integers,
strings or boolean values—are elements that may
appear in any model and should be reusable in
any hierarchy we create. These three ‘aspects’
of modelling—the base language, its possible
additional aspects and the data types—can be
represented as different modelling hierarchies, in
a consistent manner, using the definitions from
Sect. 2.

In this section, we introduce three dimensions
where hierarchies can be located, depending on
their nature and purpose, as well as the relations
that can be defined between elements in different
dimensions. First, we consider the hierarchies that
define behavioural models and instances—since
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that is our focus in this paper—to be the ‘main’
ones. We define these hierarchies to be located
in the application dimension and, in consequence,
we name them application hierarchies. These are
presented in more detail in Sect. 3.1. Second, the
hierarchies representing additional aspects of an
application hierarchy are located in a secondary
dimension. We call this dimension the supple-
mentary dimension, and therefore we name the
corresponding hierarchies as supplementary hier-
archies. Section 3.2 delves into this concept and
introduces an example of supplementary hierarch-
ies. And third, we represent data types, commonly
used for attributes in other modelling approaches,
as yet another modelling hierarchy. This last hier-
archy is fixed and consists of four levels, which are
presented in Sect. 3.3. The data type hierarchy is
the only one located in the data type dimension.

The relations between elements in different
dimensions are expressed by means of multiple
typing. This concept is defined as an extension
of the individual typing presented in Sect. 2.3. If
there are one or more supplementary hierarchies
for a given application hierarchy, any element
e defined in the application hierarchy may have
several types, combined as follows:

* Exactly one typing map to another element in
the same application hierarchy. In the uncom-
mon case that this type is not specified, it will
be assigned a default one—in our implementa-
tion using Ecore, the type would be EClass or
EReference for nodes and arrows, respectively.
That is, the requirement that every element has
at least one type must hold.

* 0..n typing maps to supplementary hierarchies.
Each hierarchy represents a different aspect,
so the element e can have one supplementary
type in each supplementary hierarchy related
to the application hierarchy where e is loc-
ated. Sect. 3.2 shows an example of such case
and explains how to use supplementary typing,
comparing our definition of multiple typing
with the concepts of linguistic metamodels and
extensions.

* 0..1 typing maps to the data type hierarchy.
This is the case when declaring attributes. In
Sect. 3.3 we illustrate how to apply single or
double typing to represent attributes and their
data types.

It is worth pointing out the fact that the typing
map e — ty(e), with e and ty(e) belonging to
the same application hierarchy, is the only one
allowed in the application dimension. That is,
the type of e—or any of its types—cannot be
in a different application hierarchy than e. This
means that any two application hierarchies are
totally unrelated to each other, in the sense that
it is not possible to create typing maps between
their elements. In other words, there cannot be
two application hierarchies in the same system.

Each one of the typing maps of e has its own
typing chain associated. Hence, the concept of
typing chains is also extended to allow the graphs
that form it to belong to different hierarchies in
different dimensions. For the sake of simplicity,
the examples in this paper just illustrate cases
with double typing, but there are no conceptual
or technical obstacles, that we can foresee, to
adding more than two types to an element in an
application hierarchy.

3.1 Application dimension

The hierarchies used to define behavioural lan-
guages are located in this dimension. One of the
defining characteristics of application hierarch-
ies is their independence from the supplementary
hierarchies. That is, while some scenarios can-
not be modelled without using a combination of
both kinds of hierarchies, the basic concepts of
an application hierarchy should be independent
of any supplementary one. For example, the tem-
poral properties introduced in Sect. 3.2 require
to double type application elements. However,
those application elements can constitute a valid
application model without the double type.
Besides, an element with multiple typing where
one of the types belongs to an application hierarchy
must always be inside an application hierarchy.
That means that the supplementary and data type
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dimensions always act as secondary or comple-
mentary aspects, and never as the main language
of a specification. In a more general way, we can
reformulate this as the requirement that any graph
G, containing an element e (e € GN ore € GY
with double type, will necessarily be part of an
application hierarchy.

Furthermore, as pointed out in the introduc-
tion, we focus on the definition of behavioural
models and their execution semantics specified as
model transformations. The fact that the models
in an application dimension are independent from
those in the supplementary dimension is reflected
also in their execution semantics. That is, the
model transformations that define such semantics
for application hierarchies should be independ-
ent from the supplementary models and model
transformations.

Finally, also related to the previous point, in
case of combining the behavioural semantics of
different hierarchies (see Sect. 4), the application
semantics are the last ones to be executed, since
they are not aware of the influences of the other
dimensions and will disregard any other semantics
if executed in the first place. We discuss this issue
in more detail in Sect. 7.

In Fig. 7, we display a hierarchy of models
used for the definition of behaviour on simple
robots, in order to demonstrate the properties and
purpose of application hierarchies. This figure is
the full version of the left branch of the hierarchy
used as an example in Sect. 2. As before, we
do not show Ecore on top of the hierarchy since
it is not relevant for the explanation. The figure
has been generated from the real implementation
of the Robolang hierarchy created with the tool
MuLTECOoRE, that we show in Sect. 5.1. For this
reason, there is a slight change to the syntax used
so far: every node has an additional decoration
that displays its potency, instead of appending it
to the name of the node. Also, the default value
for the multiplicity of an arrow is 0. .n, which is
not displayed for the sake of clarity.

In Fig. 7(a), we define a psmL for process
modelling in the domain of robots, hence the name
robolang. The main concept in this language
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is Task, which represents an action that a robot
can perform. Transitions are used to connect
any number of in tasks to any number of out
ones. These transitions are triggered by Inputs,
related to transitions by the inputs relation. Note
that there may still exist instances of Transition
without an associated instance of Input, in which
case it gets fired instantaneously. For example, the
ones leaving from initial tasks.

The concepts defined in the robolang lan-
guage are specialised for simple Lego EV3 robots
in legolang. This kind of robots are capable
of moving in a flat surface, and detect both phys-
ical obstacles in their way and the borders of
that surface. The 1egolang language, depicted
in Fig. 7(b), defines specific tasks for the move-
ment possibilities of such robots: GoForward,
GoBack, TurnLeft and TurnRight. It also con-
tains Initial, which represents the starting point
in the process of performing those tasks. Besides,
the language defines the required elements for the
detection of a Border in the surface, an Obstacle
in front of the robot, or the expiration of the time
assigned to a task (Timeout). One of the key
points in this model is the lack of arrows. The
fact that tasks are related to each other (by trans-
itions) is already specified in the model above, and
that information is enough to specify the behavi-
oural semantics of the language, as explained in
Sect. 4.1.

In Fig. 7(c), we define a specific behaviour for
a robot, named robot_1. The robot starts by ex-
ecuting its initial task I, which fires automatically
the transition T1 to GF, indicating the robot to go
forward. Then, the robot may take two different
courses of action. In the first one, it will fire T2
and start going back (GB1) if an obstacle (0) is de-
tected. After it goes back for a while, the timeout
(TO) fires the transition (T4) and it starts turning
left (TL). After another timeout, T6 is fired, and the
robot resumes to going forward again until another
input is detected. The second course of action is
similar to the previous one, but it starts by detect-
ing a border (B), which fires T3 and commands
the robot to go back (GB2). After timeout, it will
fire T5 and turn right (TR) until the next timeout,
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which will fire T7 and return to GF, completing
the loop. Note that all the arrows are typed by
in, out and input, defined in robolang. As
explained in Sect. 2, these arrows can be defined
without requiring an intermediate redefinition in
legolang, thanks to the use of potency. Thus, the
separation in levels of abstraction is satisfied—it
is not desirable that concepts from the level of
abstraction of robolang have to be unnecessarily
repeated in 1egolang.

The bottommost level on this hierarchy, depic-
ted in Fig. 7(d), represents the state of a particular
execution of the robot_1 model, hence the name
robot_1_run_1. The represented state is actually
the initial state, where the robot begins its tasks
by running an instance of the initial task of the
model (i :I). This is the level that will be modified
during the execution of the behavioural semantics
defined as model transformations (see Sect. 4.1).

3.2 Supplementary dimension

The purpose of hierarchies defined in this sub-
section is defining additional aspects that can be
introduced in behavioural languages.

Compared with other mLM approaches, like the
ones mentioned in Sect. 1, the purpose of sup-
plementary hierarchies can be understood as an
evolution of the concept of linguistic metamodels,
including ‘linguistic typing’ and ‘linguistic exten-
sion’, as follows. First, the inspiration for separate
dimensions for different hierarchies of languages,
and having one of them acting as the ‘main’ one,
while the other adds some new concepts, stems
from the idea of linguistic metamodels (Atkin-
son and Kiihne 2001b; Rossini et al. 2014). In
these models, some concepts are defined so that
they can be used in the main (‘ontological’) hier-
archy. These linguistic types must be applied on
ontological elements, providing elements with
double ontological-linguistic typing. This means
that the ontological hierarchy is dependent on
the linguistic metamodel in the sense that every
ontological element requires a linguistic type,
which is a consequence of employing the clabject
paradigm. Alternatively, elements defined in a
linguistic metamodel can be used as the only type

of elements in the ontological hierarchy, hence
creating elements with only one linguistic type
and no ontological one. This technique is known
as linguistic extension. Both concepts can be
emulated in our conceptual framework by means
of using an additional hierarchy, which serves the
role of linguistic metamodel. In addition, our
framework does not constrain other possibilities
like an element having just ontological type—type
on its own hierarchy—or more than two types—
one additional type per supplementary hierarchy,
while keeping the constraint of exactly one type
per hierarchy. This also allows for addition of
initially unforeseen types, as other modelling ap-
proaches do. See, for example, J. de Lara et al.
(2015).

We illustrate one possible use of supplementary
hierarchies in the following. In that example, we
define a property specification language in order
to describe temporal correctness properties for
behavioural languages. As stated in Sect. 3.1,
Ecore is the topmost level of the hierarchy from a
formal point of view, although not user-accessible
or modifiable.

The rtL (Linear-time Temporal Logic) spe-
cification language defines a propositional logic
(Manna and Pnueli 1995). This implies that one
of the elements in the language are atomic pro-
positions which can be evaluated at any particular
point in time to frue or false. Since we apply
this language to behavioural models, the result of
the evaluation is based on the state of the model,
that is, the existence of specific elements on the
running instance of the model. The LTL language
contains the usual boolean connectives and ad-
ditional operators, which define the meaning of
a formula over a trace of observations for the
propositions.

In Fig. 8, we represent the model that defines
all the LTL concepts, which will allow us to spe-
cify Lt properties. This kind of language has
been previously used in model-based approaches
applied to the field of runtime verification for
the specification of embedded systems (Macias
et al. 2016). In that work, the key contribution
is that correctness properties become part of the
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Figure 7: Full hierarchy for Robolang case study

modelling hierarchies to which they refer. On
the one hand, the authors point out the advantage
that the properties evolve together with the actual
model they refer to, and on the other hand that the
model can be used for simulation, code generation
and evaluation of such properties. We used the
same abstract syntax in Fig. 8 as in the rest of the
examples, to show that our framework is capable
of also representing the grammar and semantics
of a second-order logic. In practice, it would be
more convenient to specify a concrete—probably
textual—syntax, synchronised with these abstract
concepts.

The reasons to depict the single 1t1 model

as a means to present this hierarchy are twofold.

First, we omit the Ecore metamodel on top, as we

do in all the other hierarchies presented in this
section. And second, the properties are specified
as new models typed by the elements in 1t1 but,
as explained below, some of its elements will have
a double typing relation (one application type
and one supplementary type). In this case—of
elements having double typing—, and as explained
at the beginning of this section, the model will be
located in the application hierarchy whose types
are being used and, as a consequence, the models
representing specific LTL properties will not be
part of the LTL supplementary hierarchy.

In the model, all elements are instances of
Ecore types, but this time we display that type in
a green ellipse, instead of blue, to clarify that they
belong to a supplementary hierarchy. The main
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element is Formula, a node which can represent
the whole LTL property, as well as any of its
subexpressions, connected by operators. These
operators can be Unary or Binary, in which case
they are connected to one or two subformulas,
respectively. These connections are represented
with the relation formula in the first case, and with
left and right in the second. A unary operator
can be a boolean negation (Not), or the temporal
operators X, F and G. The element X represents the
next LTL operator, which requires its subformula
to hold in the next state. F and G represent the
temporal operators eventually—the subformula
should hold at some point in the future—and
globally—the subformula must always hold, from
the current state on.

The binary elements can be boolean operators,
like And, Or and Implication, or the temporal
operators U and R. U represents the binary operator
until, which captures that the left subformula must
hold up to a point of transition where the right
subformula holds. And the operator R represents
the temporal operator release, similar to until, but
with the additional requirement that the left and
right subformulas should hold simultaneously at
the moment of the transition.

All the operators are used to connect atomic
propositions—the most basic type of formulas—
which eventually evaluate to true or false in a
particular model. An atomic proposition which
is not evaluated is represented by the Atomic
element, and once it is evaluated, the result is
represented with a Boolean value. This last
element, as well as its type DT, are defined in the
data type dimension, used to represent common
types such as integer, boolean or string. For a more
detailed description of the data type dimension
and its usage, see Sect. 3.3.

Note that Formula, Unary and Binary have po-
tency @0, meaning that we cannot create instances
of them. In this case, we achieve a similar effect
by using zero potency like by defining abstract
classes in object-oriented programming. We could
have likewise refined those concepts by means of
typing, separating them from the most specific
elements (Not, And, X, etc.) by using two models

Itl
@E, EReference 1 left@1-1 @E,
>3
Formula EReference 1 right@1-1 Binary
EReference 1 9
formula@1-1
Boolean Unary — And
Atomic — Not 1 u Or
EReference | has@1-1
Element EReference X — 1  Implication
relation@1-1 7 @EL
F — — u
G — = R

Figure 8: Supplementary LTL model

in two different levels—in a similar fashion as
the robolang and legolang in Sect. 4.1. How-
ever, we wanted to illustrate that, thanks to the
reuse of Ecore as the root of our hierarchies, we
can define inheritance relations between nodes.
In our approach, we do not enforce a particular
way—inheritance/specialisation or metalevels/-
classification (see Borgida et al. 1984; Kiihne
2009; Mylopoulos et al. 1980)—of designing
models and hierarchies with our framework; we
provide the flexibility and leave this choice to the
model designer. Moreover, this way of modelling
makes it easier to read 1t1 as the model version
of the EBNF grammar of the Ltr language. This
way, all operators define non-terminal symbols,
Boolean and Atomic define terminals, and the
relations define the structure of the symbols.

In Fig. 9, we display a specific property,
called property_1, created as an instance of
robolang—application dimension —, but also us-
ing types from 1tl—supplementary dimension—
to build a temporal property. The model encodes
a consistency condition on the behaviour of the ro-
bot: when approaching an obstacle, backing away
from it should clear the sensor-reading again. If
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that is not the case, the robot’s assumption about
the environment—obstacles should not move—
is incorrect, and the property is violated. This
property, visualized in LTL syntax, is written as
G(obs — X(-obs U 10)).

The model property_1 also shows an example
of double typing, that illustrates the way in which
we use our framework to connect temporal prop-
erties to behavioural models. First, the property
as a model is part of an application hierarchy, and
is modelled using types from the supplementary
dimension. And secondly, the atomic propositions
get evaluated by matching them to the models rep-
resenting executions of the behaviour, making use
of the behavioural semantics for LTL, defined as
MTs in Sect. 4.2. To simplify the visualization, if
one of the types of a double-typed element belongs
to Ecore, we omit it to increase readability.

For the two application types used in Fig. 9, we
introduce a modifier in front of the type annota-
tion. The meaning of *Obstacle and *Timeout
is that o and t are not typed by them directly.
The star prefix can be then interpreted as indir-
ect typing or transitive typing, meaning that in-
stead of having o:Obstacle, we may have 0:01
and 01l:0bstacle, or any number of interme-
diate types (like O1) in between. This notation
increases the flexibility of our framework by al-
lowing us to reason about elements in a very
abstract way, without tying the notation to a model
which is too specific to our purposes. For example,
property_1lisjustconcerned about obstacles, not
particular instances of them. The differences on
the different notations for types is also explained
in more detail in Sect. 4.

Finally, one could even use LTL, or some other
language, to define constraints in any of the levels
of the hierarchy, exploiting the multilevel capabil-
ities of the framework. The actual implementation
of the MuLTECORE tool can be instrumented to
apply the language’s semantics to evaluate such
constraints against the models, without requiring
any additional modelling mechanisms. For in-
stance, just by using the non-temporal operators
of LTL, it is possible to define propositional con-
straints like the one shown in Fig. 10; in fact, the
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property_1
e o (el
g formula i

1 1@1-1
n left u
f@1-1 | [ormula r@1-1 | right
Atomic — Atomic —
obs to

Figure 9: A temporal property with supplementary
single-typed and double-typed elements

boolean logic language can be seen as a meta-
language for temporal logics like LTL, and could
be separated into different levels of a multilevel
hierarchy, which we do not show here for the sake
of brevity.

Let us assume that we want to define a con-
straint that forces instances of GoForward to only
be connected to transitions triggered by an in-
put of type Obstacle. This constraint, called
property_2, is expressed by means of an im-
plication, where the left-hand side contains the
instances of GoForward and Transition, and the
right-hand side reuses the same pattern—actually,
the same elements—and adds the required in-
stance of Obstacle, as shown in Fig. 10. The
textual version of this constraint is just the implic-
ation GFandT — GFandTwithO, where GFandT
and GFandTwithO are the names of small models
representing the atomic propositions.

3.3 Data type dimension

This dimension contains a single and fixed hier-
archy of four levels, and defines the basic and most
common data types used in most modelling tools,
such as integers, strings and booleans. As with the
two dimensions aforementioned, we choose Ecore
for the root of the hierarchy for implementation


http://dx.doi.org/10.18417/emisa.13.10

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 10 (2018). DOI:10.18417/emisa.13.10

Approach to Flexible Multilevel Modelling

17

Special Issue on Multilevel Modeling

property_Z Implication X 1-1 |- .
left right

left@1-1 right@1-1

GFandT GFandTwithO

has |
has@1-1

has
has@1-1

has
has@1-1

has@1-1
has

has@1-1

has

Element¥

¥ Element 1-1

S Cooromard

Figure 10: Example constraint using multilevel typing

reasons, but do not display it. By being ortho-
gonal to the two aforementioned dimensions, data
types are available to use in any other hierarchy.
Figure 11 shows an excerpt of the three bottom
levels of this hierarchy.

The top level displayed on Fig. 11 defines
the concept of data type (DT), combined data
type (DT,DT) and initial element (Init). The ar-
rows represent operations, or definitions of them,
between the different data types. For example,
Init is used to define constants for some data
types, hence the arrow const. The arrow unop
indicate that an unary operation can relate two spe-
cific instances of DT. Similarly, binop represents
a binary operation from a combination of two data
types (DT,DT) to a single one. The two arrows
paraml and param? indicate how a combined
data type is constructed as a combination of two
single ones. The element Attribute can be used
to double-type a node in any other hierarchy, in-
dicating that it is an attribute. The value relation
indicates the connection of such a node with its
value.

In the second level, three data types are defined
(Boolean, Int and String) as well as two of
their combined types (Boolean,Boolean and
Int,String). These combined data types can be
used to define, for example, the binary operation

append that takes a string and generates a new
one by attaching a given integer to its end, and
the and operation for boolean values. Note that
all operations are defined as arrows between two
nodes, but their semantics are specified using
model transformations (see Sect. 4.3). The arrows
from I are used to define the constants zero for
integers and empty for strings. Finally, the unary
operation succ is defined to get the successor of
an integer.

The last level of the hierarchy is a graph with
a countable infinite number of nodes and arrows,
so we just display a few examples for illustration.
The instances of the morphisms defined in the
level above are named with the first letter of their
respective types.

These graphs are mostly theoretical, and our
proposal uses this hierarchy to establish a concep-
tual interface to the actual implementation of data
types, in order to keep the formalisation separ-
ated from implementation particularities. Hence,
this representation is consistent with the rest of
the framework, including the definition of the se-
mantics of the operations defined as morphisms,
like succ for integers, as we show in Sect. 4. For
the actual implementation (see Sect. 5), we ensure
compatibility with the Ecore data types by reusing
them, avoiding redefinition.

One example of the usage of data types has
already appeared in Fig. 8. In the abstract syntax,
an attribute is created by defining a new element
whose type is not in its own hierarchy, but in
the data type hierarchy. The framework forbids
instantiation of types that are not defined in the
data type hierarchy, so that the Boolean element
is a valid instance of DT, and true is a valid
instance of that attribute (i. e. its value) in the level
below, where a specific LTL expression is defined
and evaluated. As with the LTL syntax, this way
of representing attributes would be cumbersome
in practice. Nevertheless, a concrete syntax—
graphical or textual—could be defined, such that
attributes are represented in a more familiar way,
e.g. as a list inside the node that contains the
attributes.
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Figure 11: Fragment of the data type hierarchy

4 Defining Behaviour with Multilevel
Coupled Model Transformations

The formal, flexible MmLm approach introduced so
far also gives us reusability when modelling be-
haviour. While modelling structure has advanced
due to mature tools and frameworks, modelling
behaviour has still a long way to go, especially
because of the challenges related to the definition
of their semantics. Moreover, understanding the
behaviour of models is required to understand the
behaviour of the derived software systems. Several
approaches have been proposed for the definition
and simulation of behaviour models based on
model transformations (see for example Csertan
et al. (2002), de Lara and Vangheluwe (2002),
Rensink (2004), Rivera et al. (2009), Schiirr and
Rensink (2014) and Taentzer (2004)). Since most
behaviour models have some commonality both in

concepts and their semantics, reusing these model
transformations across behaviour models would
mean a significant gain. Hence, by using MLM in
a metamodelling process for the definition of mod-
elling languages we could exploit commonalities
among these languages through abstraction, gen-
ericness and definition of behaviour by reusable
model transformations.

In this section, we will build on our running
example from the domain of robotics to explain
our approach to reusable model transformations,
namely, Multilevel Coupled Model Transforma-
tions (MCMTs). We will also compare MCMTs
to other well-known approaches so that the ad-
vantages become clearer. To make this section
easier to understand, we abstract away from the
fact that a robot model could be defined several
levels below the robolang metamodel, and say


http://dx.doi.org/10.18417/emisa.13.10

Enterprise Modelling and Information Systems Architectures

Vol. 13, No. 10 (2018). DOI:10.18417/emisa.13.10

Approach to Flexible Multilevel Modelling

Special Issue on Multilevel Modeling

that the robot model is defined by a robolang
language.

As an example, we will now define the behavi-
oural semantics of firing transitions. In a model
specified using a robolang language, an indirect!

instance of a transition connects two instances
of (possibly the same) task together with a set of
input-instances? . This can be seen in Fig. 7(c).
In a running instance of a robot, such as Fig. 7(d),
whenever we detect an instance of an input which
is connected to a transition which in turn is con-
nected to a ‘source’ task-instance, we can fire
the transition and hence create the ‘target’ task-
instance. By source and target task-instances of
a transition we mean, respectively, task-instances
which are connected by in and out relations to the
transition. Using model transformation rules, we
have now three options to define a rule for this
behaviour.

Traditional two-level mT rule.

Without the usage of multilevel rules, that is, using
two-level transformation rules, we would need to
define one rule per instance of transition (see
Figs. 12 and 13). Only for robot_1 in Fig. 7(c)
we already need seven transformation rules, one
for each node of type Transition. And we would
need more rules every time we add new structure to
our model, or when we create another robot model,
or when we extend the Robolang metamodel or
any of its instances, e. g., a Robolang language for
specifying Lego EV3 robots and their behaviour
or a similar one for Arduino robots.

FROM TO

a:o2
GF1 GF1 iin2 T o:out2 cB1
— 2 — gbl

gfl gfl
Figure 12: Behaviour for the transition T2
While this might do the job for one language,

problems arise when considering reusability. First
of all, the rules would be too specific and tied to the

! Hereafter we drop the word ‘indirect’.
2 We will use ‘instance of input’ and ‘input-instance’ inter-
changeably. The same is true for task and transition.

FROM R TO s
b b
a:b3
GFlgfl GFlgfl i:in3 T 3 o:out3 GBng2

Figure 13: Behaviour for the transition T3

types T2, T3, T4, etc. This leads to proliferation in
the sense that, as mentioned above, several similar
rules must be defined. Hence, each transition
instance would need a rule and each branch in the
hierarchy would need its set of almost ‘identical’
rules.

The basic structure of these rules is outlined
in Fig. 14. In its most general terms, a graph
transformation rule is defined as a left L and a
right R pattern (see Fig. 14). These patterns are
graphs which are mapped to each other via graph
morphisms [, r from—or into—a third graph I,
such that L, R, I constitute either a span or a co-
span, respectively (Ehrig et al. 2006, 2009; Mantz
et al. 2015). In this paper we will use the co-span
version, since it facilitates the moving of model
elements without the two phases of delete-then-
add. In order to apply a rule to a source graph
S, first a match of the left pattern must be found
in S, i.e. a graph homomorphism m : L — §,
then using a pushout construction followed by a
pullback complement construction will create a
target graph T. In case of several rules being
applicable at the same time, there are different
strategies to get rid of non-determinism in the
literature of graph transformations and model
transformations. Two examples are layering, i. e.
prioritization of rules, and negative application
conditions. This scenario is out of the scope of this
paper, and will be considered in future extensions
of the proposal.

Details of application conditions and theoretical
results on graph transformations can be found in
Ehrig et al. (2006). In addition, we omit in our
sample rules most of the details introduced by the
graph I, since it is automatically derived from L
and R.
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In typed transformation rules, the calculation
of matches needs to fulfil a typing condition. That
is, as seen in Fig. 14, all the triangles must be
commutative. In other words, since both the rules
and the models are typed by the same type graph,
the rules are defined at the type graph level and
are applied to typed graphs.

M

L I R
m po Nk ppoN~z

Sc D > T

s t

Figure 14: Typed mT rule

Multilevel mT rule.

Back to our example, multilevel rules enable us
to define a single rule, by using the more abstract
types Task, Transition and Input (see Fig. 15).
This rule can be applied to all of the transitions T2,
T3, etc, in Fig. 7(c), other robot models defined by
the language in Fig. 7(b), as well as other models
defined at lower levels with regard to the Robolang
metamodel in Fig. 7(a).

FROM TO

Input *Input
I I

a*inputs
*Task *Task i¥in  *Transition | o:¥out *Task
t B >

Figure 15: Abstract behaviour for firing transitions

While multilevel model transformations solve
some problems, they introduce another problem
related to case distinction. That is, the approach
works fine in cases where the model on which the
rules are applied—usually a running instance—
contains the structure that is required by the rule,
and, when all types required by the rule are existing
in the same metalevel. If not, the rules will
only be able to express behaviour in a generic
way, but they will not be precise enough. In
other words, the rules become too generic and

Special Issue on Multilevel Modeling

imprecise: all transitions will fire (even if they
are redefined in subsequent levels and given new
behaviour) with the same conditions (i. e. detecting
an input), and the rule would not take into account
the type of tasks which the transition connects
such that finding an input and a transition would
lead to creating a random transition-instance with
a random target task-instance. For example, in
Fig. 7(c), an instance of 0 together with an instance
of TL (which actually are not directly related)
might trigger firing the transition T5 and create an
instance of TR. This is not the correct or desired
behaviour for firing transitions.

The general structure of multilevel transforma-
tion rules is shown in Fig. 16. This could be con-
sidered as a method to relax the strictness of two-
level model transformations through multilevel
model transformations (see, for example, Atkinson
etal. 2012, 2015c). This approach works only on
multilevel metamodelling hierarchies (i. e., hier-
archies which are not restricted to a fixed number
of levels). To achieve flexibility, the rules can be
defined over a type graph somewhere at a higher
level in the hierarchy and applied to running in-
stances at the bottom of the hierarchy (see Fig. 16).
Types will be resolved by composing typing graph
homomorphisms from the model on which the
rule is applied and upwards to the level on which
the type graph is defined.

id,
MM% MM

ANy

Figure 16: Multilevel mT rule

Multilevel Coupled mT rule.

We propose MCMT rules, as a means to overcome
the issues of the two approaches aforementioned.
Using MCMTs, the desired rule for firing trans-
itions would be as shown in Fig. 17. In this graph-
ical representation of the rules we show three
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compartments: META, FROM and TO. Later in
Sect. 5.2 we will show this rule in its textual syntax.
This rule can be applied to fire any transition (ex-
cept for the one connecting an initial task) in any
robot model defined by the 1egolang language in
Fig. 7(b). Similar to the multilevel rules, the vari-
ables T, X, Y, I couldmatch several transition-
instances, source and target task-instances, and
input-instances, respectively. However, the differ-
ence here is that we would match each instance
coupled with its type (hence the name ‘coupled’).
That is, when a variable is bound to a type, it
will keep its type through the transformation. For
example, consider applying the rule to the robot
model in Fig. 7(c), if I is bound to 0, then the only
choice for binding X would be GF. This would lead
to the binding of T to T2 and Y to GB1. In this
way, the right transition (T2) will be fired and the
right target task-instance (y:GB1) will be created
and connected to the right source task-instance
(x:GF).

*Input

inputs:*inputs
- in:¥in *Trnsion| out:¥out *Task
X — T —— Y

META
FROM \ TO .
i i
x x iin T Ta:'”pé‘;gsut v

X X et

Figure 17: Rule FireTransition: a transition gets fired
by the associated input

The general structure of an MCMT is displayed
in Fig. 18. The figure can be visualized as two flat
trees, each of them defined by typing chains and
connected to each other by matching morphisms.

One of the trees contains the pattern that the user
defines. It consists of the left and right parts of the
rule (TO and FROM respectively), represented as
L and R, and the interface I that contains the union
of both L and R, hence the inclusion morphisms.3

These three graphs are typed by elements in

3 In all our scenarios, the interface I contains the left and right
graphs since the morphisms / and r are monomorphisms, but
this might not be the general case.

the same typing chain, which is represented as
a sequence of metamodels MM, that ends with
the root of the hierarchy tree MM, (Ecore in our
case).

The other tree represents the actual hierarchy
in which the rule is applied. Before applying
the rule, we only have the graph S and its typing
chain, consisting of type graphs 7G,. In order
for the rule to be applied, it is required to find
matches of all metamodel graphs MM, into the
actual hierarchy type graphs 7G,. These matches
do not require to be ‘parallel’ in the sense that the
difference of levels between the two sources of
any two matching morphisms is not required to
be equal to the difference of levels between the
targets of those two morphisms. This is due to
the flexibility in the specification of the number of
levels that separate two metamodel graphs in the
pattern. In terms of our example, if we add more
intermediate levels to the Robolang hierarchy,
and consequently the depth becomes bigger, the
defined rules which were applicable before would
still be applicable. Moreover, when the rules
are defined with a flexible depth, they would fit
or match different branches of the hierarchy, as
long as n < m (see MM,, and TG,, in Fig. 18).
That is, the graph representing the pattern could
be matched in several different ways to the same
hierarchy, hence providing the flexibility that we
require.

In both of the trees that define the application
of a MCMT (see Fig. 18), and as already men-
tioned in Sect. 2.4, it is possible to define total
morphisms from any graph on the tree to the root
by composition of the partial morphisms that are
depicted.

The match by is trivial in the implementation
since both MM, and TGy are Ecore. If all the
metamodel graphs can be matched into the type
graphs, such that every resulting square commutes,
we proceed to find a match (homomorphisms)
of the pattern graph L into the instance S. If
this match () is successful, we construct the
intermediate instance D by pushout, and then
proceed to generate the actual target instance T by
pullback complement.
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Figure 18: Diagram of a MCMT

To summarise, while existing approaches which
employ reusable model transformations for the
definition of behaviour models focus on traditional
two-level modelling hierarchies and their affiliated
two-level model transformations (see Kusel et al.
2015, 2013, for a survey), multilevel model trans-
formations (Atkinson et al. 2012, 2015¢) are relat-
ively new and are not yet proven suitable for reuse
and definition of model’s behaviour. Our approach
to multilevel model transformation builds on top
of these original approaches to combine reusab-
ility with flexibility in the number of modelling
levels. In other words, in the time of defining the
rules, the height/depth of the modelling hierarchy
(on which we intend to apply the rules) is not
important since no matter how deep the hierarchy
gets, the rules will still work, as long as n < m.

It is important to note that MCMTs can make
use of three types of notation for the types. That
is, we get three possibilities of specifying the
type t of an element, with increasing degrees of
genericness:

Special Issue on Multilevel Modeling

* With t@2—or any other integer value —, we
indicate that the element t used as type is
located two levels above. This notation has
already been introduced in Sect. 3.1. Informally
speaking, we could say that the type t can be
found after a single ‘jump’ of fixed length (2,
in this case).

* More generically, we can use t@n to leave open
for the length of the jump. Using the same
vocabulary as the previous point, this would
represent one jump of any arbitrary length,
which is useful when defining the patterns in
MCMTs to increase flexibility. We do not,
however, show any example of such notation in
this paper.

* The *t syntax that was already introduced in
Sect. 3.2, represents the concept of indirect
typing. Again, we could say, informally, that
this notation represents any number of jumps
of any length. This *-notation together with its
semantics provides the main corner-stone of our
technique towards flexibility since it facilitates
definition of rules without requiring to a priori
decide on the depth of the modelling hierarchy.

4.1 MCMTs for application hierarchies

The definition of MCMT rules on application
hierarchies are used to specify the behavioural
semantics of the languages defined in those hier-
archies. In this section, we show some examples of
MCMT rules applied to the Robolang application
hierarchy introduced in Sect. 3.1. This hierarchy
and its rules are fully implemented as a proof-of-
concept. The goal is to use MCMTs to describe
complex behaviour of different robots at a higher
level of abstraction, so that the rules can be ex-
ecuted, and thus simulate the behaviour of such
robots.

Using the Robolang example, we have already
explained the advantages of using MCMTs with
respect to reusability and shortly presented a com-
parison to two-level and multilevel model trans-
formation rules. Here we will show a few MCMTs
which together define the behaviour of any ro-
bot which directly or indirectly conform to the
robolang metamodel.
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The first rule to consider is Start which is used
to initialise the robot, that is, fire the first trans-
ition without any input (see Fig. 19). This rule
is applicable as many times as existing instances
of Initial. This rule says that, if in the model
we have an initial task Init:*Initial which is
connected to any task X:*Task by a transition
T:*Transition, then in a running snapshot of
that model if we find an instance i:Init we will
construct the span with the instances t:T and
x:X. Recall that Init, T, X are all variables,
making this rule applicable to all initial tasks of
all robot models (like the one in Fig. 7(c)) which
are defined in an application hierarchy contain-
ing the robolang metamodel in a higher level
in the hierarchy. Recall also that the notation
T:*Transition denotes the fact that T might be
an arbitrary number of levels below Transition.

Initial in:*¥in *Transiion  out:*out *Task
Init ~—— T —_— X

META

FROM TO

it Init iin T oout X
init it  ~——— t — X

Figure 19: Rule Start: firing initial transition

After the initialisation, the FireTransition rule is
used to fire ordinary transitions which rely on some
input (see Fig. 17). Following the same reasoning
as for the Start rule and as explained above, if in
the model we have a transition t : *Transition
(between two tasks X: *Task and Y: *Task) which
has an input I:*Input, then if we have the in-
stances x:X and i :T in a snapshot of the model,
we will construct the fork with the instances t: T
andy:Y.

The DeleteTask rule in Fig. 20 would delete
the tasks and transitions which have already been
fired and finished their actions.

The rules Insertinput and InsertEffectivelnput
in Figs. 21 and 22 will, respectively, add a single
input i:T to any snapshot and to a snapshot which
already has an active task instance x:X.

Finally, the Deletelnput rule in Fig. 23 would
delete an input i : I from any snapshot.

*Task in:¥in  *Transion  out:¥out *Task
X — T = P
META
FROM )
X itin T oout v v

X -~ t —_— y y

Figure 20: Rule DeleteTask: a finished task is deleted

*Input

META
FROM | TO
I

Figure 21: Rule Insertlnput: creates an input without
constraints

4.2 MCMTs for supplementary
hierarchies

As examples in the supplementary hierarchy, we
present a set of rules that illustrate the purpose of
having such a hierarchy. Together with our LTL
supplementary hierarchy, we will now show how
to add execution semantics to the operators used in
a temporal-logic specification. This semantics is
applicable into any LTL property, since it does not
refer to the particular application hierarchy that
they are applied on. In other words, they would
not change if we were to apply them in a different
application hierarchy than Robolang.

We illustrate our encoding of the semantics of
the temporal operators in the examples for the next
and the until operators respectively. In the rule
for next (see Fig. 24), the abstract notion of time
advances, from the current state to the successor
state, which for the evaluation of a formula X¢
to hold in the current state means that ¢ has to
hold on the successor state. We achieve this by
stripping off the corresponding node x from the
current state of the evaluation of the property.

Notice that, in the rules for Robolang, we wrote

variable names together with their types, e.g.

Init:Initial, but in this rule for eliminating
the next operator we write X and Formula without
their types. We could have also written X:EClass
and Formula:EClass, but this information is
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inputs:*inputs

‘Taskx in:*in *Tra:ls_ition out:*out *TaskY
META
FROM TO >
I
X X
X X

Figure 22: Rule InsertEffectivelnput: creates an input
that will cause the firing of a transition
*Input
|
META
FR:OM TO

Figure 23: Rule Deletelnput: deletes a previously
existing input

already given in the metamodel and hence unne-
cessary. Note that writing the element name X or
Formula without its type is just a syntactic sugar
to indicate that the element is a constant and not a
variable. In such case, it must be matched to the
exact element X or Formula, respectively.

formula

META X  —— Formula
FROM TO
e, f:-formula Formpu‘ﬁi Forrgﬁi

Figure 24: Eliminating the X operator

The rule for until (see Fig. 25) does not explicitly
advance time. Rather it represents the well-known
temporal equivalence that ¢ U ¢ = ¢ V (¢ A
X(e U y)).

The L1 example above also shows that coordin-
ation between MTs is necessary: the unrolling of
the binary temporal operators is a pre-processing
step, and the resulting expression is semantically
equivalent to the original. As such, the same MTs
could be applied again and again, only creating
larger and larger subgraphs. It is essential that
a kind of fairness condition between MTs is ap-
plied, so that the MTs for the atomic propositions
get applied after at least one application of the
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formula left

X —— Formula

<T> right

Binary

Until And Or
META
FROM TO
Formula And riright  x f:formula v
phi and X

: wright wright
ofriee | et e e i ek

ok TiENE Lleft ‘ T
psi

Figure 25: Unrolling the U operator

unrolling and shortcut evaluation of the complex
terms to true or false according to the laws of
the temporal logic. Furthermore, we have made
sure that every temporal operator is unrolled at
least once, since they can be nested. This can be
achieved in different ways, either through defining
MCMTs with explicit recursion (see e. g. Varrd
et al. 2007 for a graphical notation in VIATRA
and Guerra and de Lara 2007 for a DPO approach
with recursion), or through less explicit layering
(see Chapter 12 in Ehrig et al. 2006).

4.3 MCMTs for the data type hierarchy

In this section, we briefly illustrate how the opera-
tions defined as arrows between data types can be
provided with semantics by means of MCMTs.
In Fig. 26, we display the semantics of the
succ operation defined for Int. The META part
matches any element X:Y connected to Int by
any arrow Z:T. For example, this could be applied
to any node typed as an Attribute, with the
arrow representing its declaration as an attribute
of type integer. The rule matches (FROM) then
any element x : X connected to a particular integer
value, and switches that connection (TO) to the
successor of that element. Hence, this MCMT
provides the behaviour of the successor_of (i.e.
increment) operation in a consistent manner with
the rest of the framework, providing an interface
from the actual implementation of the data types.

5 Implementation

The tools presented in this section provide the
following features for our multilevel approach,
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X —> Int

META
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X z1:7 1Int X Int
X o i X i
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Figure 26: The succ operation semantics as MCMT

which we identified in Sects. 2, 3 and 4: (1) a
graphical editor for modelling hierarchies that
allows to define an unlimited number of levels,
potencies for elements and make use of our three
dimensions; (2) the idea of using a hierarchy as
supplementary to an application one, keeping this
one independent from the new aspects introduced
into it; and (3) an editor for textual definition
of MCMTs, which supports autocompletion and
syntax highlighting.

5.1 MuLTECORE

This tool is a prototype which aims at combining
the best from traditional (fixed-level) and multi-
level modelling: the mature tool ecosystem and
familiarity of the former, and the expressiveness
and flexibility of the latter (Macias 2018; Macias
et al. 2016, 2017). The first part is achieved by
providing full compatibility and integration with
EMF. Using MuLTEcoRE, model designers can
seamlessly create a multilevel version of their hier-
archies while still keeping all the advantages they
get from fixed-level ones.

The tool provides the necessary functionalities
to create multilevel hierarchies in EMF by allow-
ing to get any two adjacent levels in the hierarchy
represented as an Ecore metamodel and an XMI
instance. This is achieved by storing a representa-
tion of each level in a way which is agnostic from
any of those representations, and can be trans-
formed into each of them on demand. Thus, all
the already existing two-level tools designed for
standard EMF can be used seamlessly with our hier-
archies. Furthermore, this compatibility provides
all the modelling capabilities of Ecore by default,
such as abstract classes—although this can be also

achieved with potency zero —, specialization and
multiplicity for references and attributes.

The tool also provides a custom graphical ed-
itor implemented in Eclipse Sirius (The Eclipse
Project 2016), designed specifically for multilevel
modelling. This editor has been used to generate
the example hierarchies displayed in Sect. 3. It
provides a palette that is being currently adapted to
dynamically include all available types (directly or
via potency) from the models above it on the hier-
archy. The hierarchies constructed in this manner
are not fixed. Any level can be edited as a regular
model, and new models can be added both at the
bottom and in between existing ones. Note that
Ecore, or the self-defining metamodel of choice,
must always be located on top of the multilevel
stack (see Sect. 2.2). So if the user wishes to add
a model in top of the user-accessible hierarchy,
she would still be adding an intermediate model
between Ecore and the former top of the hierarchy.
Figure 27 shows a screenshot of this editor, with
the robolang language in the editing window.

sz robolang &8 = 8
- | | Palette b
&g
(= Ecore Types o]
CJEClass
[ Int EAttribute

[ Float EAttribute

[ 5tring EAttribute

[ Bool EAttribute

—* EReference

3 EReference Containment
~I* EReference Inheritance
""" EAttribute Relation

Figure 27: Screenshot from the tool, including the
palette on the right-hand side

The specification of typing relations among
elements in application and supplementary hier-
archies is still not possible with the tool.

5.2 Textual psL for MCMTs

For the specification of the transformation rules
we need to decide how the rules should be defined
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Figure 28: Excerpt of the metamodel for multilevel coupled transformation rules

and how they are applied. For this reason, we have
created a textual Domain Specific Language (psL)
for the definition of multilevel coupled transform-
ation rules, and designed an execution engine for
simulation of instances by applying these rules.
The abstract syntax of this psL is defined as
an Ecore metamodel, of which an excerpt is par-
tially shown in Fig. 28. Its primary element is
Module, which is a collection of transformation
rules defined over a model. This model URI may
be passed as a parameter to every execution of
those rules. This model is defined inside a mul-
tilevel hierarchy. The specific hierarchy to apply
those transformation rules is automatically de-
tected by the execution engine. Therefore those
transformation rules are just applied to a single
hierarchy in every single execution. Rule elements
contain three organizational components, namely
meta, from and to. All of them are blocks for
graph pattern declaration. The meta block must
contain a valid pattern, but from and to blocks
may be empty. In the meta block, a pattern is
specified by means of MetaVariable and Meta-
Type declarations, and assignments between those
MetaVariables. For those declarations we can
use types defined at different levels in the MLM
hierarchy. Level index starts from the model at
the root of the hierarchy. In other words, the

root model is at level 0. Additionally, those de-
clarations may indicate direct or indirect typing.
With direct typing we state that an element is a
direct descendent (child) of its type (typing model
element), meanwhile indirect typing indicates that
the type of an element is within its hierarchy but
it is not an immediate ancestor. Finally, in from
and to blocks we can define patterns according
to the MetaVariables and MetaTypes that we have
previously specified in the meta section.

The textual syntax (conforming to this
metamodel) of the FireTransition rule in Fig. 17
is shown in Fig. 29. Figure 30 shows the same
rule defined by our editor. In the meta section,
metavariables are declared by specifying their
type from the root model of the multilevel hier-
archy. Syntactically, type levels are specified as
an index between square brackets. For example,
mm[0]!Task states that Task is a type defined in
the model named Robolang. Likewise, metatypes
(i.e., constants) are declared in a similar way
but the symbol $ (not shown in this example)
is prefixed to the model keyword. Additionally,
indirect typing is declared by an * prefixing the
type of a metavariable or metatype (not shown in
this example).
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rule FireTransition {
meta {

X: model[0]!Task
Y: model[0]! Task
I: model[0]! Input
T: model[0]! Transition
inputs: model[0]! Transition.inputs
in: model[®]!Transition.in
out: model[0]!Transition.out
[T.inputs = I]
[T.in = X]
[T.out = Y]

e
H > o

in: in

out: out
inputs: inputs
[t.inputs = i]
[t.in = x]
[t.out = y]

Figure 29: Textual representation of rule SendPartOut

6 Related Work

In this section, we will identify two groups of
works, one related to multilevel modelling and
one related to reusable model transformations used
for definition of behaviour in a multilevel setting.

First, we present some existing approaches that
have tackled multilevel modelling by creating
conceptual frameworks and tools. Some of the
aspects discussed in the text are also synthesized
in Tab. 1. The most widely used approach to
the specification of multilevel frameworks is the
usage of Orthogonal Classification Architecture
(OCA), as defined in Atkinson and Kiihne (2005).
This architecture implies the definition of a lin-
guistic metamodel that captures all features of the
multilevel hierarchy. That is, the whole hierarchy
becomes an instance of the linguistic metamodel.

-HEBoieits- 0-%-10 -1 - -G -
IS | ByResource | ATL

5 | [@ *robolang.multecoreDSML 5 =8 SEouwinex <8

By module "v“'vn :QE' % B %8

¥ 4 Maodule robolang
» < Rule Start
» 4 Rule FireTransitic
¥ 4 Rule DeleteTask
» 4 Rule InsertEfrect
on. inputs » 4 Rule Deletelnput
< Model romoa

Erorlog B Properties 8 M E 3 T = 8

Property Value

Figure 30: Textual editor for MCMTs

These approaches also exploit the concept of clab-
Jject (Atkinson 1997), which provides two facets
for every modelling element, so that they can be
seen as classes or as objects. Since clabjects stem
from the traditional object-oriented programming,
their realization into a metamodelling framework
requires the linguistic metamodel, that all the
levels must share, and which contains it together
with other elements such as field and constraint.

Atkinson and Kiihne (2005), who coined the
term OCA, are also the creators of Melanee (Atkin-
son et al. 2015a), a tool for mLM. This tool has
been developed with a stronger focus on editing
capabilities (Atkinson and Gerbig 2016), as well
as possible applications into the domains of ex-
ecutable models (Atkinson et al. 2015b). This
tool allows for the specification of multilevel hier-
archies, with potency features like durability and
mutability for attributes and relations, which of-
fer control to the level in which attributes are
instantiated. Such fine tuning cannot be applied to
classes, however, where only traditional potency
is allowed. Multiple typing is also not supported
in Melanee.

METaDEePTH (de Lara and Guerra 2010a) is a
proof-of-concept tool for a multilevel modelling
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framework that requires the aforementioned lin-
guistic metamodel. METADEPTH supports several
interesting features such as model transforma-
tion reuse (Juan de Lara et al. 2015) and generic
metamodelling (de Lara and Guerra 2010b). They
support the concepts of potency formally defined
in Rossini et al. (2014).

The formal definitions aforementioned are also
used in the DPF workbench (Lamo et al. 2013),
where the authors tackle multilevel modelling by
means of graph morphisms and formal predic-
ates. Some of these ideas have influenced the
formalisation that we present. The use of potency
is not supported by the DPF workbench, but the
approach includes standard and leap potency as
part of their specification.

AToMPM (Syriani et al. 2013) is a modelling
framework highly focused on offering cloud and
web tools. Modelverse (Van Mierlo et al. 2014),
which is based on AToMPM, offers multilevel mod-
elling functionalities by implementing the concept
of clabject and building a linguistic metamodel
that includes a synthetic typing relation.

FMMLx (Frank 2014) is one of the few ap-
proaches not using OCA. They apply the concept
of golden braid with a similar realisation to ours: a
topmost metamodel that defines itself, that can be
transitively instantiated as many times as required
to create a multilevel hierarchy. For potency, they
allow marking features as intrinsic, which requires
the specification of the level where that feature
can be instantiated.

OMLM (Igamberdiev et al. 2016) uses an OCA,
and extends it with a realisation dimension, which
maps the modelling elements to their implementa-
tion counterparts. They use the standard concept
of potency as depth, but do not apply it to attrib-
utes, which always have potency 1, so it sticks to
the standard features of mLM which are common
from most proposals.

DeepTelos (Jeusfeld and Neumayr 2016), is
an extension of Telos which allows to implement
OCA by using most general concepts, but does
not natively require it. Their proposal comes
closer to ours in both the formal background and
the independence from a linguistic metamodel,

Special Issue on Multilevel Modeling

although the approach does require it in the case
of potencies, which need a custom set of elements
specified that represent the allowed instantiations.

Dual Deep Modelling (Neumayr et al. 2016)
is based on the definition of parallel hierarchies,
with different depths, where relations from one to
the other can be established. They are still based
on OCA and the use of potency as depth, similar
to most of the approaches mentioned here.

In a similar manner, SLICER (Selway et al.
2017) defines a complex and powerful set of tools
to represent different relations among clabjects
and the way these are instantiated, but it can
still be classified as OCA since they require a
linguistic metamodel that defines these concepts
and relations.

The framework built around the NMeta
metamodel (Hinkel 2016) depicts it at the top of
their orthogonal stack of models, but we believe
that the fact that the metamodel defines concepts
like Model and ModelElement which are then
instantiated to create the actual stack implies that
the approach is also based on the OCA principles.
The approach does not have explicit levels or
potencies and uses inheritance to separate con-
cepts from different levels of abstraction, although
the authors claim that they allow for unbounded
levels.

Finally, in Mallet et al. (2010), the authors as-
sume that the only way to do multilevel modelling
is by using the clabject approach. Therefore, they
apply the same ideas for their implementation of
multilevel modelling.

The way we specify potency can also be com-
pared with previous formalisations of the concept,
like the one defined in Rossini et al. (2014). Table 1
contemplates three possible types of potency: the
original idea of potency as depth (traditional), the
leap addition, which allows the instantiation to
jump across levels, but only once, and the range
potency presented in this paper, which can be
combined with the first one and encompasses the
second. Additionally, for the sake of completeness,
we also included in Tab. 1 whether the approaches
support multiple typing or not. Note that, for the
sake of simplicity, the table does not distinguish
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if the other approaches also provide potencies for
arrows—as in our approach—or just for nodes.

Notice that, unlike other approaches, our realiz-
ation makes the declared potency of an element
independent of the potency of its type. For ex-
ample, the default value of the potency of the arrow
out in robot_1 could be changed to some other
one without being affected by the potency @1-2 of
its type arrow (out in robolang). Also, this kind
of potency allows for the realisation of abstract
classes by declaring values 0-0, similarly to Atkin-
son and Gerbig (2012). However, the usage of
Ecore as topmost metamodel already provides the
concept of abstract classes, allowing for a clearer
definition of these, in a similar manner to other
tools like METaDEPTH. Even further, the two
values that we use to define potency are compat-
ible with the traditional understanding of potency
as depth, meaning that a third value representing
this concept could be added when specifying the
potency of an element, without compromising
the integrity of our approach. This equivalence
between three-valued potency and other multilevel
concepts (e. g. leap potency, mutability and durab-
ility) is outlined in Macias et al. (2017), together
with its equivalence to the potency specified by
some multilevel tools.

Second, we present some works on reusable
model transformations. In Chechik et al. (2016),
two perspectives on model transformation reuse
are presented: programming language- and MDSE-
based. For each perspective, the authors discuss
two approaches: subtyping and mapping, and lift-
ing and aggregating. In Striiber et al. (2015) a
variability-based graph transformation approach
is introduced to tackle the performance problems
that are introduced by systems in which a substan-
tial number of the rules are similar to each other.
In Sen et al. (2012) an approach to reusable model
transformations is presented, which is based on
sub-typing an effective part of the existing source
metamodel. That is, the metamodel of the models
to be transformed is made a subtype of a pruned
metamodel. In this way, the models can be trans-
formed by the same transformation rules which
were written for the source metamodel.

To achieve genericness, in de Lara and Guerra
(2014) and Sanchez Cuadrado et al. (2011) the
rules are typed over a ‘generic’ metamodel which
is called concept. Then, any metamodel to
which there exist an embedding from the concept-
metamodel (called binding) can be used by com-
position for the type-check during matching. Thus,
any model in a hierarchy can be typed by the
concept metamodel and get the transformation
rules for free. However, it is not always straight
forward to define the embedding morphism from
the concept metamodel to the metamodel. This
might be because the metamodel has several struc-
tures which have the same behaviour leading to
several bindings. This is solved by introducing
syntax for the definition of multiplicity in which
the concept metamodel can be written in a generic
way, however, in the realisation of the concept, this
is just syntactic sugar for the definition of multiple
concept metamodels. Moreover, finding reason-
able embeddings due to structure mismatches (or
heterogeneity) might be a challenge. Adapters
and concept inheritance could be seen as solution
of this problem, as seen Sdnchez Cuadrado et al.
(2011).

The notion of concept from de Lara and Guerra
(2014) is extended in Durdn et al. (2015) to para-
metric models, where the parameters have both
structure and behaviour. In this case we not only
have a mechanism for the reutilisation of trans-
formations, but mechanisms for the reutilisation
and composition of models with behaviour. The
difficulties for finding embeddings is however even
more difficult, since rules in parameter models
must also be mapped to the corresponding target
models.

An existing approach to multilevel model
transformation rules which could be suitable for
the definition of behaviour models is described
in Atkinson et al. (2012, 2015¢). However, in
the current implementation of this approach, only
the instances which are at the lowest level in
the metamodelling hierarchy will be transformed.
For example if a modelling hierarchy contains
four levels and a transformation is defined on the
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Table 1: A comparison of multilevel features from different approaches

Approach Canonical Traditional Leap Range Multiple
Architecture potency potency | potency typing
Melanee OCA v — — —
Modelverse (AToMPM) || OCA v — — —
MetaDepth OCA v — v v
DPF OCA v v — —
FMMLx Self-defining top MM | v — — —
OMLM OCA v — — —
DeepTelos OCA — — — v
Dual Deep Modelling OCA v — — —
SLICER OCA v — — v
NMeta OCA — — — —
This work Self-defining top MM | Vv v v v

highest level, only the model elements on the low-
est level are transformed into the target model.
This hinders the definition of metamodels repres-
enting language behaviour at any level in the stack,
that is, these metamodels need to be at the next
to bottom level. In Juan de Lara et al. (2015),
an approach to multilevel modelling hierarchy for
description of psMmL is proposed, which is quite
similar to our approach, however, it does not take
coupling of model transformations into account.

7 Conclusions and Future Work

We have presented a formal description of a
general-purpose multilevel modelling framework
and illustrated how to apply such concepts into
practical scenarios of behavioural modelling. We
have provided illustrative examples of the different
features of the formal framework and showed our
implementation in two tools—prototypes based
on EMF. We have argued how the provided formal-
isation favours flexibility in several aspects of the
framework, and compared it to the main existing
approaches to multilevel modelling.

The formalisation via graphs allows us to apply
techniques from graph and category theory such
as graph homomorphism, pullback and pushout.
These techniques avoid potential ambiguities on
the formal specification of our framework and

provide us with powerful tools to achieve flexible
and reusable multilevel modelling in both aspects
of modelling hierarchy definition and model trans-
formation specification.

In addition, our tools allow us to test these ideas
in a more realistic manner, and detect new features
that are desirable for our approach, like the novel
concept of range-like potency.

Our current work stops short of executing
model-transformations: given a model and a
MCMT, we can check whether the transforma-
tion is applicable, and obtain a transformed model
through its application. Given a set of MCMTs
however, it is clear that several transformations
might be applicable simultaneously, as mentioned
in Sect. 4. In the case when they apply to overlap-
ping parts of the graph, a particular sequence of
applying MTs may not produce a confluent result,
i. e. different application orders lead to different
overall results. In some cases, this might require
techniques for coordinating the application of the
MmT rules in order to achieve confluence. Hence the
next natural steps of this work comprise finishing
the execution engine for MCMTs and including
rule coordination strategies. Moreover, we plan
to improve the capabilities of the MULTECORE
tool and test the validity of our results in new case
studies.
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