
Towards a Discipline of Dynamic Programming

Robert Giegerich� Carsten Meyer� Peter Ste�en

Faculty of Technology� Bielefeld University
Postfach �� �� ��

����� Bielefeld� Germany
frobert�cmeyer�psteffeng�techfak�uni�bielefeld�de

Abstract� Dynamic programming is a classic programming technique�
applicable in a wide variety of domains� like stochastic systems analysis�
operations research� combinatorics of discrete structures� �ow problems�
parsing ambiguous languages� or biosequence analysis� Yet� heretofore
no methodology was available guiding the design of such algorithms�
The matrix recurrences that typically describe a dynamic programming
algorithm are di�cult to construct� error	prone to implement� and almost
impossible to debug�
This article introduces an algebraic style of dynamic programming over
sequence data� We de
ne its formal framework including a formalization
of Bellman�s principle� We suggest a language for algorithm design on a
convenient level of abstraction� We outline three ways of implementation�
including an embedding in a lazy functional language� The workings of
the new method are illustrated by a series of examples from diverse areas
of computer science�

� The power and scope of dynamic programming

��� Dynamic programming� a world without rules�

Dynamic programming �DP� is one of the classic programming paradigms� in�
troduced even before the term Computer Science was �rmly established� When
applicable� DP often allows to solve combinatorial optimization problems over a
search space of exponential size in polynomial space and time� Bellman�s 	Prin�
ciple of Optimality
 �Bel�
� belongs to the core knowledge we expect from every
computer science graduate� Signi�cant work has gone into formally character�
izing this principle �Mor���Mit���� formulating DP in di�erent programming
paradigms �Moo���Cur�
� and studying its relation to other general program�
ming methods such as greedy algorithms �BM����

The scope of DP is enormous� Much of the early work was done in the area
of physical state transition systems and operations research �BD���� Other� sim�
pler examples �more suited for computer science textbooks� are optimal matrix
chain multiplication� polygon triangulation� or string comparison� The analy�
sis of molecular sequence data has fostered increased interest in DP� Protein
homology search� RNA structure prediction� gene �nding� and discovery of regu�
latory signals in RNA pose string processing problems in unprecedenced variety

3

and data volume� A recent textbook in biosequence analysis �DEKM��� lists ��
applications of DP in its introductory chapter� and many more in the sequel�

Developing a DP algorithm for an optimization problem over a nontrivial do�
main has intrinsic di�culties� The choice of objective function and search space
are interdependent� and closely tied up with questions of e�ciency� Once com�
pleted� all DP algorithms are expressed via recurrence relations between tables
holding intermediate results� These recurrences provide a very low level of ab�
straction� and subscript errors are a major nuisance even in published articles�
The recurrences are di�cult to explain� painful to implement� and almost im�
possible to debug� A subtle error gives rise to a suboptimal solution every now
and then� which can hardly be detected by human inspection� In this situation
it is remarkable that neither the literature cited above� nor computer science
textbooks �CLR���Gus�
�Meh���BB���AHU���Sed��� provide guidance in the
development of DP algorithms�

��� The promises of Algebraic Dynamic Programming

Algebraic dynamic programming �ADP� is a new style of dynamic programming
and a method for algorithm development� designed to alleviate this situation�
It allows to design� reason about� tune and even test DP algorithms on a more
abstract level� This is achieved by a restructuring of concerns� Any DP algorithm
evaluates a search space of candidate solutions under a scoring scheme and an
objective function� The classic DP recurrences re�ect the three aspects of search
space construction� scoring and choice� and e�ciency in an indiscriminable fash�
ion� In the new algebraic approach� these concerns are separated�

The search space is described by a yield grammar� which is a tree grammar
generating a string language� The ADP developer takes the view that for a given
input sequence� 	�rst
 the search space is constructed� leading to an enumeration
of all candidate solutions� This is a parsing problem� solved by a standard device
called a tabulating yield parser� The developer can concentrate on the design of
the grammar�

Evaluation and choice are captured by an evaluation algebra� It is important
�and in contrast to traditional presentations of DP algorithms� that this algebra
comprises all aspects relevant to the intended objective of optimization� but is
independent of the description of the search space� The ADP developer takes
the view that a 	second
 phase evaluates the candidates enumerated by the �rst
phase� and makes choices according to some optimality criterion�

Of course� the interleaving of search space construction and evaluation is es�
sential to prevent combinatorial explosion� It is contributed by the ADP method
in a way transparent to the developer� By the separate description of search space
and evaluation� ADP also produces modular and therefore re�usable algorithm
components� More complex problems can be approached with better chance of
success� and there is no loss of e�ciency compared to ad�hoc approaches� The
relief from formulating explicit recurrences brings about a boost in programming
productivity� captured by practitioners in the slogan 	No subscripts� no errors�
�

4

The ADP approach has emerged recently in the context of biosequence anal�
ysis� but it pertains to dynamic programming over sequential data in general�
	Sequential data
 does not mean we only study string problems � a chain of
matrices to be multiplied� for example� is sequential input data in our sense� An
informal introduction� written towards the needs of the bioinformatics commu�
nity� has appeared in �Gie���� The present article gives a complete account of the
foundations of the ADP method� and� almost in the style of a tutorial� shows its
application to several classic combinatorial optimization problems in computer
science�

Like any methodical work� this article su�ers from the dilemma that for
the sake of exposition� the problems solved have to be rather simple� such that
the impression may arise that methodical guidance is not really required� The
ADP method has been applied to several nontrivial problems in the �eld of
biosequence analysis� An early application is a program for aligning recombi�
nant DNA �GKW���� when the ADP theory was just about to emerge� Two
recent applications are searching for sequence�structure motifs in DNA or RNA
�MG���� and the problem of folding saturated RNA secondary structures� posed
by Zuker and Sanko� in �ZS��� and solved in �EG����

��� Overview of this article

In Section �� we shall review some new and some well known applications of
dynamic programming over sequence data� in the form in which they are tradi�
tionally presented� This provides a common basis for the subsequent discussion�
By the choice of examples� we illustrate the scope of dynamic programming to a
certain extent� In particular� we show that �single� sequence analysis and �pair�
wise� sequence comparison are essentially the same kind of problem when viewed
on a more abstract level� The applications studied here will later be reformulated
in the style and notation of ADP�

In Section � we introduce the formal basis of the algebraic dynamic pro�
gramming method� Yield grammars and evaluation algebras� We shall argue
that these two concepts precisely catch the essence of dynamic programming�
at least when applied to sequence data� Furthermore� we introduce a special
notation for expressing ADP algorithms� Using this notation an algorithm is
completely described on a very abstract level� and can be designed and analysed
irrespective of how it is eventually implemented� We discuss e�ciency analysis
and point to other work concerning techniques to improve e�ciency�

In Section � we formulate yield grammars and evaluation algebras for the
applications described in Section �� Moreover we show how problem variations
can be expressed transparently using the ADP approach�

Section � indicates three ways of actually implementing an algorithm once it
is written in ADP notation� The �rst alternative is direct embedding and execu�
tion in a functional programming language� the second is manual translation to
the abstraction level of an imperative programming language� The third alter�
native� still under development� is the use of a system which directly compiles
ADP notation into C code�

5

In the conclusion� we discuss the merits of the method presented here� eval�
uate its scope� and glance on possible extensions of the approach�

� Dynamic programming� traditional style

In this section we discuss four introductory examples of dynamic programming�
solved by recurrences in the traditional style� They will be reformulated in alge�
braic style in later sections� We begin our series of examples with an algorithmic
fable�

��� Calif El Mamun�s caravan

Once upon a time around the year ���� Calif El Mamun of Bagdad� a son of
Harun al Raschid� decided to take his two sons on their �rst hadj to Mecca� He
called for the camel dealer� in order to compose a little caravan for the three
pilgrims� Each one needed one riding camel� plus three further ones for baggage
and water supplies� The price for the former was �ve tubes of oil� whereas a
baggage camel was to be somewhat cheaper� After a long afternoon of bargaining�
the following bill was written in the sand of the court yard�

bill� � �� � �� � �� � � � �� ���

The dealer explained that the �� � �� stood for the calif and his two sons�
and there were three baggage camels �� tubes� and one riding camel �� tubes�
for each pilgrim� Unfortunately� before the total price could be calculated �which
took a little longer than today in those days�� everyone had to turn away for the
evening prayers�

When they returned to business� they found that the wind had erased the
parentheses� leaving only numbers and operators�

bill� � � � � � � � � � � ���

Such selective erasing seemed mysterious� The Imam was called in� He ex�
plained that Allah� while agreeing with the basic constituents of the formula�
had been displeased by the placement of the parentheses� which should therefore
be re�considered� The camel dealer helpfully jumped up to redraw the formula�

bill� � �� � �� � � � �� � �� ���

The dealer argued that now the parentheses showed beautiful symmetry�
pleasant to the eye of any higher being� El Mamun was reluctant to agree�
Although not good at numbers� he could not help to suspect that the tour to
Mecca had become much more expensive� He called for the scientist�

Al Chwarizmi� a famous mathematician already� was a wise as well as a
cautious man� After giving the problem serious consideration� he spoke�

6

	Honorable Calif� in his in�nite wisdom Allah has provided �� ways
to evaluate this formula� with many di�erent outcomes� For example�

�� � �� � �� � �� � ��� � ���while

�� � �� � �� � ��� � �� � ���

An intermediate outcome would be

�� � �� � ��� � �� � �� � ���

just another example� As all readings are equal in Allah�s eyes� the fate
of a good muslim will not depend on the reading adopted� but on the
bene�cial e�ects achieved by the choice�

Diplomat he was� with this answer Al Chwarizmi hoped to have passed re�
sponsibility back to the Imam� However� Calif El Mamun could think of bene�cial
e�ects himself� He contemplated these words of wisdom over night� and in the
morning he ruled as follows �

�� The fraudulent camel dealer was to be buried in the sand� next to the formula
�� � �� � � � �� � ���

�� The Calif would take possession of all the camels in the dealers stock�
�� Al Chwarizmi was granted �� tubes of oil for a long�term research project�

The task was to �nd a general method to redraw the parentheses in a formula
such that the outcome was either minimized or maximized � depending on
whether the Calif was on the buying or on the selling side�

�� Until this research was complete� in any case where parentheses were lacking�
multiplication should take priority over addition�

Today� we can still observe the outcome of this episode� El Mamun became
a very� very rich man� and his name gave rise to the word
mammon
� present
in many modern languages and meaning an awful lot of money� Al Chwarizmi
did not really solve the problem in full generality� since DP was only developed
later in the ����s by Richard Bellman� But by working on it� he made many
important discoveries in elementary arithmetic� and thus he became the father
of algorithmics� As a consequence of the problem remaining unsolved� until today
multiplication takes priority over addition� This ends our fable�

We now provide a DP solution for El Mamun�s problem� Clearly� explicit
parentheses add some internal structure to a sequence of numbers and operators�
They tell us how subexpressions are grouped together � which are sums� and
which are products� Let us number the positions in the text t representing the
formula�

t � � � � � � � � � � � � � � � � � 	 �
 ���

such that we can refer to substrings by index pairs� t��� �� is the complete string
t� and t��� �� is ���� A substring t�i� j� that forms an expression can� in general�
be evaluated in many di�erent ways� and we shall record the best value for t�i� j�

7

in a table entry T �i� j�� Since addition and multiplication are strictly monotone
functions on positive numbers� an overall value �x � y� or �x � y� can only be
maximal if both subexpressions x and y are evaluated to their maximal values�
So it in fact su�ces to record the maximum in each entry� This is our �rst use
of Bellman�s Principle� to be formalized later�

More precisely� we de�ne

T �i� i� �� � n� if t�i� i � �� � n ���

T �i� j� � maxfT �i� k�� T �k � �� j�ji � k � j� t�k� k � �� � �g ���

where � is either � or �� Beginning with the shortest subwords of t� we can
compute successively all de�ned table entries�

In T ��� �� we obtain the maximal possible value overall� If� together with
T �i� j�� we also record the position k that leads to the optimal value� then we
can reconstruct the reading of the formula that yields the optimal value� It is
clear that El Mamun�s minimization problem is solved by simply replacing max

by min� Figure � gives the results for maximization and minimization of El
Mamun�s bill�

� � � �
 � � � � �

� � ����� ����� ����� ������� �������

� � �

� � � � ����� ����� ��
��
� �����
�

� � � � �

 � � � � � ����� ������� �������

� � � � � � �

� � � � � � � � �
�
� �����

� � � � � � � � �

� � � � � � � � � � �����

� � � � � � � � � � �

Fig� �� Results for the maximization and minimization of El Mamun�s bill denoted as
tuple �x� y� where x is the minimal value and y the maximal value�

Note that we have left open a few technical points� We have not provided ex�
plicit code to compute the table T � which is actually triangular� since i is always
smaller than j� Such code has to deal with the fact that an entry remains unde�
�ned when t�i� j� is not a syntactically valid expression� like t��� �� � 	� � �
�
In fact� there are about as many unde�ned entries as there are de�ned ones� and
we may call this a case of sparse dynamic programming and search for a more
clever form of tabulation� Another open point is the possibility of malformed
input� like the non�expression 	� � � �
� The implementation shown later will
take care of all these cases�

Exercise � Al Chwarizmi remarked that there were �� di�erent ways to evalu�
ate the bill� Develop a dynamic programming algorithm to compute the number
of alternative interpretations for a parenthesis�free formula��

8

The solution to Exercise � closely follows the recurrences just developed�
except that there is no maximization or minimization involved� This one is a
combinatorial counting problem� Although DP is commonly associated with op�
timization problems� we see that its scope is actually wider�

��� Matrix chain multiplication

A classic dynamic programming example is the matrix chain multiplication prob�
lem �CLR���� Given a chain of matrices A�� ���� An� �nd an optimal placement of
parentheses for computing the product A������An� The placement of parentheses
can dramatically reduce the number of scalar multiplications needed� Consider
three matrices A�� A�� A� with dimensions ������� ����� and ����� Multipli�
cation of �A��A���A� needs ���������������� �
��� scalar multiplications�
in contrast to �� � ��� � �� � ��� � � � �� �
���� when choosing A� � �A� �A���

Let M be a n� n table� Table entry M�i� j� shall hold the minimal number
of multiplications needed to calculate Ai � ��� �Aj � Compared to the previous ex�
ample� the construction of the search space is a lot easier here since it does not
depend on the structure of the input sequence but only on its length� M�i� j� � �
for i � j� In any other case there exist j�i possible splittings of the matrix chain
Ai� ���� Aj into two parts �Ai� ���� Ak� and �Ak��� ���� Aj�� Let �ri� ci� be the dimen�
sion of matrix Ai� Multiplying the two partial product matrices requires rickcj
operations� Again we observe Bellman�s principle� Only if the partial products
have been arranged internally in an optimal fashion� this product can minimize
scalar multiplications overall� We order table calculation by increasing subchain
length� such that we can look up all the M�i� k� and M�k � �� j� when needed
for computing M�i� j�� This leads to the following matrix recurrence�

for j � � to n do �
�

for i � j to � do

M�i� j� �

�
� for i � j

minfM�i� k� � M�k � �� j� � rickcj j i � k � jg for i � j

Minimization over all possible splittings gives the optimal value for M�i� j��
This example demonstrates that dynamic programming over sequence data is

not necessarily limited to �character� strings� but can also be used with sequences
of other types� in this case pairs of numeric values�

Exercise � Design an algorithm to minimize the size �a� of the largest interme�
diate matrix that needs to be computed� and �b� of the overall storage needed
at any point for intermediate matrices during the computation of the chain
product��

The �rst part of Exercise � closely follows the recurrences developed above�
while the latter includes optimizing the evaluation order� and is more compli�
cated�

9

��� Global and local similarity of strings

We continue our series of examples by looking at the comparison of strings�
The measurement of similarity or distance of two strings is an important oper�
ation applied in several �elds� for example spelling correction� textual database
retrieval� speech recognition� coding theory or molecular biology�

A common formalization is the string edit model� We measure the similarity
of two strings by scoring the di�erent sequences of character deletions �denoted
by D�� character insertions �denoted by I� and character replacements �denoted
by R� that transform one string into the other� If a character is unchanged� we
formally model this as a replacement by itself� Thus� an edit operation is applied
at each position�

Figure � shows some possibilities to transform the string MISSISSIPPI into
the string SASSAFRAS visualized as alignment�

MISSI��SSIPPI MISSISSIPPI� MISSI���SSIPPI

SASSAFRAS���� ���SASSAFRAS SASSAFRAS�����

RR RIIR DDDD DDD R RRRRI RR RIII DDDDD

Fig� �� Three out of many possible ways to transform the string MISSISSIPPI into the
string SASSAFRAS� Only deletions� insertions� and proper replacements are marked�

A similarity scoring function � associates a similarity score of � with two
empty strings� a positive score with two characters that are considered similar� a
negative score with two characters that are considered dissimilar� Insertions and
deletions also receive negative scores� For strings x of length m and y of length
n� we compute the similarity matrix Em�n such that E�i� j� holds the similarity
score for the pre�xes x�� � � � � xi and y�� � � � � yj � E�m�n� holds the overall similar�
ity value of x and y�

E is calculated by the following recurrences�

E��� �� � � ���

for i � � to m� � do E�i � �� �� � E�i� �� � ��D�xi���� ���

for j � � to n� � do E��� j � �� � E��� j� � ��I�yj���� ����

for i � � to m� � do

for j � � to n� � do

E�i � �� j � �� � max

���
��
E�i� j � �� � ��D�xi����

E�i � �� j� � ��I�yj����

E�i� j� � ��R�xi��� yj����

���
�� ����

return E�m�n� ����

The space and time e�ciency of these recurrences is O�mn��

10

Often� rather than computing the �global� similarity of two strings� it is
required to search for local similarities within two strings� In molecular se�
quence analysis� we study DNA sequences� given as strings from four types of
nucleotides� or Protein sequences� given as strings from twenty types of amino
acids� In DNA� we often have long non�coding regions and small coding regions�
If two coding regions are similar� this does not imply that the sequences have
a large global similarity� If we investigate a protein with unknown function� we
are interested in �nding a similar� protein with known biological function� In
this situation the functionally important sequence parts must be similar while
the rest is arbitrary�

Local similarity asks for the best match of a subword of x with a subword of
y� The Smith and Waterman algorithm �SW��� needs O�mn� time and space to
solve this problem� We compute a matrix Cm�n where the entry �i� j� contains
the best score for all pairs of su�xes of x� � � � xi and y� � � � yj �

C�i� j� � maxfscore�x�� y��jx� su�x of x� � � � xi and y� su�x of y� � � � yjg ����

Since we look for a local property� it must be possible to match arbitrary
subwords of x and y without scoring their dissimilar pre�xes and su�xes� In
order to reject pre�xes with negative scores� all we need to change in comparison
to the recurrences for global similarity �see Equations � � ��� is to �x the �rst
line and column to Zero�values and to add a Zero�value case in the calculation
of the entry C�i � �� j � ��� This Zero amounts to an empty pre�x joining the
competition for the best match at each point �i� j�� This leads to the following
recurrences�

If i � � or j � �� then C�i� j� � �� ����

Otherwise�

C�i � �� j � �� � max

�����
����

�

C�i� j � �� � ��D�xi����

C�i � �� j� � ��I�yj����

C�i� j� � ��R�xi��� yj����

�����
����

����

return maxi�j C�i� j� ����

Equation �� performs another traversal of table C to obtain the highest score
overall�

Exercise � Add appropriate for�loops to Equations �� � ����

Exercise � Remove maximization in Equation ��� Use instead another table
Dm�n� such that D�i� j� � maxl�i�k�jC�i� j�� Can we compute D within the
for�loops controlling Equation ��! �

11

��� Fibonacci numbers and the case of recursion versus tabulation

In this last introductory example� we make our �rst deviation from the tradi�
tional view of dynamic programming� There are many simple cases where the
principles of DP are applied without explicit notice� Fibonacci numbers are a
famous case in point� They are de�ned by

F ��� � � ��
�

F ��� � � ����

F �i � �� � F �i � �� � F �i� ����

Fibonacci numbers may seem atypical as a DP problem� because there is no
optimization criterion� We have already seen �cf� Exercise �� that optimization is
an important� but not an essential part of the dynamic programming paradigm�

Every student of computer science knows that computing F as a recursive
function is very ine�cient � it takes exactly �F �n� � � calls to F to compute
F �n�� Although we really need only the n values F ��� through F �n � �� when
computing F �n�� each value F �n�k� is calculated not once� but F �k� �� times�
The textbook remedy to this ine�ciency is strengthening the recursion � de�ne

F �n� � Fib��� �� ���where ����

Fib�a� b� i� � if �i � n� then b else Fib�b� a� b� i � �� ����

Here we shall consider another solution� This one requires no rede�nition of F at
all� just a change of data type� Consider F as an integer array� whose elements
are de�ned via Equations �
 � ��� In a data driven programming language� its
elements will be calculated once when �rst needed� In an imperative language�
since F is data now rather than a function� we need to add explicit control
structure � an upper bound for n and a for�loop to actually calculate the array
elements in appropriate order�

The lesson here is the observation that a table �matrix� array� over some
index domain� de�ned by recurrences� is mathematically equivalent to a recursive
function de�ned by the very same recurrences� This gives us a �rst guiding rule
for the systematic development of DP algorithms� Think of a DP algorithm
as a family of recursive functions over some index domain� Don�t worry about
tabulation and evaluation order� this can always be added when the design has
stabilized�

Exercise 	 Show how this discussion applies to the local similarity problem�
Implement table C as a recursive function� and use another function D for the
last equation� Does function D require tabulation to be e�cient!�

12

� Foundations of the algebraic approach to dynamic

programming

��� Basic terminology

Alphabets� An alphabet A is a �nite set of symbols� Sequences of symbols are
called strings� � denotes the empty string� A� � A� An�� � faxja � A� x � Ang�
A� �

S
n��A

n� A� � A� � f�g�
Signatures and algebras� A �single�sorted� signature � over some alphabet A

consists of a sort symbol S together with a family of operators� Each operator
o has a �xed arity o � s����sko � S� where each si is either S or A� A ��algebra
I over A� also called an interpretation� is a set SI of values together with a
function oI for each operator o� Each oI has type oI � �s��I ����sko�I � SI where
AI � A�

A term algebra T� arises by interpreting the operators in � as constructors�
building bigger terms from smaller ones� When variables from a set V can take
the place of arguments to constructors� we speak of a term algebra with variables�
T��V �� with V 	 T��V �� By convention� operator names are capitalized in the
term algebra�

Tree grammars� Terms will be viewed as rooted� ordered� node�labeled trees
in the obvious way� All inner nodes carry �non�nullary� operators from �� while
leaf nodes carry nullary operators or symbols from A� A term�tree with variables
is called a tree pattern� A tree containing a designated occurrence of a subtree t
is denoted C����t�����

A tree language over � is a subset of T� � Tree languages are described by tree
grammars� which can be de�ned in analogy to the Chomsky hierarchy of string
grammars� Here we use regular tree grammars originally studied in �Bra���� In
�GS��� they were rede�ned to specify term languages over some signature� Our
further specialization so far lies solely in the distinguished role of A�

De
nition � �Tree grammar over � and A��
A �regular� tree grammar G over � and A is given by

� a set V of nonterminal symbols
� a designated nonterminal symbol Ax called the axiom
� a set P of productions of the form v � t� where v � V and t � T��V �

The derivation relation for tree grammars is ��� with C����v���� � C����t���� if
v � t � P � The language of v � V is L�v� � ft � T�jv �� tg� the language of
G is L�G� � L�Ax���

For convenience� we add a lexical level to the grammar concept� allowing
strings from A� in place of single symbols� By convention� achar denotes an
arbitrary character� char c a speci�c character c� string an arbitrary string and
empty the empty input� Also for brevity� we allow syntactic conditions associated
with righthand sides�

13

alignment match

match Nil

D

achar alignment alignment achar

I

R

alignment acharachar’$’

Grammar globsim, axiom alignment

Fig� �� The tree grammar globsim for global similarity �see Section ����

The yield of a tree is normally de�ned as its sequence of leaf symbols� Here
we are only interested in the symbols from A�" nullary constructors by de�nition
have yield �� Hence the yield function y on T� is de�ned by y�t� � w� where
w � A� is the string of leaf symbols in left to right order�

��� Conceptual separation of recognition and evaluation

Any dynamic programming algorithm implicitly constructs a search space from
its input� The elements of this search space have been given di�erent names� pol�
icy in �Bel�
�� solution in �Mor���� subject under evaluation in �Gie���� Since the
former two terms have been used ambiguously� and the latter is rather technical�
we shall use the term candidate for elements of the search space� Each candidate
will be evaluated� yielding a �nal state� a cost� or a score� depending whether
you follow �Bel�
�� �Mor��� or �DEKM���� We shall use the term answer for the
result of evaluating a candidate�

Typically� there is an ordering de�ned on the answer data type� The DP
algorithm returns a maximal or minimal answer� and if so desired� also one or
all the candidates that evaluate�s� to this answer� Often� the optimal answer is
determined �rst� and a candidate that led to it is reconstructed by backtracking�
The candidates themselves do not have an explicit representation during the DP
computation� Our goal to separate recognition and evaluation requires an explicit
representation of candidates� Figure � shows a global similarity candidate�

Imagine that during computing an answer� we did not actually call those
functions that perform the evaluation� Instead� we would apply them symbol�
ically� building up a formula that � once evaluated � would yield this answer
value� Clearly� this formula itself is a perfect choice of candidate representation�

� The formula represents everything we need to know about the candidate to
eventually evaluate it�

� The complete ensemble of such formulas� considered for a speci�c problem
instance� is a precise description of the search space�

14

candidate� � D �d� �R �a� �I �R �r� �R �l� �R �i� �R �n� �R �g� �Nil

�	�
 �e�
 �n�
 �i�
 �l�
 �r�
 �i�
 �a�

D

�d�

R

�a�

I R

�r�

R

�l�

R

�i�

R

�n�

R

�g�

Nil ���

�e��n��i��l��r��i��a�

Fig� �� The term representation of a global similarity candidate candidate� for
darling and airline� and the tree representation of this term�

� The idea works for any DP algorithm� After all� when we compute an answer
value� we can as well compute it symbolically and record the formula�

To design a DP algorithm� we hence need to specify the language of formulas�
the search space spawned by a particular input� and their eventual evaluation�

��� Evaluation algebras

De
nition � �Evaluation algebra�� Let � be a signature with sort symbol Ans�
A ��evaluation algebra is a ��algebra augmented with an objective function
h � �Ans� � �Ans�� where �Ans� denotes lists over Ans� �

In most DP applications� the purpose of the objective function is minimizing
or maximizing over all answers� We take a slightly more general view here� The
objective may be to calculate a sample of answers� or all answers within a certain
threshold of optimality� It could even be a complete enumeration of answers� We
may compute the size of the search space or evaluate it in some statistical fashion�
say by averaging over all answers� This is why in general� the objective function
will return a list of answers� If maximization was the objective� this list would
hold the maximal answer as its only element�

We formulate a signature � for the global similarity example�

Nil � Ans � Ans

D � A � Ans � Ans

I � Ans � A � Ans

R � A � Ans � A � Ans

h � �Ans� � �Ans�

We formulate two evaluation algebras for signature � � The algebra unit

�Figure � right� scores each matching character by ��� and each character mis�
match� deletion or insertion by ��� The algebra wgap �Figure � left� is a minor
generalization of unit� It uses two parameter functions w and gap� that may score
�mis�matches and deletions or insertions depending on the concrete characters
involved� For example� a phoneticist would choose w��v���b�� as a �positive�
similarity rather than a �negative� mismatch�

15

Answgap � IN Ansunit � IN

wgap � �nil�d�i�r�h
 unit � �nil�d�i�r�h

where where

nil�a
 � � nil�a
 � �

d�x�s
 � s � gap�x
 d�x�s
 � s � �

i�s�y
 � s � gap�y
 i�s�y
 � s � �

r�a�s�b
 � s � w�a�b
 r�a�s�b
 � if a��b then s � � else s � �

h�
�
 �
� h�
�
 �
�

h �l
 �
maximum�l
� h �l
 �
maximum�l
�

Fig� �� Algebras wgap �left� and unit �right�

For term candidate� of Figure �� we obtain candidate�unit � � and
candidate�wgap � gap��d�� � w��a���a�� � gap��i�� � w��r���r�� �

w��l���l�� � w��i���i�� � w��n���n�� � w��e���g�� � 	�

��� Yield grammars

We obtain an explicit and transparent de�nition of the search space of a given
DP problem by a change of view on tree grammars and parsing�

De
nition � �Yield grammars and yield languages�� Let G be a tree grammar
over � and A� and y the yield function� The pair �G� y� is called a yield grammar�
It de�nes the yield language L�G� y� � y�L�G��� �

De
nition � �Yield parsing�� Given a yield grammar �G� y� over A and w �A��
the yield parsing problem is� Find PG�w� �� ft � L�G�jy�t� � wg��

The search space spawned by input w is PG�w�� For the similarity example
we consider the string x#y�� as input� where # is a separator symbol not occur�
ring elsewhere� In Section ��� the relation between single sequence analysis and
pairwise sequence comparison is discussed� Yield parsing is the computational
engine underlying ADP�

��	 Algebraic dynamic programming and Bellman�s principle

Given that yield parsing traverses the search space� all that is left to do is
evaluate candidates in some algebra and apply the objective function�

De
nition 	 �Algebraic dynamic programming��

� An ADP problem is speci�ed by a signature � over A� a yield grammar
�G� y� over �� and a ��evaluation algebra I with objective function hI �

16

� An ADP problem instance is posed by a string w � A�� The search space it
spawns is the set of all its parses� PG�w��

� Solving an ADP problem is computing

hIftI j t � PG�w�g�

in polynomial time and space�

�

So far� there is one essential ingredient missing� e�ciency� Since the size of the
search space may be exponential in terms of the input size� an ADP problem
can be solved in polynomial time and space only under a condition known as
Bellman�s principle of optimality� In his own words�

	An optimal policy has the property that whatever the initial state and
initial decision are� the remaining decisions must constitute an optimal
policy with regard to the state resulting from the �rst decision�
 �Bel�
�

We formalize this principle�

De
nition � �Algebraic version of Bellman�s principle�� For each k�ary op�
erator f in �� and all answer lists z�� � � � � zk� the objective function h satis�es

h� � f�x�� � � � � xk� j x�
 z�� � � � � xk
 zk � �

� h� � f�x�� � � � � xk� j x�
 h�z��� � � � � xk
 h�zk� � �

Additionally� the same property holds for the concatenation of answer lists�

h� z� �� z� � � h� h�z�� �� h�z�� �

�

The practical meaning of the optimality principle is that we may push the
application of the objective function inside the computation of subproblems�
thus preventing combinatorial explosion� We shall annotate the tree grammar to
indicate the cases where h is to be applied�

��� ADP notation

For practical programming in the ADP framework� we introduce a simple lan�
guage� The declarative semantics of this language is simply that it allows to
describe signatures� evaluation algebras and yield grammars� The signature �

is written as an algebraic data type de�nition in Haskell style� Alike EBNF� the
productions of the yield grammar are written as equations� The operator

 is
used to denote the application of a tree constructor to its arguments� which are
chained via the ����operator� Operator ��� separates multiple righthand sides
of a nonterminal symbol� Parentheses are used as required for larger trees� The
axiom symbol is indicated by the keyword axiom� and syntactic conditions may
be attached to productions via the keyword with� Using this notation� we write
the signature � and the grammar globsim�

17

data Alignment � Nil Char �

D Char Alignment �

I Alignment Char �

R Char Alignment Char

globsim alg � axiom alignment where

�nil� d� i� r� h
 � alg

alignment � nil ��� char �	� ���

d ��� achar ��� alignment ���

i ��� alignment ��� achar ���

r ��� achar ��� alignment ��� achar ��� h

��
 Parsing� tabulation and choice

Given a yield grammar and an evaluation algebra� a tabulating yield parser will
solve a problem instance as declared in De�nition �� Implementation of yield
parsing is explained in detail in Section ���� For programming with ADP� we
do not really have to know how yield parsing works� Think of it as a family
of recursive functions� one for each nonterminal of the grammar� However� the
yield parser needs two pieces of information not yet expressed in the grammar�
Tabulation and choice�

If nothing is said about tabulation� the yield parser may compute partial
results many times� quite like our original Fibonacci function� By adding the
keyword
tabulated
� we indicate that the parser for a particular nonterminal
symbol shall make use of tabulation� When a tabulated symbol v is used in a
righthand side� we write p v instead of v� indicating that this means a table
lookup rather than a recursive call� Using both tabulated and p v is actually
redundant� but facilitates checking the grammar for consistency�

If nothing was said about choice� the parser would not apply the objective
function and hence return a list of all answers� By adding
��� h
 to the right�
hand side of a production� we indicate that whenever a list of alternative answers
has been constructed according to this production� the objective function h is to
be applied to it�

With these two kinds of annotation� our yield grammar example globsim

looks like this�

globsim alg � axiom �p alignment
 where

�nil� d� i� r� h
 � alg

alignment � tabulated�

nil ��� char �	� ���

d ��� achar ��� p alignment ���

i ��� p alignment ��� achar ���

r ��� achar ��� p alignment ��� achar ��� h

18

��� E�ciency analysis of ADP programs

From the viewpoint of programming methodology� it is important that asymp�
totic e�ciency can be analyzed and controlled on the abstract level� This prop�
erty is a major virtue of ADP � it allows to formulate e�ciency tuning as gram�
mar and algebra transformations� Such techniques are described in �GM���� Here
we give only the de�nition andthe theorem essential for determining the e�ciency
of an ADP algorithm�

De
nition
 �Width of productions and grammar�� Let t be a tree pattern�
and let k be the number of nonterminal or lexical symbols in t whose yield
size is not bounded by a constant� We de�ne width�t� � k � �� Let � be a
production v � t�j � � � jtr� width��� � maxfwidth�t�� � � � � tr�g� and width�G� �
maxfwidth��� j � production in Gg� �

Theorem � Assuming the number of answers is bounded by a constant� the
execution time of an ADP algorithm described by tree grammar G on input w
of length n is O�n��width�G
��

Proof� See �GS��� �

��� Summary

By means of an evaluation algebra and a yield grammar we can completely spec�
ify a dynamic programming algorithm� We can execute it using a yield parser�
and analyze its e�ciency using Theorem �� This completes our framework� Let
us summarize the key ideas of algebraic dynamic programming�

Phase separation� We conceptually distinguish recognition and evaluation phase�
Term representation� Individual candidates are represented as elements of a

term algebra T�" the set of all candidates is described by a tree grammar�
Recognition� The recognition phase constructs the set of candidates arising from

a given input string� using a tabulating yield parser�
Evaluation� The evaluation phase interprets these candidates in a concrete ��

algebra� and applies the objective function to the resulting answers�
Phase amalgamation� To retain e�ciency� both phases are amalgamated in a

fashion transparent to the programmer�

The virtue of this approach is that the conglomeration of issues criticised
above � the traditional recurrences deal with search space construction� evalu�
ation and e�ciency concerns in a non�separable way � is resolved by algorithm
development on the more abstract level of grammars and algebras�

� Four example problems and variations� solved with

ADP

In this chapter� we shall solve our four introductory problems with ADP� We
shall emphasize the systematics of this e�ort� and in all cases� we shall proceed
as follows�

19

�� We design the signature� representing explicitly all cases that might in�uence
evaluation�

�� We design three or more evaluation algebras�
� the enumeration algebra� implementing the enumeration of all candidates

of a particular problem instance�
� the counting algebra� computing the size of the search space� in a way

much more e�cient than by enumeration�
� one or more scoring algebras� solving our optimization problem�

�� We specify the yield grammar in ADP notation� and apply the ADP program
to some simple example data�

�� We formulate some problem variations�

Executable versions of these algorithms can be found at
http���bibiserv�techfak�uni�bielefeld�de�adp�

��� El Mamun�s problem

The signature Rather than adding parentheses� our signature Bill intro�
duces operators Add and Mult to make explicit the di�erent possible internal
structures of El Mamun�s bill�

data Bill � Mult Bill Char Bill �

Add Bill Char Bill �

Ext Bill Char �

Val Char

In the sequel� we consider the three di�erent readings of El Mamun�s bill as
discussed in Section ����

the original bill� �� � �� � ��� � �� � ��
the dealer�s reconstruction� ��� � �� � �� � �� � ��
El Mamun�s favourite� � � ��� � �� � ��� � ��

Figure � shows the term representations of these candidates� and their tree rep�
resentations�

The evaluation algebras

The enumeration and the counting algebra�

Ansenum � TBill Anscount � IN

enum � �val�ext�add�mult�h
 where count � �val�ext�add�mult�h
 where

val � Val val�c
 � �

ext � Ext ext�n�c
 � �

add � Add add�x�t�y
 � x � y

mult � Mult mult�x�t�y
 � x � y

h � id h�
�
 �
�

h�
x�� � � � � xr�
 �
x� � � � �� xr�

20

original � Mult �Add �Val ���
 ��� �Val ���

 ��� �Add �Mult �Val ���

��� �Val ���

 ��� �Val ���

dealer � Mult �Mult �Add �Val ���
 ��� �Val ���

 ��� �Val ���

 ���

�Add �Val ���
 ��� �Val ���

elmamun � Add �Val ���
 ��� �Add �Mult �Val ���
 ��� �Mult �Val ���

��� �Val ���

 ��� �Val ���

Mult

Add

Val

���

��� Val

���

��� Add

Mult

Val

���

��� Val

���

��� Val

�	�

Mult

Mult

Add

Val

���

��� Val

���

��� Val

���

��� Add

Val

���

��� Val

�	�

Add

Val

���

��� Add

Mult

Val

���

��� Mult

Val

���

��� Val

���

��� Val

�	�

Fig� �� The term representations of the three candidates for El Mamun�s bill and their
tree visualizations�

The buyer�s and the seller�s algebra� The following two scoring algebras use
the function decode to convert a digit to an integer value� The buyer� of course�
seeks to minimize the price� the seller seeks to maximize it�

Ansbuyer � IN Ansseller � IN

buyer � �val�ext�add�mult�h
 where seller � �val�ext�add�mult�h
 where

val�c
 � decode�c
 val�c
 � decode�c

ext�n�c
 � �� � n � decode�c
 ext�n�c
 � �� � n � decode�c

add�x�t�y
 � x � y add�x�t�y
 � x � y

mult�x�t�y
 � x � y mult�x�t�y
 � x � y

h�
�
 �
� h�
�
 �
�

h �l
 �
minimum�l
� h �l
 �
maximum�l
�

The yield grammar The yield grammar describes all possible internal read�
ings of El Mamun�s formula �and any other such formula��

bill alg � axiom �p formula
 where

�val� ext� add� mult� h
 � alg

formula � tabulated �

number ���

add ��� p formula ��� plus ��� p formula ���

mult ��� p formula ��� times ��� p formula ��� h

21

number � val ��� digit ��� ext ��� number ��� digit

digit � char ��� ��� char ��� ��� char ��� ��� char ��� ���

char ��� ��� char ��� ��� char ��� ��� char ��� ���

char ��� ��� char ���

plus � char ���

times � char ���

Using this grammar� the four algebras� and input z �
���������
� we ob�
tain�
bill enum �
Add �Val ���
 ��� �Add �Mult �Val ���
 ��� �Mult �Val ���

��� �Val ���

 ��� �Val ���

� Add �Val ���
 ��� �Add �Mult �Mult �Val

���
 ��� �Val ���

 ��� �Val ���

 ��� �Val ���

� Add �Val ���
 ���

�Mult �Val ���
 ��� �Add �Mult �Val ���
 ��� �Val ���

 ��� �Val ���

�

����

bill count �
���

bill buyer �
���

bill seller �
���

The �rst call yields a protocol of the complete search space traversed in all
four cases� This is feasible only for small inputs� but is a most helpful testing
aid� The second call merely computes the size of the search space � for all z� note
the invariance �length�bill enum�� � bill count� The other two calls solve
the problems of minimizing and maximizing the value of the formula�

Problem variation� A processor allocation problem

Computation in the days of El Mamun was very slow� A good computing
slave took about � minutes to perform an addition� and � minutes to perform a
multiplication� Even then� understanding the value of a number �once read� took
practically no time �� minutes�� Fortunately� there were slaves abound� and they
could work in parallel as much as the formula permitted� The following algebra
selects for the formula that has the shortest computation time�

Anstime � IN �meaning minutes

time � �val�ext�add�mult�h
 where

val�c
 � �

ext�n�c
 � �

add�x�t�y
 � max�x�y
 � �

mult�x�t�y
 � max�x�y
 � �

h�
�
 �
�

h �l
 �
minimum�l
�

Evaluating the three candidates shown in Figure � we �nd computation times
between �� and �� minutes

h
original�dealer�elmamun� �

minimum
��� ��� �� � � ��

and we �nd that �� minutes is actually optimal� bill time �
����

22

Exercise � Modify the algebra to compute the average computation time of a
formula under the assumption that all possible readings are equally likely��

��� Optimal matrix chain multiplication

The signature As in the previous example� we introduce two operators to
represent parenthesization of an expression� An expression can consist of a single
matrix or of a multiplication of two expressions�

data Matrixchain � Mult Matrixchain Matrixchain �

Single �Int� Int

Taking from Section ��� our example matrices� A� � �� � ���� A� � ��� � �
and A� � �� ��� we get two candidates for matrix chain multiplication� Figure

shows the term representation of these candidates and their tree representation�

candidate� � Mult �Single �������

 �Mult �Single ������

 �Single

�����

candidate� � Mult �Mult �Single �������

 �Single ������

 �Single

�����

Mult

Single

������

Mult

Single

����	

Single

	�	�

Mult

Mult

Single

������

Single

����	

Single

	�	�

Fig� �� The term representations of the two candidates for the example matrices and
their tree representations�

The evaluation Algebras

The enumeration and the counting algebra�

Ansenum � TMatrixchain Anscount � IN

enum � �single�mult�h
 where count � �single�mult�h
 where

single � Single single��r�c

 � �

mult � Mult mult�x�y
 � x � y

h � id h�
�
 �
�

h�
x�� � � � � xr�
 �
x� � � � �� xr�

23

The scoring algebra The algebra for determining the minimal number of scalar
multiplications uses a triple �r�m� c� as answer type� �r� c� denotes the dimension
of the resulting matrix and m the minimal number of operations needed to
calculate it� With this answer type writing down the algebra is simple�

Ansminmult � IN� IN� IN

minmult � �single�mult�h
 where

single��r�c

 � �r���c

mult��r�m�c
��r��m��c�

 � �r�m�m� � r�c�c��c�

h�
�
 �
�

h �l
 �
minimum�l
��

The yield grammar The yield grammar describes all possible combinations
of parentheses�

matrixmult alg � axiom �p matrices
 where

�single� mult� h
 � alg

matrices � tabulated �

single ��� achar ���

mult ��� p matrices ��� p matrices ��� h

For input z � ���	��		����		��������	�� we obtain�

matrixmult enum �
Mult �Single �������

 �Mult �Single ������

�Single �����

�Mult �Mult �Single �������

 �Single ������

�Single �����

�

matrixmult count �
��

matrixmult minmult �
�����������
�

Problem variation� Minimizing intermediate storage

Another interesting exercise is to determine the optimal evaluation order for
minimizing the memory usage needed for processing the matrix chain� This is
motivated by the fact that memory allocated during calculation can be released
in succeeding steps� Consider two matrix chains C� and C�� For multiplying
C� � C� we have two possible orders of calculation� When processing C� �rst
we have to store the resulting matrix while processing C� and then store both
results during this multiplication� As a second possibility� we can process C�

�rst and store the resulting matrix while calculating C�� Let maxloc C be the
biggest memory block allocated during calculation of matrix chain C� Let loc C
be the size of the resulting matrix� loc Ai � � for all input matrices� The minimal
memory usage for processing C� �C� is given by

� The objective function considers all three triple elements for minimization� But since
r and c are the same for all candidates for a
xed subchain� only m is relevant to
this operation�

24

maxloc C� C� � ����

minfmaxfmaxloc C�� loc C� �maxloc C�� loc C� � loc C� � loc C�C�g

maxfmaxloc C�� loc C� �maxloc C�� loc C� � loc C� � loc C�C�gg

This can be expressed by the following algebra�

Ansminmem � IN� IN� IN

minmem � �single�mult�h
 where

single��r�c

 � �r���c

mult��r�m�c
��r��m��c�

 � �r� minimum

maximum
m�r�c� m��r�c � r�� c� � r�c���

maximum
m��r��c�� m�r�c � r�� c� � r�c����c�

h�
�
 �
�

h �l
 �
minimum�l
�

Exercise
 It is true that this approach determines the minimal memory usage
of a given matrix chain problem� but it does not report the responsible candidates
of the solutions� Find a simple extension to the grammar which also reports an
optimal candidate��

��� Global and local similarity in strings and biosequences

The signature

data Alignment � Nil Char �

D Char Alignment �

I Alignment Char �

R Char Alignment Char

Figure � shows the term representation of a global similarity candidate and
its tree representation�

candidate� � D �d� �R �a� �I �R �r� �R �l� �R �i� �R �n� �R �g� �Nil

�	�
 �e�
 �n�
 �i�
 �l�
 �r�
 �i�
 �a�

D

�d�

R

�a�

I R

�r�

R

�l�

R

�i�

R

�n�

R

�g�

Nil ���

�e��n��i��l��r��i��a�

Fig� 	� The term representation of a global similarity candidate candidate� for
darling and airline and the tree representation of this term �lying on its side��

25

The evaluation algebras

The enumeration and the counting algebra

Ansenum � TAlignment Anscount � IN

enum � �nil�d�i�r�h
 where count � �nil�d�i�r�h
 where

nil � Nil nil�a
 � �

d � D d�x�s
 � s

i � I i�s�y
 � s

r � R r�a�s�b
 � s

h � id h�
�
 �
�

h�
x�� � � � � xr�
 �
x� � � � �� xr�

The scoring algebras

Answgap � IN Ansunit � IN

wgap � �nil�d�i�r�h
 where unit � �nil�d�i�r�h
 where

nil�a
 � � nil�a
 � �

d�x�s
 � s � gap�x
 d�x�s
 � s � �

i�s�y
 � s � gap�y
 i�s�y
 � s � �

r�a�s�b
 � s � w�a�b
 r�a�s�b
 � if a��b then s � � else s � �

h�
�
 �
� h�
�
 �
�

h �l
 �
maximum�l
� h �l
 �
maximum�l
�

The yield grammars

Global similarity The yield grammar describes all possible ways to transform
one string into the other by character replacement� deletion and insertion�

globsim alg � axiom �p alignment
 where

�nil� d� i� r� h
 � alg

alignment � tabulated�

nil ��� char �	� ���

d ��� achar ��� p alignment ���

i ��� p alignment ��� achar ���

r ��� achar ��� p alignment ��� achar ��� h

For input z �
darling�enilria
 we obtain�

globsim enum �
D �d� �D �a� �D �r� �D �l� �D �i� �D �n� �D �g� �I �I �I

�I �I �I �I �Nil �	�
 �e�
 �n�
 �i�
 �l�
 �r�
 �i�
 �a�

�D �d� �D

�a� �D �r� �D �l� �D �i� �D �n� �I �D �g� �I �I �I �I �I �I �Nil �	�

�e�
 �n�
 �i�
 �l�
 �r�
 �i�

 �a�

�D �d� �D �a� �D �r� �D �l� �D

�i� �D �n� �I �I �D �g� �I �I �I �I �I �Nil �	�
 �e�
 �n�
 �i�
 �l�

�r�

 �i�
 �a�

����

globsim count �
������

globsim unit �
��

26

Local similarity To formulate the yield grammar for local similarity� we modify
the signature� We introduce two new operators skip left and skip right for
skipping characters in the beginning of x and y� To allow skipping at the end of
x and y� we modify the argument of Nil to be an arbitrary string� including the
separator symbol�

locsim alg � axiom �p loc�align
 where

�nil� d� i� r� h
 � alg

skip�right a b � a

skip�left a b � b

loc�align � tabulated �

p alignment ���

skip�right ��� p loc�align ��� achar ���

skip�left ��� achar ��� p loc�align ��� h

alignment � tabulated �

nil ��� string ���

d ��� achar ��� p alignment ���

i ��� p alignment ��� achar ���

r ��� achar ��� p alignment ��� achar ��� h

For input z �
darling�enilria
 we obtain�

locsim enum �
Nil �����
�D �d� �Nil �����

�D �d� �D �a� �Nil �����

�

D �d� �D �a� �D �r� �Nil �����

� ����

locsim count �
�������

locsim unit �
��

Problem variation� A�ne gap scores

In the algebras presented so far� succeeding insertions respectively deletions
achieve the same score as the same number of single gaps �deletions and inser�
tions�� But in order to analyze biological sequence data� it is more adequate to
use an a�ne gap score model� This means to assign an opening cost �open� to
each gap and an extension cost �extend� for each deleted respectively inserted
character� This results in a better model favouring few long gaps than having
over many short gaps� The use of a�ne gap scores was introduced in �Got����

The signature In order to distinguish the opening of a gap and the extension
of a gap we have to extend the signature Alignment�

data Alignment � Nil Char �

D Char Alignment �

I Alignment Char �

R Char Alignment Char �

Dx Char Alignment �

Ix Alignment Char

27

A�ne gap score algebra

Ansaffine � IN

affine � �nil�d�i�r�dx�ix�h
 where

nil�a
 � �

d�x�s
 � s � open � extend

i�s�y
 � s � open � extend

r�a�s�b
 � s � w�a�b

dx�x�s
 � s � extend

ix�s�y
 � s � extend

h�
�
 �
�

h �l
 �
maximum�l
�

The yield grammar In the modi�ed yield grammar for global similarity� we
have to distinguish the opening of a gap and the extension of a gap�

affineglobsim alg � axiom �p alignment
 where

�nil� d� i� r� dx� ix� h
 � alg

alignment � tabulated �

nil ��� char �	� ���

d ��� achar ��� p xDel ���

i ��� p xIns ��� achar ���

r ��� achar ��� p alignment ��� achar ��� h

xDel � tabulated �

p alignment ���

dx ��� achar ��� p xDel ��� h

xIns � tabulated �

p alignment ���

ix ��� p xIns ��� achar ��� h

To achieve the yield grammar for local alignments using the a�ne gap score
model� the grammar for global alignments has to be modi�ed in the same manner
as shown for the simple gap score model�

��� Analyses on Fibonacci

The examples we have seen so far work on sequences of input data� Calculating
the Fibonacci numbers F �n� with this approach seems inappropriate� since the
input consists of a single number here� Of course� n can be encoded in unary as
a sequence of length n� But why at all should one want to compute F �n� in such
a complicated way! We shall provide a grammar which captures the Fibonacci
recursion pattern� Each string of length n gives rise to F �n� parses� and therefore
F �n� is computed by the counting algebra� The interesting part here is the use
of other evaluation algebras� which can be designed to compute other properties
of Fibonacci numbers�

28

The signature

data Fib � F� Int �

F� Int Int �

Fn Fib �

Fn� Fib Int �

Fn� Fib Int Int

The key idea is that an input string� of length n gives rise to F �n� di�erent
candidates� Operators F�� F� and Fn shall represent the three equations of the
original Fibonacci de�nition� Operators Fn� and Fn� denote the function calls
F �n��� and F �n��� � here the input is shortened by � respectively � elements�
Figure � shows the term and tree representations of the two candidates for input
length n � ��

fib�� � Fn �Fn� �F� � �
 �
 fib�� � Fn �Fn� �F� �
 � �

Fn

Fn�

F�

� �

�

Fn

Fn�

F�

�

� �

Fig�
� The term and tree representations of the two candidates for F ����

Evaluation algebras

The enumeration and the counting algebra�

Ansenum � TFib Anscount � IN

enum � �f��f��fn�fn��fn��h
 where count � �f��f��fn�fn��fn��h
 where

f� � F� f��a�
 � �

f� � F� f��a��a�
 � �

fn � Fn fn�x
 � x

fn� � Fn� fn��x�a�
 � x

fn� � Fn� fn��x�a��a�
 � x

h � id h�
�
 �
�

h�
x�� � � � � xr�
 �
x� � � � �� xr�

� For reasons we will see in the course of this example� we choose input type Int here�

29

The yield grammar

fibonacci alg � axiom �p fib
 where

�f�� f�� fn� fn�� fn�� h
 � alg

fib � tabulated�

f� ��� achar ���

f� ��� achar ��� achar ���

fn ��� fibn �with� minsize �

fibn � fn� ��� p fib ��� achar ���

fn� ��� p fib ��� achar ��� achar ��� h

Note that this example makes use of the syntactic predicate minsize � which
guarantees that the alternative fn

 fibn is only considered for an input of
at least �� Otherwise we would obtain two possible derivations for fib ��

For input z � ������� we obtain�

fibonacci enum �
Fn �Fn� �F� � �
 �
�Fn �Fn� �F� �
 � �
�

fibonacci count �
��

Problem variations� Properties of Fibonacci

In the rest of this section� we show how ADP can be of some use in com�
binatorics� It can be used to compute certain properties or to test a certain
hypothesis� Of course� it does not do inductive poofs� nor can it provide a closed
formula for a combinatorial problem�

In Section ��� we made two statements on the properties of F as a recursive
function� It takes exactly �F �n� � � calls to compute F �n�� and each value
F �n � k�� with n � k 	 �� is calculated F �k � �� times� Giving an algebra for
testing the �rst statement only needs a slight modi�cation to the above one�

Anscalls � IN

calls � �f��f��fn�fn��fn��h
 where

f��a�
 � �

f��a��a�
 � �

fn�x
 � � � x

fn��x�a�
 � x

fn��x�a��a�
 � x

h�
�
 �
�

h�
x�� � � � � xr�
 �
x� � � � � � xr�

For the second statement we need to introduce some more extensive changes
to the algebra� both in type of the answer value� the de�nition of the evaluation
functions� and our interpretation of the input sequence� The two parameters n
and k shall be represented as a sequence of length n� with each element the
numeric value m � n� k�

30

Anscalc � IN� IN� IN �calculations of F �m�� n�m�

calc � �f��f��fn�fn��fn��h
 where

f��m
 � if m��� then �����m
 else �����m

f��m�m�
 � if m��� then �����m
 else �����m

fn��c�n�m

 � if n��m then �c���n�m
 else �c�n�m

fn���c�n�m
�m�
 � �c�n���m

fn���c�n�m
�m��m��
 � �c�n���m

h�
�
 �
�

h�
�c�� n��m��� ���� �cr� nr�mr��
 �
�c� � ��� � cr� n��m���

� Three ways to implement ADP

	�� Unifying single sequence analysis and pairwise sequence

comparison

We have been considering two kinds of problems� In El Mamun�s and in the
matrix chain problem� the task was to recover an internal structure in a single
sequence x� A candidate t for x has yield�t� � x� In the similarity problem� we are
comparing two sequences x and y� We saw that here a candidate t for inputs x� y
has yield�t� � xy��� If we choose to include a separator symbol # between x and
the reverse of y� we have yield�t� � x#y��� This is a matter of convenience� To
unify both cases� in the sequel we assume we have a single input z� where either
z � x or z � xy��� or z � x#y��� We assume that z�m � jxj� n � jyj� l � jzj
are known and represented by global variables� Thus� in the pairwise case� even
when we do not use the separator symbol� we know the boundary between x and
y�� in z�

Since z is global� a subword zi��� ���� zj of z is simply represented by the
subscript pair �i�j�� Note that i marks the subscript position before the �rst
character of subword �i� j�� This convention allows to use k as the common
boundary of adjacent subwords when splitting �i� j� into �i� k� and �k� j��

The DP tables storing intermediate results for a subword �i� j� are triangular�
since we always have i � j� In the pairwise case� the di�erent parts A� B and
C of the triangle� as indicated in Figure ��� have a di�erent meaning� Entries
Ai�j are derived from the subword �i� j� of z� which is xi�����xj � Entries Ci�j are
derived from the subword �i� j� of z� which is ym�n���j ���ym�n���i� Entries Bi�j

are derived from xi�����xm and ym�n���j ���yn� Depending on the problem at
hand� only a part of A� B or C may need to be calculated" the global similarity
problem� for example� only needs part B� We shall describe the implementation
for the general case� however�

	�� Embedding in Haskell

An algorithm written in ADP notation can be directly executed as a Haskell
program� Of course� this requires that the functions of the evaluation algebra

31

0

m
X

Y

0
Y

X
A

C

B

$

m

-1

m+n+1

-1

unused

unused

unused

$

m+n+1

Fig� ��� Compartments of the triangular DP tables

are coded in Haskell� This smooth embedding is achieved by the technique of
parser combinators �Hut���� which essentially turn the grammar into a parser�
We introduce suitable combinator de�nitions for yield parsing� and add tabula�
tion�

Generally� a parser is a function that� given a subword of the input� returns
a list of all its parses�

Lexical parsers The lexical parser achar recognizes any single character except
the separator symbol� Parser string recognizes a �possibly empty� subword�
Speci�c characters or symbols are recognized by char and symbol� Parser empty
recognizes the empty subword�

� type Subword � �Int�Int

� type Parser b � Subword ��
b�

� empty �� Parser �

� empty �i�j
 �
�
 � i �� j�

� achar �� Parser Char

� achar �i�j
 �
z�j � i�� �� j� z�j � �	��

32

� char �� Char �� Parser Char

� char c �i�j
 �
c � i�� �� j� z�j �� c�

� string �� Parser Subword

� string �i�j
 �
�i�j
 � i �� j�

� symbol �� String �� Parser Subword

� symbol s �i�j
 �
�i�j
� and
z��i�k
 �� s���k��
 � k ��
����j�i
��

Nonterminal parsers The nonterminal symbols are interpreted as parsers�
with the productions serving as their mutually recursive de�nitions� Each right�
hand side is an expression that combines parsers using the parser combinators�

Parser combinators The operators introduced in the ADP notation are now
de�ned as parser combinators� ��� concatenates result lists of alternative parses�
and

 grabs the results of subsequent parsers connected via ��� and suc�
cessively 	pipes
 them into the tree constructor� Combinator ��� applies the
objective function to a list of answers�

� infixr � ���

� ����
 �� Parser b �� Parser b �� Parser b

� ����
 r q �i�j
 � r �i�j
 �� q �i�j

� infix � ���

� ����
 �� �b �� c
 �� Parser b �� Parser c

� ����
 f q �i�j
 � map f �q �i�j

� infixl � ���

� ����
 �� Parser �b �� c
 �� Parser b �� Parser c

� ����
 r q �i�j
 �
f y � k ��
i��j�� f �� r �i�k
� y �� q �k�j
�

� infix � ���

� ����
 �� Parser b �� �
b� ��
b�
 �� Parser b

� ����
 r h �i�j
 � h �r �i�j

Note that the operator priorities are de�ned such that an expression f

a ��� b ��� c is read as ��f

 a� ��� b� ��� c� This makes use of cur�
ried functions� the results of parser f

 a are calls to f with �only� the �rst
argument �xed�

The operational meaning of a with�clause can be de�ned by turning with

into a combinator� this time combining a parser with a �lter� Finally� the keyword
axiom of the grammar is interpreted as a function that returns all parses for the
speci�ed nonterminal symbol and the complete input�

� type Filter � �Int� Int
 �� Bool

� with �� Parser b �� Filter �� Parser b

� with q c �i�j
 � if c �i�j
 then q �i�j
 else
�

33

� axiom �� Int �� Parser b ��
b�

� axiom ax � ax ���l

When a parser is called with the enumeration algebra � i�e� the functions
applied are actually tree constructors� and the objective function is the identity
function �� then it behaves like a proper yield parser and generates a list of trees
according to De�nition �� However� called with some other evaluation algebra�
it computes any desired type of answer�

Tabulation Adding tabulation is merely a change of data type� replacing a
recursive function by a recursively de�ned table� We use a general scheme for this
purpose� The function table records the results of a parser p for all subwords of
an input of size n� The function p does table lookup� Note the essential invariance
p �table n f� � f� Therefore� if r is a tabulated parser� then p r can be
used as a parser function� This is another use of curried functions� which allows
to freely combine tabulated and non�tabulated parsers in the grammar� The
keyword tabulated is now de�ned as table bound to the global variable l� the
length of the input�

� type Parsetable b � Array �Int�Int

b�

� table �� Int �� Parser b �� Parsetable b

� table n q � array �����
��n�n

�
��i�j
�q �i�j

 � i��
���n�� j��
i��n��

� tabulated � table l

� p �� Parsetable b �� Parser b

� p t �i�j
 � if i �� j then t��i�j
 else
�

Removing futile computations Consider the production a � f

 a ���

char� Our de�nition of the ��� combinator splits subword �i� j� in all possible
ways� including empty subwords on either side� Obviously� achar� which recog�
nizes a single character� has a �xed yield size of �� leaving the subword �i� j� ��
for the yield of nonterminal symbol a� In this case� iteration over all splits of
�i� j� into �i� k� and �k� j� is mathematically correct� but a futile e�ort� The only
successful split can be �i� j��� and �j��� j�� What is worse� since the production
is left�recursive� the last split considered without need is �i� j� and �j� j�� which
leads to in�nite recursion�

Both situations are avoided by using specializations of the ��� combinator
that are aware of bounded yield sizes and avoid unneccessary splits� For the case
of splitting of a single character� we use ��� and ���� while the fully general case
of an arbitrary� but known yield size limit is treated by the �� combinator�

34

� infixl � ������ � ���

� ����
 q r �i�j
 �
x y � i�j� x �� q �i�i��
� y �� r �i���j
�

� ����
 q r �i�j
 �
x y � i�j� x �� q �i�j��
� y �� r �j���j
�

� ���
 �� �Int�Int
 �� �Int�Int

� �� Parser �b �� c
 �� Parser b �� Parser c

� ���
 �l�u
 �l��u�
 r q �i�j

� �
x y � k ��
max �i�l
 �j�u�
 �� min �i�u
 �j�l�
��

� x �� r �i�k
� y �� q �k�j
�

These combinators are used in asymptotic e�ciency tuning via width re�
duction as described in �GM���� Using these special cases� our global similarity
grammar is now written in the form

� globsim alg � axiom �p alignment
 where

� �nil� d� i� r� h
 � alg

� alignment � tabulated�

� nil ��� char �	� ���

� d ��� achar ��� p alignment ���

� i ��� p alignment ��� achar ���

� r ��� achar ��� p alignment ��� achar ��� h

which now� as a functional program� has the appropriate e�ciency of O�mn��

	�� Deriving explicit recurrences

In the previous section we showed how to embed an ADP algorithm smoothly in
a functional language� Although there exist e�cient implementations of Haskell�
it still seems desirable to derive an imperative version of the algorithm� The
sheer amount of data volume present in most dynamic programming domains
and an easy integration in existing systems are two of the reasons� The classic
approach in dynamic programming is to implement the imperative version of
the algorithm starting from the matrix recurrences derived by experience or
intuition� In this section we show how to derive the recurrences in a systematic
way from an algorithm in ADP notation�

Each tabulated production will result in a matrix recurrence relation� The
de�nitions of non tabulated productions can be inserted directly at the occur�
rences of the corresponding nonterminal symbols in the grammar� In the follow�
ing� we assume that all productions are tabulated�

Translation patterns The matrix recurrences for a grammar G can be derived
by the following translation patterns starting with C��G�� in Pattern ��� We use
list comprehension notation� in analogy to set notation� �f�x� y�jx � xs� y � ys�
denotes the list of all values f�x� y� such that x is from list xs and y from

35

list ys� To distinguish a parser call q�i� j� from a semantically equivalent table
lookup� we denote the latter by q��i� j�� The function pair �low�p�� up�p�� shall
provide the yield size of a tree pattern p and is de�ned by �low�p�� up�p�� �
�infq�L�p
 jqj� supq�L�p
 jqj� if L�p� �� �� and �low�p�� up�p�� � �
� �� otherwise�

C��grammar alg � axiom p where v� � q� ��� vm � qm�� � ����

for j � � to l

for i � � to j

v���i� j� � C��q����i� j����
vm��i� j� � C��qm���i� j�

return p���� l�

C��q ��� h���i� j� � h�C��q���i� j�� ����

C��q� ��� ��� ��� qr���i� j� � C��q����i� j� �� ��� �� C��qr���i� j� ����

C��t

 q� ��� ��� ��� qr���i� j� � ����

�t�p�� ���� pr�jp� � C��q����i� k��� ���� pr � C��qr���kr��� j��

for k�� ���� kr��� such that k� � i� kr � j�

max�kl�� � low�ql�� kl�� � up�ql���� � kl �

min�kl�� � up�ql�� kl�� � low�ql����

C��q with c���i� j� � if c�i� j� then C��q���i� j� else � � ��
�

C��v���i� j� � v��i� j� for v � V ����

C��t���i� j� � T ��t���i� j� for t terminal ����

In Pattern ��� note the direct correspondence to the de�nition of the ��

combinator in Section ����

Translation patterns T ��w�� for terminal symbols must be chosen according to
their respective semantics� We give three examples�

T ��char c���i� j� � if i � � � j � zj � c then �c� else � �

T ��achar���i� j� � if i � � � j � zj ��
�#� then �zj � else � �

T ��string���i� j� � if i � j then ��i� j�� else � �

Example We demonstrate the translation for the global similarity example of
Section ����

globsim alg � axiom alignment where

�nil� d� i� r� h
 � alg

alignment � nil ��� char �	� ���

d ��� achar ��� alignment ���

i ��� alignment ��� achar ���

r ��� achar ��� alignment ��� achar ��� h

36

Applying Pattern �� to this grammar provides the framework of the control
structure�

for j � � to l

for i � � to j

alignment��i� j� � C��nil

 ������i� j�

return alignment���� l�

Starting with alignment��i� j� � C��nil

 ������i� j� we apply Patterns ��
and �� to the righthand side of the production�

alignment��i� j� � h�

C��nil

 char ������i� j� �� ����

C��d

 achar ��� alignment���i� j� �� ����

C��i

 alignment ��� achar���i� j� �� ����

C��r

 achar ��� alignment ��� achar���i� j�� ����

The resulting four expressions can be translated separately according to Pat�
tern ��� Expression �� translates to�

�nil�p��jp� � T ��char ������i� j��

� if i � � � j � zj �
�#� then �nil��#��� else � �

Translation of Expressions �� � �� makes use of the yield size functions low
and up� Table � shows their values for the expressions needed in this example�
The constant yield sizes of the terminal symbols can be taken directly from the
corresponding parser de�nitions� For nonterminal symbols and arbitrary expres�
sions this needs a deeper analysis of the grammer� This is detailed in �GS����
Despite the risk of ending with suboptimal code for the resulting matrix recur�
rences� a yield size ���
� is always a safe approximation�

x �low�x�� up�x��

char c ��� ��
achar ��� ��

alignment �����

Table �� Yield sizes needed for alignment example

37

Proceeding with Expression �� leads to the following calculation�

C��d

 achar ��� alignment���i� j�

� �d�p�� p��jp� � T ��achar���i� k��� p� � C��alignment���k�� j��

for k� such that

max�i � low�achar�� j � up�alignment�� � k� �

min�i� up�achar�� j � low�alignment��

With yield sizes ��� �� and ���
� for achar and alignment the loop variable
k� simpli�es to a constant k� � i � � and the condition i � � � j�

�d�p�� p��ji � � � j� p� � T ��achar���i� i � ��� p� � C��alignment���i � �� j��

� �d�p�� p��ji � � � j � zi�� ��
�#�� p� � �zi���� p� � alignment��i� �� j��

� �d�zi��� p��ji � � � j � zi�� ��
�#�� p� � alignment��i� �� j��

Translating Expressions �� and �� in the same way we arrive at the following
recurrence relation for the matrix alignment�

alignment��i� j� � h� ����

if i � � � j � zj �
�#� then �nil��#��� else � � ��

�d�zi��� p��ji � � � j � zi�� ��
�#�� p� � alignment��i� �� j�� ��

�i�p�� zj�ji � � � j � zj ��
�#�� p� � alignment��i� j � ��� ��

�r�zi��� p�� zj�ji � � � j � zi�� ��
�#� � zj ��

�#��

p� � alignment��i� �� j � ����

The explicit recurrences derived so far can be used together with code imple�
menting the functions of an arbitrary evaluation algebra� If this code is simple�
it can be inlined� which often allows further simpli�cation of the recurrences�

Inlining evaluation algebras We demonstrate inlining by means of the count
algebra and the unit cost algebra introduced in Section ����

Anscount � IN Ansunit � IN

count � �nil�d�i�r�h
 where unit � �nil�d�i�r�h
 where

nil�x
 � � nil�x
 � �

d�x�s
 � s d�x�s
 � s � �

i�s�y
 � s i�s�y
 � s � �

r�a�s�b
 � s r�a�s�b
 � if a��b then s � � else s � �

h�
�
 �
� h�
�
 �
�

h�
x�� � � � � xr�
 �
x� � � � �� xr� h �l
 �
maximum�l
�

38

For the counting algebra this results in the following recurrence for the matrix
alignment�

alignment��i� j� �

�if i � � � j � zj �
�#� then � else ���

�if i � � � j � zi�� ��
�#� then alignment��i� �� j� else ���

�if i � � � j � zj ��
�#� then alignment��i� j � �� else ���

�if i � � � j � zi�� ��
�#� � zj ��

�#� then alignment��i� �� j � �� else ��

And for the unit cost algebra�

alignment��i� j� � max�

�if i � � � j � zj �
�#� then ��� else � �� ��

�if i � � � j � zi�� ��
�#� then �alignment��i� �� j�� �� else � �� ��

�if i � � � j � zj ��
�#� then �alignment��i� j � ��� �� else � �� ��

�if i � � � j � zi�� ��
�#� � zj ��

�#� then �if zi�� � zj

then alignment��i� �� j � �� � �

else alignment��i� �� j � ��� �� else � ���

Solving dependencies Consider the example of local similarity shown in Sec�
tion ���� By adding the production

loc�align � alignment ���

skip�right ��� loc�align ��� achar ���

skip�left ��� achar ��� loc�align ��� h

we extended the algorithm for global similarity to an algorithm for local
similarity� Following the translation scheme of the last paragraphs we derive the
matrix recurrence for loc align�

loc align��i� j� � max�

�alignment��i� j�� ��

�if i � � � j � zj ��
�#� then �loc align��i� j � ��� else � �� ��

�if i � � � j � zi�� ��
�#� then �loc align��i� �� j�� else � ���

The dependency between loc align��i� j� and alignment��i� j� leads us to a
new issue not present in the functional version of the algorithm� Functional
languages are data�driven� so in the functional prototype of the algorithm the
computational model of the programming language guarantees that all computa�
tions are made on demand� Since we cannot assume this in an imperative setting�
we have to �nd a suitable ordering of calculation� so that all dependencies are
solved and all values are calculated before they are used� For the small example
shown here this is an easy task� But consider an algorithm with about �� pro�
ductions and various dependencies between them� Finding a suitable order of
calculation is a strenuous and error�prone venture� Solving this problem is one
of the tasks of the compiler described in the next section�

39

	�� Compiling ADP notation to C

In the previous section we showed how to derive the traditional recurrences in a
systematic way� as an intermediate step towards an implementation of an ADP
algorithm in an imperative programming language� such as C� The C program
can be tested systematically against the Haskell prototype� a procedure that
guarantees much higher reliability than ad�hoc testing� Still� the main di�culties
with this approach are twofold� It proves to be time consuming to produce by
hand a C program equivalent to the Haskell prototype� Furthermore� for sake
of e�ciency� developers are tempted to perform ad�hoc yield size analysis and
use special combinators in the prototype� This introduces through the backdoor
the possibility of subscript errors otherwise banned by the ADP approach� The
compiler currently under development eliminates both problems�

Aside from parsing the ADP program and producing C code� the core of
the compiler implements yield size and dependency analysis� and performs the
translation steps described in the previous section� With respect to the evalua�
tion algebra we follow the strategy that simple arithmetic functions are inlined�
while others must be provided as native C functions� Compiler options provide a
simpli�ed translation in the case where the evaluation algebra computes scalar
answers rather than lists� As an example� the code produced for the grammar
globsim is shown in Figure ���

We also added a source�to�source option to the compiler� reproducing ADP
input with all ��� operators replaced by variants bound to exact yield sizes�
Hence� the user of the prototype is no longer committed to delicate tuning ef�
forts�

� Conclusion

��� Virtues of ADP

What has been achieved with respect to our goal of making dynamic program�
ming a more systematic e�ort! First of all� we can give clear methodical guidance
for the development of DP recurrences�

�� Design the signature �� representing explicitly all cases that might in�uence
evaluation of candidates�

�� Design evaluation algebras� at least the enumeration� counting and one scor�
ing algebra� the latter describing the objective of the application�

�� Design the grammar de�ning the search space�
�� Improve e�ciency by grammar and algebra transformations �see below��
�� Test the design using search space enumeration and plausibility checking via

the counting algebra�
�� Experiment with alternative algorithmic ideas using the functional proto�

type�

� When the algorithm design has stabilized and has been successfully tested�

generate the C implementation and validate it against the functional proto�
type�

40

void calc alignment�int i� int j

f
struct t result �v
��!

if ��j�i
 �� �
 f if �z
j� �� �	�
 f
v
�� � allocMem��
!

g else f v
�� � NULL! g!
g else f v
�� � NULL! g! � nil x � � �

if ��j�i
 �� �
 f if �z
i��� �� �	�
 f
v
�� � allocMem�alignment
i���
j� � gap�z
i���

!

g else f v
�� � NULL! g!
g else f v
�� � NULL! g! � d x s � s � gap�x
 �

if ��j�i
 �� �
 f if �z
j� �� �	�
 f
v
�� � allocMem�alignment
i�
j��� � gap�z
j�

!

g else f v
�� � NULL! g!
g else f v
�� � NULL! g! � i s y � s � gap�y
 �

if ��j�i
 �� �
 f if ��z
i��� �� �	�
 "" �z
j� �� �	�

 f
v
�� � allocMem�alignment
i���
j��� � w�z
i���� z
j�

!

g else f v
�� � NULL! g!
g else f v
�� � NULL! g! � r a s b � s � w�a�b
 �

v
�� � append�v
��� v
��
! � ��� �

v
�� � append�v
��� v
��
! � ��� �

v
�� � append�v
��� v
��
! � ��� �

v
�� � maximum�v
��
! � h x �
maximum x� �

freemem result�v
��
!

alignment
i�
j� � ��v
��
�value!

freemem result�v
��
!

g!

void mainloop�

f
int i! int j!

for �j��! j��n! j��

for �i�j! i���! i��

calc alignment�i� j
!

printAxiom�alignment
��
n�
!

g!

Fig� ��� C	Code produced by the ADP compiler for grammar globsim with algebra
wgap

41

Compared to the classic description of DP algorithms� formulated exclusively
by matrix recurrences� we have achieved several improvements�

An ADP speci�cation is more abstract than the traditional recurrences� Sepa�
ration between search space construction and evaluation is perfect� Tree gram�
mars and evaluation algebras can be combined in a modular way� and the re�
lationships between problem variants can be explained clearly� With a little
experience� it becomes easy to judge whether a new problem variation a�ects
the algebra� the grammar� or both�

The ADP speci�cation is also more complete� DP algorithms in the literature
often claim to be parametric with respect to the scoring function� while the
initialization equations are considered part of the search algorithm �DEKM����
In ADP� it becomes clear that initialization semantically is the evaluation of
empty candidates� and is speci�ed within the algebra�

Dynamic programmers have discovered many tricks that improve the e��
ciency of a DP algorithm� In the ADP framework� many such tricks turn into

techniques� which can be formalized as transformation schemes� taught� and re�
used� This aspect is elaborated in �GM����

Our formalization of Bellman�s principle is more general than commonly seen�
Objectives like complete enumeration or statistical evaluation of the search space
now fall under the framework� If maximization is the objective� our criterion
implies Morin�s formalization �strict monotonicity� �Mor��� as a special case�

The ADP speci�cation is more reliable� The absence of subscripts excludes a
large class of errors that are traditionally hard to �nd� Furthermore� the func�
tional language prototype allows systematic testing of alternative algorithmic
ideas� and validation of the ultimate imperative program code�

��� Scope and limitations of ADP

The scope of a programming method can hardly be de�ned formally� We think
that ADP as presented here is applicable to all DP problems over sequential
data� �	Sequential
 here does not mean we are restricted to problems on textual
strings� as witnessed by our example of optimal matrix chain multiplication��
This claim of scope results from the observation that our initial idea � computing
symbolically the formulas that evaluate to answers � is universally applicable�

This does not mean that our simple ADP notation is su�cient to express
all the ingenuity that practitioners of dynamic programming may exhibit� Yet�
many ideas that we have seen integrate smoothly into the ADP framework� Some
algorithms compute di�erent types of informations from di�erent subproblems�
This leads to many�sorted evaluation algebras� with one objective function per
sort� but otherwise no change� More di�cult are the recurrences that use precom�
puted information to reduce the number of nested for�loops� In the functional
prototype� this can be accommodated by providing combinators with extra ar�
guments� but the resulting programs can no longer be interpreted as a regular
tree grammar�

42

��� Future work

Moving on from sequences to more structured data like trees or two dimensional
images� the new technical problem is to provide a suitable tabulation method�
To this end� we currently study local similarity problems on trees�

Another interesting extension in the realm of sequential data is to consider
language intersection and complement� We may allow productions with and and
butnot operators� written u� v $$$ z and u� v n n n z� The former means
that an input string can be reduced to u if it can be reduced to both v and z�
The latter means that it can be reduced to u if it can be reduced to v� but not
to z� While this clearly leads out of the realm of context free yield languages� it
is easy to implement in the parser� and quite useful in describing complicated
pattern matching applications�

Returning to the ADP method as presented here� we end with pointing out an
open problem that can be studied systematically now for the �rst time� In many
DP applications� particularly in biosequence analysis where data size is large�
space rather than time is the limiting resource� Algorithm designers therefore try
to minimize the number of tables used by the algorithm� With ADP� we can �rst
describe the algorithm by the yield grammar� and then decide which parsers for
the nonterminals of the grammar must be tabulated to prevent combinatorial
explosion� and which may be implemented as functions or inline code� These
decisions are not independent� If one parser is tabulated� another one need not
be� Given the grammar� is there an algorithm to determine the minimal number
of required tables!

� Acknowledgements

We are grateful to Marc Rehmsmeier for a careful reading of this manuscript�

References

�AHU��� A� V� Aho� J� E� Hopcroft� and J� D� Ullman� Data Structures and Algo�
rithms� Addison	Wesley� Reading� MA� USA� �����

�BB��� G� Brassard and P� Bratley� Algorithmics� Theory and Practice� Prentice	
Hall� �����

�BD��� R� Bellman and S�E� Dreyfus� Applied Dynamic Programming� Princeton
University Press� �����

�Bel��� R� Bellman� Dynamic Programming� Princeton University Press� �����

�BM��� R� S� Bird and O� de Moor� From dynamic programming to greedy algo	
rithms� In B� Moeller� editor� State�of�the�Art Seminar on Formal Program
Development� Springer LNCS ���� �����

�Bra��� W� S� Brainerd� Tree generating regular systems� Information and Control�
�
��������� �����

�CLR��� T�H� Cormen� C�E� Leiserson� and R�L� Rivest� Introduction to Algorithms�
MIT Press� Cambridge� MA� �����

43

�Cur��� S� Curtis� Dynamic programming� A di�erent perspective� In R� Bird
and L� Meertens� editors� Algorithmic Languages and Calculi� pages �����
Chapman � Hall� London� U�K�� �����

�DEKM��� R� Durbin� S� Eddy� A� Krogh� and G� Mitchison� Biological Sequence
Analysis� Cambridge University Press� �����

�EG��� D� Evers and R� Giegerich� Reducing the conformation space in RNA struc	
ture prediction� In German Conference on Bioinformatics� �����

�Gie��� R� Giegerich� A Systematic Approach to Dynamic Programming in Bioin	
formatics� Bioinformatics� ����������� �����

�GKW��� R� Giegerich� S� Kurtz� and G� F� Weiller� An algebraic dynamic program	
ming approach to the analysis of recombinant DNA sequences� In Proc�
of the First Workshop on Algorithmic Aspects of Advanced Programming
Languages� pages ������ �����

�GM��� R� Giegerich and C� Meyer� Algebraic dynamic programming� In �th In�
ternational Conference on Algebraic Methodology And Software Technology
�AMAST�� ����� To appear�

�Got��� O� Gotoh� An improved algorithm for matching biological sequences� J�
Mol� Biol�� ������������ �����

�GS��� R� Giegerich and K� Schmal� Code selection techniques� Pattern matching�
tree parsing and inversion of derivors� In Proc� European Symposium on
Programming ����� pages �
������ Springer LNCS ���� �����

�GS��� R� Giegerich and P� Ste�en� Implementing algebraic dynamic program	
ming in the functional and the imperative paradigm� In E�A� Boiten
and B� M�oller� editors� Mathematics of Program Construction� pages �����
Springer LNCS ����� �����

�Gus��� D� Gus
eld� Algorithms on Strings	 Trees	 and Sequences� Cambridge Uni	
versity Press� �����

�Hut��� G� Hutton� Higher order functions for parsing� Journal of Functional Pro�
gramming� ����������
�� �����

�Meh�
� K� Mehlhorn� Data structures and algorithms� Springer Verlag� ���
�
�MG��� C� Meyer and R� Giegerich� Matching and Signi
cance Evaluation of Com	

bined Sequence	Structure Motifs in RNA� Z�Phys�Chem�� ������������
�����

�Mit�
� L� Mitten� Composition principles for the synthesis of optimal multi	stage
processes� Operations Research� ����������� ���
�

�Moo��� O� de Moor� Dynamic Programming as a Software Component� In M� Mas	
torakis� editor� Proceedings of CSCC	 July
��	 Athens� WSES Press� �����

�Mor��� T� L� Morin� Monotonicity and the principle of optimality� Journal of
Mathematical Analysis and Applications� ���������
� �����

�Sed��� R� Sedgewick� Algorithms� Addison	Wesley� �nd edition� �����
�SW��� T� F� Smith and M� S� Waterman� The identi
cation of common molecular

subsequences� J� Mol� Biol�� �
���������� �����
�ZS�
� M� Zuker and S� Sanko�� RNA secondary structures and their prediction�

Bull� Math� Biol��
���������� ���
�

44

