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Abstract: In order to investigate the impact of dynamic hardware reconfiguration on
general-purpose applications, we present a superscalar micro-architecture that includes
a variable number of execution units. The set of execution units available is updated
dynamically according to the run-time behaviour of the application. Performance is
evaluated using software simulation of the proposed micro-architecture while running
real-world applications of the SPEC2000 benchmark suite.

1 Introduction

Positive results have been reported about performance enhancement of many configurable
computing machines especially if dynamic reconfiguration is involved. The execution of
well-suited applications such as signal processing applications, image processing, encryp-
tion/decryption, etc. using reconfigurable architectures showed a significant speed-up.

Many research projects have been carried out to make reconfigurable systems easier to
use and to extend the positive results to general-purpose applications. One approach is
the development of a kind of operating system [WKW02] which allows the user to run
any kind of application without having to know the hardware micro-architecture. Another
one consists of developing an enhanced micro-architecture for a processor architecture by
adding a reconfigurable datapath as a coprocessor [HW97], as an extended functional unit
[SGS98] or as a full configurable micro-architecture [MD96]. The challenge today is to
build competitive reconfigurable systems for mainstream computing, without neglecting
compatibility with existing computing models.

Although the latest FPGAs provide a high level of integration, hard-wired processors still
have a considerably higher clock frequency than field-programmable devices. On the other
hand, many enhanced micro-architectural techniques have been increasing progressively
performance of systems based on conventional hardware. Fortunately, the same tech-
niques can be used to enhance FPGA-based systems. Such techniques include pipelining,
superscalar execution, branch prediction, multi-threading, etc. Our goal is to combine the
well known advantages of partial and dynamic reconfiguration with the micro-architectural
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achievements to bridge the gap between the two technologies. The result is a reconfig-
urable processor micro-architecture that executes any general-purpose application without
having to either change the programming model or to look inside the hardware.

In the following section we present some related work which makes use of reconfigurable
hardware in processor architecture. Section 3 gives details about the run-time reconfig-
urable micro-architecture proposed. It also describes the method used to evaluate the per-
formance achieved when using different ways of reconfiguration. Section 4 shows the per-
formance results obtained when running real-world applications taken from the SPEC2000
benchmark suite. The last section contains a short conclusion and a preview of our future
work.

2 Related Work

There is a wide range of research projects using reconfigurable hardware in processor
architecture. The first group we want to refer to proposes a fixed micro-architecture based
on a conventional processor or conventional functional units extended with reconfigurable
processing units. The latter execute specialized hardware-coded instructions to speed up
an application. They act as a hardware accelerator or as a coprocessor. Programs running
on such configurable machines have to be partitioned or differently scheduled, so that
a code portion is executed on the conventional execution path and another code portion
on the reconfigurable path. Furthermore, the programmer has either to invoke hardware
libraries or himself implements compute-intensive tasks as hardware macros and to map
them dynamically to the reconfigurable processing units. This kind of computing has
been realized in many research projects and performance gain was reported for selected
applications (PRISC [RS94], DISC [WH95], CoMPARE [SGS98], OneChip [CC01],
T1000 [ZM00], ...).

A different way of computing is presented in the SCORE-architecture [CCH�00]. Ap-
plications to be executed with SCORE have first to be partitioned into consecutive tasks
called operators (e.g. multiplier, FFT, FIR-Filter). These operators and their correspond-
ing data memory segments are loaded statically or dynamically into the reconfigurable
hardware. If there are enough hardware resources to implement all the needed operators
corresponding to a given application, there is no need to dynamically reconfigure the hard-
ware. The application will be completely loaded before program execution. Otherwise,
the first operators that fit into the hardware resources available are loaded, and after having
finished to compute their code portion they are swapped to memory to let the following
operators be loaded. A conventional processor is also required to sequence the compute
pages.

Another particular architecture is MATRIX [MD96]. This is a high flexible reconfigurable
computing architecture which allows the definition of the most suitable micro-architecture
for each application. Accordingly, the instruction memory, the instruction flow, the data
memory as well as the data path are not fixed but are updated for every application within
a multilevel configuration scheme. The basic architecture building component is an array
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of 8-bit basic functional units (BFU). Each BFU includes a local memory, an 8-bit ALU
and some control logic. It can be configured to serve as an instruction store, a data store, a
datapath or a control element. A hierarchical network implements the configurable inter-
connect and enables data transfers between BFUs. The programming model of MATRIX
consists of a hand-coded mapping of an algorithm on the BFUs and setting up appropriated
connections between them.

The run-time adaptive flexible instruction processors [SLC02] realizes a unique ap-
proach to implement a dynamic processor micro-architecture. It consists of processor
templates which allow to implement different processor types dynamically by varying a
set of predefined parameters. These parameters determine for example whether the pro-
cessor is stack based or register based. Furthermore, they are used to customize data and
instruction widths, to change the pipeline depth, to add or remove hardware resources, etc.
By investigating the application behaviour at run-time and using dynamic reconfiguration,
it is possible to adapt at run-time the processor micro-architecture to the application re-
quirements. The application behaviour is determined by collecting some statistics such as
the number of times functions are called or by counting the most frequently used opcodes.

3 Evaluation Method

3.1 A dynamic reconfigurable micro-architecture

Our approach is based on the idea that the hardware requirements of a running application
may be determined at run-time, and accordingly an optimized micro-architecture can be
updated dynamically as proposed in [SLC02]. However, if we consider the complexity of
a processor micro-architecture, it seems to be almost impossible to configure all micro-
architectural components at run-time. Thus, our micro-architecture takes into account
current hardware restrictions when using dynamic reconfiguration and includes some fixed
components as well as a dynamically reconfigurable amount of execution units [NEZ02].

We make use of run-time reconfiguration which means that we analyze at run-time the
application behaviour in terms of hardware requirements before the most suitable hardware
configuration can be determined. Thus, an application code undergoes the same compiler
process as in the conventional way of computing. This is an evolutionary approach that
may lead to a better software compatibility and to the use of existing programming tools.
In the same way as an Intel processor executes the same program differently as does an
AMD processor, our micro-architecture intends to only modify the way instructions are
executed. This new way of executing instructions basically consists of making use of
partial and dynamic reconfiguration to implement a conventional processor architecture
with a reconfigurable micro-architecture.

The proposed micro-architecture (Fig. 1) consists of:

� Fetch Unit/Pre-decoder: provides a valid address to the Instruction Memory and
to the Trace Cache. It gets a single instruction from the memory or an instruction
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Figure 1: Processor Block Diagram

block from the Trace Cache if a corresponding trace line starting with that address
has been updated previously. Pre-decoding determines the number of execution
units required to execute this instruction block.

� Trace Cache: It holds already fetched instructions which may be executed many
times within one application. The concept of a Trace Cache was originally intro-
duced to avoid an instruction supply bottleneck [RBS96]. Meanwhile, Intel ex-
tended the concept as one of the key improvements of its Netburst micro-architecture
and implemented it in the latest Pentium 4 Processor [In02].

� Decoder: It acts as a conventional instruction decoder

� Register Update Unit (RUU): This is the central unit to collect decoded instructions
and to dispatch (issue) them to the different execution units.

� Register File: It stores operand values and operation results

� Config1/Config2/Config3: Some of the pre-defined hardware configurations with
different numbers of execution units. One configuration may be substituted by an-
other if a code portion of a running application requires more execution units of a
particular type.

� Configuration Manager: It stores configurations currently not used and performs
configuration swapping if necessary.

� Instruction/Data Memory: Separate instructions and data memories (caches).

We use the Trace Cache to store temporarily pre-decoded instructions which may be exe-
cuted many times within an application. If an instruction is fetched for the first time it is
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also copied to the Trace Cache. Fetching an instruction is done by searching first the cur-
rent instruction in the Trace Cache. A Trace Cache hit means that the corresponding trace
line which includes a compact block of instructions is fetched according to the size of the
fetch queue. It is possible to determine exactly how many integer operations, load/store
operations and floating-point operations are included in a trace line. Hence, the number of
corresponding execution units can be updated on-the-fly. If there is no trace line starting
with the current fetch address, fetching is performed from the instruction memory as usual.

The advantage of such a run-time evaluation is that no additional software adaptation is
needed. The results of the hardware evaluation are used to choose the best suitable config-
uration.

If we consider a high flexible reconfigurable platform with no hardware restrictions, the
use of such a Trace Cache can help to dynamically reconfigure many micro-architectural
components. Instead of configuring only the amount of execution units, one can decide to
adapt dynamically the hardware resources deployed for the fetch unit, the decoder and the
issue logic, the register file etc. to the variable size of an instruction block. Extending this
concept to all micro-architectural processor components leads to the approach related in
[SLC02] which means to create a complete micro-architecture at run-time.

Taking into account existing hardware restrictions when implementing this concept, es-
pecially focusing on partial and dynamic reconfiguration, we propose to split the micro-
architecture into fixed and reconfigurable modules as proposed in [Xi00]. The Fetch Unit,
the Decoder, the Register File, the Register Update Unit, the Configuration Manager as
well as the Instruction and Data Memories form together the fixed module of the micro-
architecture. The superscalar execution units are put together to form the reconfigurable
modules. At one instant of program execution, only one reconfigurable module is active
and can be replaced at any time by another one. Thus, applying the module-based partial
reconfiguration design flow described by the referenced application note [Xi00], it is pos-
sible to dynamically integrate the fixed module and one of the reconfigurable modules to
a complete processor micro-architecture.

We propose three reconfigurable modules with a different amount of superscalar execution
units:

� A basic configuration which consists of two integer units for arithmetic and logical
operations (Int-ALU), one integer multiplier/divider (Int-MDU), one load/store unit
(LSU), one floating-point ALU (FP-ALU) and one floating-point multiplier/divider
(FP-MDU).

� An enhanced configuration for integer-intensive operations with four integer ALUs,
two integer multipliers/dividers, four load/store units, one floating-point ALU and
one floating-point multiplier/divider.

� An enhanced configuration for the code portion with more floating-point opera-
tions. This configuration may consist of two integer ALUs, one integer multi-
plier/divider, four load/store units, two floating-point ALUs and two floating-point
multipliers/dividers

Since only one of these pre-designed configurations can be active, the RUU reads an input
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signal from the configuration manager which shows the actual list of available execution
units every time the configuration has been updated.

3.2 Performance Evaluation

An ideal way to evaluate the performance of the proposed micro-architecture for general-
purpose computing is to implement it on real hardware (configurable, programmable or
fixed) and to run standard benchmarks such as the SPEC2000 benchmark suite. Unfor-
tunately, the key novelty of the micro-architecture, namely the dynamic hardware recon-
figuration to map a variable number of execution units, is only supported by a few of
SRAM-based programmable devices. Furthermore, the software support to enable partial
and dynamic reconfiguration is still at an experimental level, so that it will take a long time
to implement and test the micro-architecture in hardware. We are currently investigating
the possibility to use the JBits-API as well as the module based design flow [Xi00], both
from Xilinx.

Software simulation has been used in many areas of research as a method to evaluate
models that are still under development. In this way it is possible to estimate in an early
stage possible improvements of different models. Hence, only the model with the best
simulation results will be implemented.

In this project, we used one of the SimpleScalar simulators, the sim-outorder that supports
superscalar out-of-order program execution [BAB96]. We extended the simulator to model
the additional Trace Cache and to support the run-time reconfiguration process. We do
not model the configuration time penalty, even if this is the performance killer, because
configuration time cannot be determined at the current development stage of the ongoing
partial reconfiguration design flow. Nevertheless, the software flexibility offered by the
simulator allows to evaluate the performance of different configuration models.

Moreover, we do not want to speed up only a given application but to evaluate perfor-
mance benefits while using dynamic run-time reconfiguration for general-purpose com-
puting. Therefore, we use the SPEC2000 benchmark suite as a workload. This bench-
mark is representative for general-purpose computing, since it consists of real-world ap-
plications including integer-based programs (CINT2000) as well as floating-point applica-
tions(CFP200).

In order to be able to run these benchmark programs on our extended processor simulator,
they must first be compiled for the SimpleScalar architecture. This is made using the
SimpleScalar toolset. After that, the different micro-architectures are compiled on a host
machine. To run a simulation, a given micro-architecture is started within the simulator
and executes the benchmark application. After the program is completely executed, the
simulator delivers a detailed output including some performance parameters such as the
number of instructions executed (num insts), the average number of executed instructions
per cycle (IPC), the average number of cycles per instruction (CPI), etc.
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Int-ALU Int-MDU LSU FP-ALU FP-MDU
sim-reference 4 1 2 4 1

config1 2 1 2 1 1
sim-predef config2 4 2 4 1 1

config3 2 1 4 2 2
sim-dyn-reconf 1 - 4 1 - 4 1 - 4 1 - 4 1 - 4
sim-static-config1 4 2 4 1 1
sim-static-config2 2 1 4 2 2

Table 1: Simulated configurations with realistic hardware resources

3.3 Simulation results

We present simulation results obtained while simulating different processor micro-archite-
ctures. The first and basic micro-architecture (sim-reference) does not make use of re-
configuration. It is the default configuration from the SimpleScalar sim-outorder micro-
architecture.

The second micro-architecture (sim-predef) makes use of dynamic reconfiguration by dy-
namically loading predefined configurations (config1, config2, config3).

The third micro-architecture (sim-dyn-reconf) is a highly dynamic reconfigurable one. It
starts with the basic configuration in the same way as for the sim-reference-configuration.
Every time the program execution requires more execution units of a special type (e.g.
Int-ALU), the number of these execution units is updated to the evaluated amount. E.g. if
a given trace line includes eight integer operations where each of them has to be executed
on an integer ALU, the number of integer ALU available is increased up to eight. The
amount of other execution units is not changed. This allows the software to determine
the needed execution units (hardware-on-demand). We suppose to have enough hardware
resources to implement all the execution units required. A more realistic assumption is
to limit the amount to a maximum of execution units allowed, according to the hardware
resources available.

The fourth micro-architecture is based on static hardware reconfiguration (sim-static-con-
fig1). For this micro-architecture, we assume that we have to execute a program that
includes many integer operations (CINT2000). Therefore, the number of corresponding
execution units is increased and the number of floating-point units is reduced before pro-
gram execution starts.

The last micro-architecture we want to evaluate is also based on static reconfiguration, but
intends to execute a program which includes more floating-point operations than integer
operations (sim-static-config2).

Table 1 shows the number of the different execution units for the micro-architectures simu-
lated. All these hardware configurations can be implemented with the amount of hardware
resources available on today’s FPGAs.

Using the software flexibility offered by the simulator, we are able to simulate other con-
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Int-ALU Int-MDU LSU FP-ALU FP-MDU
sim-reference 4 1 2 4 1

config1 4 1 2 4 1
sim-predef config2 8 4 4 1 1

config3 2 1 4 4 4
sim-dyn-reconf 1 - 8 1 - 8 1 - 8 1 - 8 1 - 8
sim-static-config1 8 4 4 1 1
sim-static-config2 2 1 4 4 4

Table 2: Simulated configurations with extended hardware resources

figurations which are not realistic at the moment but which may be implemented in future.
Table 2 summarizes the corresponding data:

When applying dynamic reconfiguration without predefined configurations (sim dynrec),
the amount of execution units continuously changes during program execution. The num-
bers are fixed at run-time varying between one and the maximum of eight execution units.
The variable characteristics of the five simulated micro-architectures are:

� the number of included execution units,

� static, dynamic or without reconfiguration,

� dynamic reconfiguration with predefined configurable modules or with run-time
evaluation of the number of execution units.

Simulation results for some programs taken both from SPEC CINT2000 (integer oper-
ations benchmarks) and SPEC CFP2000 (floating-point operations benchmarks) are pre-
sented. For both benchmarks we used the test input set from SPEC to reduce the simulation
run time. In order to compare performance benefits of different configurations one may
use the number of instructions executed per cycle (Fig. 2) or the number of cycles needed
to execute a single instruction (Fig. 3).
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Figure 2: Instructions Per Cycle (IPC)
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Figure 3: Cycles Per Instruction (CPI)

4 Conclusions

Reconfigurable hardware has been used to implement specialized processors with en-
hanced performance. However, the missing compatibility of these processors with each
other as well as with general-purpose processors based on conventional hardware pre-
vents their breakthrough. We propose an approach to use improved micro-architectural
techniques together with partial and dynamic reconfiguration capabilities to implement a
general-purpose reconfigurable processor. Our model consists of a superscalar reconfig-
urable micro-architecture, for which the amount of available execution units is dynam-
ically updated during program execution. This is achieved by grouping some micro-
architectural components to a fixed module, gathering the execution units to reconfigurable
modules, and applying partial and run-time reconfiguration.

To get the first estimation of the expected performance a software simulation based on
the SimpleScalar tool set with different reconfiguration schemes was run. Focusing on
general-purpose computing, real-world applications from the SPEC benchmark suite were
executed on the simulated micro-architectures. Some additional work is still needed to
model also the real hardware characteristics such as reconfiguration time penalty, power
consumption and utilization of hardware resources. The ongoing hardware implementa-
tion will give us realistic parameters to model these issues as well as the real performance
gain.
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