German Workshop on Experience Management (GWEM 2002)

How Experience Management Can
Benefit from Relationships among
Different Types of Knowledge

Markus Nick, Klaus-Dieter Althoff, Thomas Avieny, Bjorn Decker

Fraunhofer Institut Experimentelles Software Engineering (IESE)
Sauerwiesen 6, 67661 Kaiserslautern, Germany
nick@iese.thg.de

Abstract. In a learning organization, knowledge and experience is created
and used at different levels of granularity and maturity. However, these dif-
ferent knowledge/experience types usually coexist without any links and re-
lationships. The field of situated cognition shows that such relationships are
typical and important in the human learning “procedure” (e.g., in expert-nov-
ice learning/teaching).

We propose that experience management systems can benefit from the
support of such relationships. The development of such systems includes -in
addition- the definition of an appropriate knowledge life-cycle model de-
scribing the mentioned relationships (here by the example of best practices
and lessons learned), embedding this in business processes, an operative def-
inition of maturity/validity, and respective knowledge representation issues.
Such a development results in a concept that can be implemented with com-
mercially available case-based reasoning tools. We illustrate the approach
with real-life examples from systems that already exist or are being devel-
oped.

1 Introduction

In a learning organization, explicit knowledge is created and used at different levels of
granularity. For example, experiences can occur as best practice (more mature, more
general, more consolidated) and as lessons learned (more situated).

While “traditional” CBR systems usually have one type of cases at the same level
of granularity and maturity (e.g., problem-solution pairs), some more recent systems
also manage different types of knowledge and experience at different granularity and
maturity levels, but the different knowledge types co-exist without any links (e.g.; SI-
MATIC: FAQs, manuals, etc. [9]; our in-house experience base COIN [3] in the begin-
ning in 1999: business process descriptions (more mature) and lessons learned (more
situated) without links between to the two types of experience).

The challenge for experience management is to go one step further: To use knowl-
edge and experience at a finer granularity to enrich and improve knowledge/experience
at more coarse-grained granularity and higher maturity, or to keep up-to-date and/or
start knowledge development at this level at all. While the more mature knowledge/ex-
perience is changed rather infrequently, the finer grained experience is gained almost
daily. This leads to an almost continuous stream of such experience, which has to be
handled.

95

German Workshop on Experience Management (GWEM 2002)

We expect that combining the different
types of knowledge and experience offers op-
portunities for a more continuous learning and
improvement of the explicit knowledge and
experience in a company. This allows to add
more value, e.g., to more coarse-grained best
practices by lessons learned (see Fig. 1). Obvi-
ously, this principle is particularly beneficial | Best practice without LLs

value

>
t

(1) for domains where the more mature,

. . Additionally available
coarse-grained knowledge/experience (e.g., knowiecige by LLs -
best practice in the form.of processes, prod- Fig. 1. Development of add-on value of
ucts, and technologies) is well-documented |ooco o learned (LLs) for a specific best

and accepted and (2) for domains where best practice (BP) over time.
practice is still to be developed.

This idea is related to the field of situated cognition [8]. Situated cognition de-
scribes, e.g., the differences in the ways how experts and how novices learn and work
[10]: While novices learn and “slavishly” apply best practice (e.g., how to perform a
project in a company), experts adapt best practice when they apply it. This adaptation
is based on their former experience with the best practice. During the application, they
again gain more experience. Thus, a sole description of best practice alone would be
“outdated” soon. To avoid this, the best practice descriptions are enriched with more
fine-grained experiences gained in the application of the best practice. When re-apply-
ing some best practice, the expert is provided with the explicit experiences gained by
his colleagues and himself in former applications.

Our in-house experience base COIN [3], which has been running for almost three
years, currently contains experiences at three different levels of maturity: business proc-
esses (= best practice); general guidelines (situated regarding the business process, but
(almost) general regarding projects); and situated lessons learned. This leads to a
number of related open issues, which are typical for such systems: When do situated les-
sons learned become general guidelines? When are lessons learned and/or guidelines
integrated into a new/updated business process description? This problem also leads to
decision problems in the acquisition of new experience: What should be added as gen-
eral guideline? What should be added as situated LL? Thus, respective decision criteria
are required.

In this paper, we address the issues of how this systematic improvement of knowl-
edge works in principle, how the respective knowledge processes are integrated in busi-
ness processes, and which are the implications for the knowledge representation and
further tool support (as well as CBR as a EM principle).

The experience life-cycle model defines the principle for the development and im-
provement of the knowledge in the experience base. Here, we focus mainly on the
knowledge in the form of cases. The experience life-cycle model allows to identify the
relationships of the different knowledge types and the decisions points for the mainte-
nance, i.e., when to transform one type of knowledge into another (Section 2).

96

German Workshop on Experience Management (GWEM 2002)

This systematic development of knowledge according to the life-cycle model re-
quires that -during the usage of the experience management system- feedback and fur-
ther experience on the application/usage of the retrieved knowledge is collected. This
requires a tight integration of the knowledge-related processes into the business proc-
esses. This integration also enforces the systematic validation of experience in different
situations/contexts (Section 3).

Having experiences linked with different situations/contexts leads to the need for
aggregating the situative information to give the user a better overview on the applica-
bility of the retrieved experience cases (Section 4). In addition, this also reduces the al-
gorithmic complexity of the intelligent search and allows the application of algorithms
which are only available for flat case structures.

The paper ends with a summary and conclusion (Section 5).
2 Experience Life-Cycle Models and Validity Issues

A knowledge/experience life-cycle model describes the basic idea of how to maintain
and improve knowledge and experience over time. Thus, it is the basis of any further
refinement of the maintenance/improvement process. A life-cycle model addresses two
major issues: (1) the life-cycle of experience of one type (e.g., [11]) and (2) the life-cy-
cle over different types of experience (e.g., [2]). While the life-cycle of cases of one
type mainly addresses validity issues and/or its revision status [11], the life-cycle over
different types of experience describes when and how experiences are transformed from
one type of experience into another (e.g., a number of related lessons learned into a
business process model).

2.1 Best Practice and Lessons Learned Life-Cycle Model

We have composed a com- o SEA
. . investigate =
prehensive life-cycle model - ¢ v
_ feedback

for best practices and les- % from (re-)use infuse
sons learned from aspects =

presented in [2, 6]. This life- f "
cycle model is applicable to t ' f !\:
software engineering re-package/” N\

knowledge and is the basis , repackage

for many of our experience aggregate
generalize

management projects (e.g., - e mpoe —
COIN, SKe, InDiGo, ES- partally tested knowledge e)
ERNET). In addition, the (crpermenta use)

life-cycle model is sound
with the “ideas” of the phi-
losopher Immanuel Kant regarding theory knowledge and experience.

Fig. 2. Generic knowledge life-cycle model for different types
of experience.

Fig. 2 depicts this experience life-cycle model for (1) best practice, which is more
mature (e.g., business process models and more formal cost models), and (2) lessons
learned, which is less mature and more situated experience.

German Workshop on Experience Management (GWEM 2002)

The life-cycle model resembles the way experts apply best practice (see Section 1)
and moves this principle from a personal to an organizational level: Existing best prac-
tice and the related lessons learned are applied in projects. Based on the feedback from
the application in the projects, new experience on the application of the best practice is
gained and recorded as lessons learned (“package”). In addition, experience on the ap-
plication of the existing lessons learned is gained. This experience is used for improving
these existing lessons learned (“repackage”). When “appropriate”, lessons learned are
combined with the best practice description (“aggregate”, “generalize”, “improve”).
E.g., a group of related lessons learned can be transformed into a best practice descrip-
tion that is more comprehensive, mature, and for a broader audience.

Furthermore, new best practice descriptions can be acquired from sources outside
the organization (books, conferences, web) - i.e., “infuse”. In this case, the organization
is similar to a novice. There is no experience available regarding the application of the
new best practice in the context of the organization.

There are a number of decision points in the life-cycle model: What should be pack-
aged as lessons learned (including required quality)? When to repackage lessons
learned? When to transform or integrate lessons learned into best practice? This also im-
pacts the design and usage of the experience management system (see Section 3). Fur-
thermore, an operational definition of validity and/or maturity is expected to provide
better decision support for such life-cycle-related decisions.

2.2 Notions of Validity

There are different notions of validity depending on the audience. We analyse validity
from the viewpoint of the users who query an experience base and from the viewpoint
of the experience base maintainers.

Validity for users (for retrieval result analysis): The validity describes how
much one can trust the experience to be successfully reused and applied in its anticipat-
ed new application context. This definition is similar to the definition in [12] where va-
lidity is a component of the interestingness of retrieved information from the users’
viewpoint. This definition is also related to the definition of external validity in exper-
imentation (i.e., degree to which the results of the research can be generalised to the
population under study and other research settings).

Validity for maintainers: The validity provides decision support for maintenance
for identifying invalid (“wrong”) experience and identifying matured experience(s) that
should be transformed into another type of experience.

Operational Definition of Validity: To integrate validity issues into the life-cy-
cle model, operational definitions of validity are required. Such definitions can be in a
qualitative or quantitative manner.

An operational definition should consider the following issues. The users’ validity
should be expressed as one value that is easy to understand regarding its semantics and
it should be possible to restrict the search based on validity (e.g., only experiences with
a validity ratio > 80% are retrieved). For the maintainers’ validity, the operational def-

98

German Workshop on Experience Management (GWEM 2002)

inition should result in a metric that can be used as input for maintenance decisions sup-
port components (e.g., the maintenance assistant from [14]).

To operationalize the above definitions, we use the following quantitative notions
of generality and significance, which define certain aspects of validity: Generality is the
extent of different contexts to which an experience has been applied successfully. Sig-
nificance is the number of successful applications of an experience in a context. Anoth-
er aspect is maturity which we see as the combination of generality and significance.

For already known experiences that are entered into the experience base after an un-
identifiable number of applications (e.g., “expert advice” as generalized, aggregated
knowledge from an expert’s long experience with a certain best practice), a purely
quantitative definition of validity obviously cannot be complete because the number of
applications before the recording in the experience base cannot be determined. Instead,
a qualitative definition of validity is more appropriate. The question is if these qualita-
tive aspects can be quantified to ease analysis.

The operational definitions of validity and the related “measures” obviously require
that (re-)use can be measured. The integration of this measurement into the usage is
considered in the next section.

3 Integrating Improvement of Knowledge into Usage

To integrate the improvement of knowledge into usage, it is necessary to have both best
practice and lessons learned actively used in the “daily business.” Here we focus on the
lesson learned part.

The idea is to tightly link the usage and evaluation of lessons learned with the ap-
plication of best practice, which is described by a principle that we call experience feed-
back loop. In each best practice, points can be identified where the application of les-
sons learned is beneficial, where new experience can be acquired, and where user feed-
back canlbe collected, which is used for improving the experience base contents (i.e.,
“cases”).

An experience feedback loop “implements” the life-cycle model and combines this
with the measuring of validity as well as with the following ideas: (1) Improvement and
maintenance is based on/guided by evaluation through user feedback [14]. (2) The col-
lection of user feedback is “built” into the usage processes to cope with the problem that
users are usually not very motivated for entering measurement data during usage [13].
(3) The user is integrated/involved in the systematic improvement of an experience
base. (4) The feedback loop can be promoted and enforced by an experience factory as
separate organizational unit [5] if the processes are not sufficiently “lived” in the organ-
ization.

Fig. 3 shows a general experience feedback loop for lessons learned and illustrates
this with examples from project management. At points in time such as the beginning
of the application of a best practice (e.g., start of project set-up), the user retrieves the

! Feedback can also address the ontology including similarity measures. The reader is referred

to [4] for details on the different types of user feedback in experience bases.

99

German Workshop on Experience Management (GWEM 2002)

Checklist <

Estimated/expected

Feedback before application:
perceived usefulness

pp

~.
. Ui
Feedback \.ll

54
%h Evaluate +
Select

(e'gA Pr?Je_c; Guidelines &
nalysis S Observations 2
entify +
luate

Feedback after application: Experience

Actual perceived usefulness Base Example Points in Time:
+ respective observations/problems « Start of Project set-up

AN

« Start of project execution
i « Start of work package

Fig. 3. An experience feedback loop implements the life-cycle model and includes the collection
of feedback for improvement/maintenance (examples from the project process in IESE’s COIN).

lessons learned that are relevant in his current situation which is mainly characterized
by the state of the project (i.e., the point in time) and the project characteristics. He eval-
uates them considering their applicability, which is described by similarity, validity,
significance, and/or generality; and selects the lessons learned he regards as potentially
useful. This selection gives an initial feedback on the estimated/expected usefulness of
the retrieved lesson learned. The selected lessons learned are used as a kind of checklist
during the application of the best practice. After the application of the best practice,
feedback is collected to (a) further validate the lessons learned, (b) identify problems
with the best practice (which are stored as lessons learned), and (c) record new lessons
learned (in general) - considering predefined quality criteria for lessons learned. This
feedback is the basis for further maintenance operations on the experience base.

Such a feedback loop has been installed for our in-house experience base COIN [7]
where we collect lessons learned in the form of guidelines, observations, problem-solu-
tion pairs, etc. that are related to the project process (as collection of best practices).
Currently, we tailor the general feedback loop for IT security experience bases in the
publicly funded project SKe.

The feedback loop has consequences for the experience representation: Since les-
sons learned are more or less successfully applied in different situations/contexts, les-
sons learned will have more than one application context to which they are related.

4 Representation with more than one Context

For software engineering experiences, we have already developed a representation that
allows to have lessons learned with more than one application context [1]. Typically,
the application context is defined through the related projects in which a lesson learned
was applied. In addition, the lessons learned are also related to the respective business
processes or software processes (Fig. 4).

100

German Workshop on Experience Management (GWEM 2002)

Project 1

Lesson Learned 1 Attribute 1, Value V1

Business Process 1

Attribute n, Value Vn

/ B N
Project 2
Attribut 1, Value X1

Lesson Learned 2

a1

Attribute n, Value Xn

e B A\
Project 3

Attribute 1, Value Y1

Fig. 4. “Traditional” representation of lessons learned that have been vali- | agribute n, Value Yn
dated in several contexts [1].

The lessons learned can be linked to a number of projects and each project can be
linked with a number of lessons learned. To avoid inconsistencies, projects and lessons
learned are stored in different cases and references are used to establish the links among
them.

The feedback loop has the following consequences: Each time, an experience is
successfully applied in another situation/context, the experience is linked with a de-
scription of this new situation/context (e.g., project description). Thus, more and more
situations/contexts are linked with the experiences. In the following, we will show that
this leads to comprehensibility problems when a user wants to analyse the applicability,
validity, etc. As a solution, we present a principle and techniques for context aggrega-
tion.

4.1 The Comprehensibility Problem

For the user who analyses a retrieval result, the comprehensibility of a lesson learned
decreases with an increasing number of a projects linked with the lesson learned. This
is because a search result shows either the lesson learned and the most similar project’
or the lesson learned and all related projects (e.g., Projects 1 and 3 for Lesson Learned
2 in Fig. 4). In both cases, it is difficult for the user to find out how much he can trust
the lesson learned in his current situation and how general the lesson learned is — for
example: For the degree of validity in his current situation, he has to check each of the
projects and find out if it is more or less similar. For the generality, he has to analyse
how diverse the projects are.

4.2 Context Aggregation

To improve comprehensibility, the contexts (i.e., projects) that are linked with a lesson
learned are aggregated to one single context that is stored with the lesson learned itself

2 This cannot be implemented with CBR-Works or Orenge.

101

German Workshop on Experience Management (GWEM 2002)

(Fig. 5). The difficulty is to find an appropriate representation of the aggregated at-
tribute that is easy to use and understand and has a meaningful semantics.

Because the aggregation requires additional attributes and code for performing the
aggregation, this will usually only be done for selected attributes.

The aggregation has also an addi- T proect1)
tional benefit regarding the system per- (LessonLearned T Attribute 1, Value V1
formance if the aggregation is “static”, %ﬂﬂ
i.e., does not depend on the query: As- _

. K Context/ Attribute n, Value Vn
suming that access to cases (e.g., in a da- Validity Info: i
tabase) is the “bottleneck”, the complex- Attribute 1 Project 2
ity of the search over lessons learned is Attribute n 3 Attribute 1, Value X1
now linear instead of quadratic/polyno- _
mial. Using aggregation, only the les- Attribute n, Value Xn

-
Fig. 5. Aggregation of context of lessons learned.

sons learned have to be accessed in a
search over lessons learned (linear com-
plexity). Without aggregation, lessons
learned and related projects have to be accessed (quadratic complexity).

4.3 Exemplary Context Aggregation Techniques

In the following, two different aggregation techniques and their characteristics are pre-
sented and discussed. This includes the kind of attribute types that are supported and for
CBR systems: How a query could be specified using the aggregated context and which
similarity measures are required. The techniques assume that an experience item is only
linked with situations where the application was successful. If the aggregated attribute
would include unsuccessful applications, the attribute would not reflect the trust issue
from above.

4.3.1 Aggregation using Union Function

Attribute types that are discrete and have a limited value range can be aggregated using
the union function for sets. The aggregated value is the union of the values from the at-
tributes in all related situations (Duplicates are eliminated). Fig. 6 shows this by an ex-
ample for lessons learned and projects.

Project 1
/" Lessonleamed1 rojec
Funding : Industrial

%ﬁl ProjectType : {Consulting, Study}

Context/ Validity Info:
Funding : {Industrial, Public} €] 4

ProjectType : {Consulting, 4=

Study, Transfer} K Funding : Public

ProjectType : {Consulting, Transfer}

\ D &

Fig. 6. Aggregation using a set union function by the example of lessons learned and projects.

Project 2

Supported Attribute Types: Symbolic types, symbol sets, numerical types.

102

German Workshop on Experience Management (GWEM 2002)

Numerical types require some preprocessing for an efficient handling: Intervals
from the type value range are mapped to symbols (e.g., mapping 1..5 on “1-5”,6..10 to
“6-107, 11..0 to “>10”). These symbols can then be aggregated as described above. By
mapping N..co or —00..N to a symbol, even numeric types with unlimited value ranges
can be aggregated. Using such a mapping, non-discrete numeric types can also be ag-
gregated.

Specification of Context in Query: The “wanted” values of the attributes in the
aggregated context are specified as set (i.e., the same as for any other attribute).

Similarity in CBR systems: Standard similarities for sets can be applied.

Characteristics:

* The union function approach models the generality of an experience, i.e., to
which different contexts it has been applied.

* A distinct validity cannot be expressed because the aggregated attribute value
shows only if the experience was applied in a context where the attribute had one
or several of the values from the aggregated value. That is, the aggregated validity
would be binary (yes/no). Thus, expert advice cannot be modelled meaningfully.

* Representation and algorithm are simple. The algorithm is obviously “static”, i.e.,
does not depend on a query specification.

The union-function aggregation is suitable for symbol types where the audience focuses
on the aspect of generality rather than significance. The type range can be of any size.
However, the larger the range, the more difficult it becomes to have a really general ex-
perience.

The described aggregation will be used in the representation of a repository on soft-
ware engineering technologies and lessons learned in the European project ESERNET.

4.3.2 Significance-Based Aggregation

The significance-based aggregation includes the aspect of validity. The significance is

defined at the value level, i.e., each value of a context attribute as a different signifi-

cance. For this purpose, we define the absolute and relative significance as follows:
significance

absolureLLsattr,value) = # of links to situations where LL.attr = value

To normalize the significance in a meaningful way so that the value can be used in,
e.g., similarity calculations, we define a relative significance that relates the absolute
significance to a maximal absolute significance. Like the validity, the maximal absolute
significance depends on the viewpoint, i.e., maintainer or retrieval user. This is included
as a parameter “X” in the following definition. For retrieval, “X” is the set of the values
of the attributes used in the query specification (i.e., the significance of an LL is com-
pared to the significance of lessons learned in the same or similar context as defined by
the query). For maintenance, “X” is all values of all attributes used in aggregation.

significance (LL,attr,value)

LL,attr,value) = absolute
() max[((LI)significance (LL,attr,value)]

significance, 1, ive

absolute

103

German Workshop on Experience Management (GWEM 2002)

Supported Attribute Types: Symbolic types, numeric types (same approach as for
union function aggregation).

Specification of Context in Query: Assuming a normalization to [0..1], a signif-
icance value of 1.0 is specified for each “wanted” value of the attributes in the aggre-
gated context. Any other value is excluded from the search (i.e., specified as “unde-
fined” in CBR-Works/orenge).

Similarity in CBR systems: The normalized relative significance suggests to used
the respective standard similarity measure, i.e., sim(q,i) := (q-i) / 1.0. Only significance
attributes for “wanted” values are considered for the overall similarity of the lesson
learned.

Characteristics:

* The significance-based aggregation models generality and validity. An “esti-
mate” validity ratio is calculated with the similarity of the aggregated context.
This validity refers to the successful applications in contexts that are similar to the
query context.

* A low number of different values in the value range of the aggregated type is de-
sirable because a respective significance attribute must be added to the aggregat-
ed context for each value of an attribute from the context. For a higher number of
different values, such a context description is obviously hard to comprehend and,
therefore, not adequate.

» Expert advice can be modelled by linking a lesson learned with a context descrip-
tion that contains estimated absolute significance values according to the estimat-
ed significance of the expert advice.

* The algorithm is “static” (i.e., does not depend on a query specification). For this
purpose, the maximum values of each value of each attribute in the aggregated
context have to be stored. Then, in CBR systems, the significance can be ex-
pressed as a similarity measure as described above.

The significance-based aggregation is particularly suitable for symbol types with a low
number of symbols or other types that can be mapped on a low number of discrete val-
ues.

5 Conclusion

We have presented an approach that allows to systematically link different types of ex-
perience at different levels of granularity and maturity. These different types can com-
plement each other and are used for the systematic maintenance and improvement of
the experiences. This approach was demonstrated by examples with two degrees of
granularity - best practice and lesson learned.

The approach is holistic, i.e., based on a cognitive principle an experience life-cycle
model describes the systematic improvement of experience, which is integrated into
daily work using an experience feedback loop. An operational definition of validity and
context aggregation address the resulting representational and implementation issues.

104

German Workshop on Experience Management (GWEM 2002)

Thus, the approach moves a cognitive principle from a personal to an organizational
level.

The approach is “lean”, which means that it can be implemented with existing tools
with little additional implementation development and without changes to the existing
tools (e.g., using the commercially available CBR tools such as cbr:works or orenge
from empolis/tec:inno GmbH). The feedback loop requires the integration of feedback
data collection into the system. In [14], we have presented the respective representation
and architecture. The aggregation requires an additional tool/component that performs
the respective computation whenever a case or link is added, modified, or removed.
Furthermore, the described aggregation reduces the computational complexity of a typ-
ical similarity-based search algorithm from CBR and allows the application of algo-
rithms which are only available for flat case structures.

Specific elements of the approach are used in various projects at our institute (e.g.,
the in-house experience base COIN; the public projects SKe, InDiGo, and ESERNET).
An extension of the approach by adding an even finer grained discussion level in addi-
tion to lessons learned and best practice is developed in the public project InDiGo.

Acknowledgements

The COIN project has been funded as an internal project at IESE since January 2000.
The SKe project (holistic security concepts with dynamic control mechanisms for eS-
ervice processes) is funded by German government under contract No. 01 AK900A run-
ning 2001-2003. The InDiGo project (integrative software engineering using discourse-
supporting groupware - http://ais.gmd.de/~leopold/indigo.html) is funded by German
government under contract No. 01AK915A. running 2001-2003. The ESERNET
project (Experimental Software Engineering Network - http://www.esernet.org/) is
funded by the European Union (Project IST-2000-28754).

References

[1] K.-D. Althoff, A. Birk, S. Hartkopf, W. Miiller, M. Nick, D. Surmann, and C. Tautz. Sys-
tematic population, utilization, and maintenance of a repository for comprehensive reuse.
In G. Ruhe and F. Bomarius, editors, Learning Software Organizations - Methodology and
Applications, number 1756 in Lecture Notes in Computer Science, pages 25-50. Springer
Verlag, Heidelberg, Germany, 2000.

[2] K.-D. Althoff, F. Bomarius, and C. Tautz. Using case-based reasoning technology to build
learning organizations. In Proceedings of the the Workshop on Organizational Memories
at the European Conference on Artificial Intelligence °98, Brighton, England, Aug. 1998.

[3] K.-D. Althoff, B. Decker, S. Hartkopf, A. Jedlitschka, M. Nick, and J. Rech. Experience
management: The fraunhofer iese experience factory. In P. Perner, editor, Proceedings of
the Industrial Conference Data Mining, Leipzig, Germany, 2001. Institut fiir Bildverarbe-
itung und angewandte Informatik.

[4] K.-D. Althoff, M. Nick, and C. Tautz. Improving organizational memories through user
feedback. In Workshop on Learning Software Organisations at SEKE 99, Kaiserslautern,
Germany, June 1999.

105

German Workshop on Experience Management (GWEM 2002)

[10]

(11]

V. R. Basili, G. Caldiera, and H. D. Rombach. Experience Factory. In J. J. Marciniak, ed-
itor, Encyclopedia of Software Engineering, volume 1, pages 469-476. John Wiley &
Sons, 1994.

V. R. Basili and H. D. Rombach. Support for comprehensive reuse. [EEE Software Engi-
neering Journal, 6(5):303-316, Sept. 1991.

M. Brandt, D. Ehrenberg, K.-D. Althoff, and M. Nick. Ein fallbasierter Ansatz fiir die
computergestiitzte Nutzung von Erfahrungswissen bei der Projektarbeit. In H. U. Buhl,
A. Huther, and B. Reitwiesner, editors, /nformation Age Economy. 5. Internationale
Tagung Wirtschaftsinformatik 2001, pages 251-264, Heidelberg, Germany, 2001. Physi-
ca-Verlag.

W. J. Clancey. Situated Cognition — On Human Knowledge and Computer Representa-
tions. Cambridge University Press, Cambridge, UK, 1997.

M. Lenz, K.-H. Busch, A. Hiibner, and S. Wess. The simatic knowledge manager. In

D. W. Aha, I. Becerra-Fernandez, F. Maurer, and H. Munoz-Avila, editors, Exploring
Synergies of Knowledge Management and Case-Based Reasoning (Technical Report WS-
99-10), pages 40-45. AAAI Press, 1999.

T. Menzies. Knowledge maintenance: The state of the art. The Knowledge Engineering
Review, 14(1):1-46, 1998.

M. Minor and A. Hanft. Corporate knowledge editing with a life cycle model. In Proceed-
ings of the Eighth German Workshop on Case-Based Reasoning, Laemmerbuckel, Germa-
ny, 2000.

M. Miiller. Interestingness during the discovery of knowledge in databases (in German).
Kiinstliche Intelligenz, pages 40—42, Sept. 1999.

M. Nick and K.-D. Althoff. Engineering experience base maintenance knowledge. Tech-
nical Report IESE-Report No. 018.01/E, Fraunhofer IESE, 67661 Kaiserslautern, Germa-
ny, 2001.

M. Nick, K.-D. Althoff, and C. Tautz. Systematic maintenance of corporate experience re-
positories. Computational Intelligence - Special Issue on Maintaining CBR Systems,
17(2):364-386, May 2001.

106

