Towards a Discipline of Dynamic Programming

Robert Giegerich, Carsten Meyer, Peter Steffen

Faculty of Technology, Bielefeld University
Postfach 10 01 31
33501 Bielefeld, Germany
{robert,cmeyer,psteffen}@techfak.uni-bielefeld.de

Abstract. Dynamic programming is a classic programming technique,
applicable in a wide variety of domains, like stochastic systems analysis,
operations research, combinatorics of discrete structures, flow problems,
parsing ambiguous languages, or biosequence analysis. Yet, heretofore
no methodology was available guiding the design of such algorithms.
The matrix recurrences that typically describe a dynamic programming
algorithm are difficult to construct, error-prone to implement, and almost
impossible to debug.

This article introduces an algebraic style of dynamic programming over
sequence data. We define its formal framework including a formalization
of Bellman’s principle. We suggest a language for algorithm design on a
convenient level of abstraction. We outline three ways of implementation,
including an embedding in a lazy functional language. The workings of
the new method are illustrated by a series of examples from diverse areas
of computer science.

1 The power and scope of dynamic programming

1.1 Dynamic programming: a world without rules?

Dynamic programming (DP) is one of the classic programming paradigms, in-
troduced even before the term Computer Science was firmly established. When
applicable, DP often allows to solve combinatorial optimization problems over a
search space of exponential size in polynomial space and time. Bellman’s “Prin-
ciple of Optimality” [Bel57] belongs to the core knowledge we expect from every
computer science graduate. Significant work has gone into formally character-
izing this principle [Mor82,Mit64], formulating DP in different programming
paradigms [M0099,Cur97] and studying its relation to other general program-
ming methods such as greedy algorithms [BM93].

The scope of DP is enormous. Much of the early work was done in the area
of physical state transition systems and operations research [BD62]. Other, sim-
pler examples (more suited for computer science textbooks) are optimal matrix
chain multiplication, polygon triangulation, or string comparison. The analy-
sis of molecular sequence data has fostered increased interest in DP. Protein
homology search, RNA structure prediction, gene finding, and discovery of regu-
latory signals in RNA pose string processing problems in unprecedenced variety

and data volume. A recent textbook in biosequence analysis [DEKM98] lists 11
applications of DP in its introductory chapter, and many more in the sequel.

Developing a DP algorithm for an optimization problem over a nontrivial do-
main has intrinsic difficulties. The choice of objective function and search space
are interdependent, and closely tied up with questions of efficiency. Once com-
pleted, all DP algorithms are expressed via recurrence relations between tables
holding intermediate results. These recurrences provide a very low level of ab-
straction, and subscript errors are a major nuisance even in published articles.
The recurrences are difficult to explain, painful to implement, and almost im-
possible to debug: A subtle error gives rise to a suboptimal solution every now
and then, which can hardly be detected by human inspection. In this situation
it is remarkable that neither the literature cited above, nor computer science
textbooks [CLR90,Gus97,Meh84,BB88 AHU83,Sed89] provide guidance in the
development of DP algorithms.

1.2 The promises of Algebraic Dynamic Programming

Algebraic dynamic programming (ADP) is a new style of dynamic programming
and a method for algorithm development, designed to alleviate this situation.
It allows to design, reason about, tune and even test DP algorithms on a more
abstract level. This is achieved by a restructuring of concerns: Any DP algorithm
evaluates a search space of candidate solutions under a scoring scheme and an
objective function. The classic DP recurrences reflect the three aspects of search
space construction, scoring and choice, and efficiency in an indiscriminable fash-
ion. In the new algebraic approach, these concerns are separated.

The search space is described by a yield grammar, which is a tree grammar
generating a string language. The ADP developer takes the view that for a given
input sequence, “first” the search space is constructed, leading to an enumeration
of all candidate solutions. This is a parsing problem, solved by a standard device
called a tabulating yield parser. The developer can concentrate on the design of
the grammar.

Evaluation and choice are captured by an evaluation algebra. It is important
(and in contrast to traditional presentations of DP algorithms) that this algebra
comprises all aspects relevant to the intended objective of optimization, but is
independent of the description of the search space. The ADP developer takes
the view that a “second” phase evaluates the candidates enumerated by the first
phase, and makes choices according to some optimality criterion.

Of course, the interleaving of search space construction and evaluation is es-
sential to prevent combinatorial explosion. It is contributed by the ADP method
in a way transparent to the developer. By the separate description of search space
and evaluation, ADP also produces modular and therefore re-usable algorithm
components. More complex problems can be approached with better chance of
success, and there is no loss of efficiency compared to ad-hoc approaches. The
relief from formulating explicit recurrences brings about a boost in programming
productivity, captured by practitioners in the slogan “No subscripts, no errors!”.

The ADP approach has emerged recently in the context of biosequence anal-
ysis, but it pertains to dynamic programming over sequential data in general.
“Sequential data” does not mean we only study string problems — a chain of
matrices to be multiplied, for example, is sequential input data in our sense. An
informal introduction, written towards the needs of the bioinformatics commu-
nity, has appeared in [Gie00]. The present article gives a complete account of the
foundations of the ADP method, and, almost in the style of a tutorial, shows its
application to several classic combinatorial optimization problems in computer
science.

Like any methodical work, this article suffers from the dilemma that for
the sake of exposition, the problems solved have to be rather simple, such that
the impression may arise that methodical guidance is not really required. The
ADP method has been applied to several nontrivial problems in the field of
biosequence analysis. An early application is a program for aligning recombi-
nant DNA [GKW99], when the ADP theory was just about to emerge. Two
recent applications are searching for sequence/structure motifs in DNA or RNA
[MGO02], and the problem of folding saturated RNA secondary structures, posed
by Zuker and Sankoff in [ZS84] and solved in [EGO1].

1.3 Overview of this article

In Section 2, we shall review some new and some well known applications of
dynamic programming over sequence data, in the form in which they are tradi-
tionally presented. This provides a common basis for the subsequent discussion.
By the choice of examples, we illustrate the scope of dynamic programming to a
certain extent. In particular, we show that (single) sequence analysis and (pair-
wise) sequence comparison are essentially the same kind of problem when viewed
on a more abstract level. The applications studied here will later be reformulated
in the style and notation of ADP.

In Section 3 we introduce the formal basis of the algebraic dynamic pro-
gramming method: Yield grammars and evaluation algebras. We shall argue
that these two concepts precisely catch the essence of dynamic programming,
at least when applied to sequence data. Furthermore, we introduce a special
notation for expressing ADP algorithms. Using this notation an algorithm is
completely described on a very abstract level, and can be designed and analysed
irrespective of how it is eventually implemented. We discuss efficiency analysis
and point to other work concerning techniques to improve efficiency.

In Section 4 we formulate yield grammars and evaluation algebras for the
applications described in Section 2. Moreover we show how problem variations
can be expressed transparently using the ADP approach.

Section 5 indicates three ways of actually implementing an algorithm once it
is written in ADP notation: The first alternative is direct embedding and execu-
tion in a functional programming language, the second is manual translation to
the abstraction level of an imperative programming language. The third alter-
native, still under development, is the use of a system which directly compiles
ADP notation into C code.

In the conclusion, we discuss the merits of the method presented here, eval-
uate its scope, and glance on possible extensions of the approach.

2 Dynamic programming, traditional style

In this section we discuss four introductory examples of dynamic programming,
solved by recurrences in the traditional style. They will be reformulated in alge-
braic style in later sections. We begin our series of examples with an algorithmic
fable.

2.1 Calif El Mamun’s caravan

Once upon a time around the year 800, Calif El Mamun of Bagdad, a son of
Harun al Raschid, decided to take his two sons on their first hadj to Mecca. He
called for the camel dealer, in order to compose a little caravan for the three
pilgrims. Each one needed one riding camel, plus three further ones for baggage
and water supplies. The price for the former was five tubes of oil, whereas a
baggage camel was to be somewhat cheaper. After a long afternoon of bargaining,
the following bill was written in the sand of the court yard:

bill; = (1+2) % (3%4+5) (1)

The dealer explained that the (1 + 2) stood for the calif and his two sons,
and there were three baggage camels (4 tubes) and one riding camel (5 tubes)
for each pilgrim. Unfortunately, before the total price could be calculated (which
took a little longer than today in those days), everyone had to turn away for the
evening prayers.

When they returned to business, they found that the wind had erased the
parentheses, leaving only numbers and operators:

billy = 142%3%4+5 (2)

Such selective erasing seemed mysterious. The Imam was called in. He ex-
plained that Allah, while agreeing with the basic constituents of the formula,
had been displeased by the placement of the parentheses, which should therefore
be re-considered. The camel dealer helpfully jumped up to redraw the formula:

billy = (1+2) %3 (4+5) (3)

The dealer argued that now the parentheses showed beautiful symmetry,
pleasant to the eye of any higher being. El Mamun was reluctant to agree.
Although not good at numbers, he could not help to suspect that the tour to
Mecca had become much more expensive. He called for the scientist.

Al Chwarizmi, a famous mathematician already, was a wise as well as a
cautious man. After giving the problem serious consideration, he spoke:

“Honorable Calif, in his infinite wisdom Allah has provided 14 ways
to evaluate this formula, with many different outcomes. For example,

(14+2)*(3%(4+5)) =81, while
(1+ (2% (3%4))+5)=30.

An intermediate outcome would be
(1+2)*((3x4)+5) =51,

just another example. As all readings are equal in Allah’s eyes, the fate
of a good muslim will not depend on the reading adopted, but on the
beneficial effects achieved by the choice.”

Diplomat he was, with this answer Al Chwarizmi hoped to have passed re-
sponsibility back to the Imam. However, Calif El Mamun could think of beneficial
effects himself. He contemplated these words of wisdom over night, and in the
morning he ruled as follows :

1. The fraudulent camel dealer was to be buried in the sand, next to the formula
(1+2)*3x(4+5).

2. The Calif would take possession of all the camels in the dealers stock.

3. Al Chwarizmi was granted 51 tubes of oil for a long-term research project.
The task was to find a general method to redraw the parentheses in a formula
such that the outcome was either minimized or maximized — depending on
whether the Calif was on the buying or on the selling side.

4. Until this research was complete, in any case where parentheses were lacking,
multiplication should take priority over addition.

Today, we can still observe the outcome of this episode: El Mamun became
a very, very rich man, and his name gave rise to the word "mammon”, present
in many modern languages and meaning an awful lot of money. Al Chwarizmi
did not really solve the problem in full generality, since DP was only developed
later in the 1950s by Richard Bellman. But by working on it, he made many
important discoveries in elementary arithmetic, and thus he became the father
of algorithmics. As a consequence of the problem remaining unsolved, until today
multiplication takes priority over addition. This ends our fable.

We now provide a DP solution for El Mamun’s problem. Clearly, explicit
parentheses add some internal structure to a sequence of numbers and operators.
They tell us how subexpressions are grouped together — which are sums, and
which are products. Let us number the positions in the text ¢ representing the
formula:

t=011 + 223 %435 x6d7 + 35899 (4)

such that we can refer to substrings by index pairs: ¢(0,9) is the complete string
t, and ¢(2,5) is 2% 3. A substring ¢(7, j) that forms an expression can, in general,
be evaluated in many different ways, and we shall record the best value for #(, j)

in a table entry T'(, 7). Since addition and multiplication are strictly monotone
functions on positive numbers, an overall value (x + y) or (z * y) can only be
maximal if both subexpressions z and y are evaluated to their maximal values.
So it in fact suffices to record the maximum in each entry. This is our first use
of Bellman’s Principle, to be formalized later.

More precisely, we define

T@,i+1)=n,iftli,i+1)=n (5)
T@,j) =max{T(, k)T (k+1,j)li<k<jikk+1)=c} (6)

where ® is either + or *. Beginning with the shortest subwords of ¢, we can
compute successively all defined table entries.

In 7(0,9) we obtain the maximal possible value overall. If, together with
T(i,7), we also record the position k that leads to the optimal value, then we
can reconstruct the reading of the formula that yields the optimal value. It is
clear that El Mamun’s minimization problem is solved by simply replacing max
by min. Figure 1 gives the results for maximization and minimization of El
Mamun’s bill.

(ol t[2[3 4[5]6] 7 [8] 9 |
of / (@] B3] [79] [2536)] [(30,81)
W/ 1/

2| / |/ /@2 |(66)] [(2424)] |(29,54)
C) | A A W

Al /LB [(A2,12)) |(17,27)
| VA A A VA R

6 / | /] (44 (9,9)

£ | A A A A A A A

3 VA A A A A0 A A Y A VA I 7))

1| A A A A A A I Y A Y A

Fig. 1. Results for the maximization and minimization of El1 Mamun’s bill denoted as
tuple (z,y) where z is the minimal value and y the maximal value.

Note that we have left open a few technical points: We have not provided ex-
plicit code to compute the table T, which is actually triangular, since 7 is always
smaller than j. Such code has to deal with the fact that an entry remains unde-
fined when #(7, 7) is not a syntactically valid expression, like ¢(1,4) = “+ 2 *7.
In fact, there are about as many undefined entries as there are defined ones, and
we may call this a case of sparse dynamic programming and search for a more
clever form of tabulation. Another open point is the possibility of malformed
input, like the non-expression “1 4+ % 2”. The implementation shown later will
take care of all these cases.

Exercise 1 Al Chwarizmi remarked that there were 14 different ways to evalu-
ate the bill. Develop a dynamic programming algorithm to compute the number
of alternative interpretations for a parenthesis-free formula.O

The solution to Exercise 1 closely follows the recurrences just developed,
except that there is no maximization or minimization involved. This one is a
combinatorial counting problem. Although DP is commonly associated with op-
timization problems, we see that its scope is actually wider.

2.2 Matrix chain multiplication

A classic dynamic programming example is the matrix chain multiplication prob-
lem [CLR90]. Given a chain of matrices Ay, ..., A,, find an optimal placement of
parentheses for computing the product A; x...x A,,. The placement of parentheses
can dramatically reduce the number of scalar multiplications needed. Consider
three matrices Aq, As, A3 with dimensions 10 x 100, 100 x 5 and 5 x 50. Multipli-
cation of (A; * As)* Az needs 10% 1005+ 10%5+50 = 7500 scalar multiplications,
in contrast to 10 % 100 % 50 4+ 100 x 5 x 50 = 75000 when choosing Ay * (A % A3).

Let M be a n x n table. Table entry M (i,) shall hold the minimal number
of multiplications needed to calculate A; *...* A;. Compared to the previous ex-
ample, the construction of the search space is a lot easier here since it does not
depend on the structure of the input sequence but only on its length. M (i,j) = 0
for ¢ = j. In any other case there exist j —i possible splittings of the matrix chain
A;, ..., A;j into two parts (A4, ..., Ag) and (Ag4q, ..., A;). Let (r;,¢;) be the dimen-
sion of matrix A;. Multiplying the two partial product matrices requires r;cyc;
operations. Again we observe Bellman’s principle. Only if the partial products
have been arranged internally in an optimal fashion, this product can minimize
scalar multiplications overall. We order table calculation by increasing subchain
length, such that we can look up all the M (i, k) and M (k + 1,) when needed
for computing M (i, 7). This leads to the following matrix recurrence:

for j =1ton do (7
fori=7to 1 do

M(@J‘)Z{

0 fori=7j
min{M (i, k) + M(k+1,5) + ricpe; | i <k <j} fori<y

Minimization over all possible splittings gives the optimal value for M (i,).

This example demonstrates that dynamic programming over sequence data is
not necessarily limited to (character) strings, but can also be used with sequences
of other types, in this case pairs of numeric values.

Exercise 2 Design an algorithm to minimize the size (a) of the largest interme-
diate matrix that needs to be computed, and (b) of the overall storage needed
at any point for intermediate matrices during the computation of the chain
product.O

The first part of Exercise 2 closely follows the recurrences developed above,
while the latter includes optimizing the evaluation order, and is more compli-
cated.

2.3 Global and local similarity of strings

We continue our series of examples by looking at the comparison of strings.
The measurement of similarity or distance of two strings is an important oper-
ation applied in several fields, for example spelling correction, textual database
retrieval, speech recognition, coding theory or molecular biology.

A common formalization is the string edit model. We measure the similarity
of two strings by scoring the different sequences of character deletions (denoted
by D), character insertions (denoted by I) and character replacements (denoted
by R) that transform one string into the other. If a character is unchanged, we
formally model this as a replacement by itself. Thus, an edit operation is applied
at each position.

Figure 2 shows some possibilities to transform the string MISSISSIPPT into
the string SASSAFRAS visualized as alignment.

MISSI--SSIPPI MISSISSIPPI- MISSI---SSIPPI
SASSAFRAS---- ---SASSAFRAS SASSAFRAS-----
RR RIIR DDDD DDD R RRRRI RR RIII DDDDD

Fig. 2. Three out of many possible ways to transform the string MISSISSIPPI into the
string SASSAFRAS. Only deletions, insertions, and proper replacements are marked.

A similarity scoring function d associates a similarity score of 0 with two
empty strings, a positive score with two characters that are considered similar, a
negative score with two characters that are considered dissimilar. Insertions and
deletions also receive negative scores. For strings « of length m and y of length
n, we compute the similarity matrix E,, , such that E(i, j) holds the similarity
score for the prefixes 21,...,2; and y1,...,y;. E(m,n) holds the overall similar-
ity value of z and y.

FE is calculated by the following recurrences:

E(0,0) =0 ®)
fori=0tom—1do E(i+1,0)= E(i,0) + 6(D(zis1)) 9)
forj=0ton—1do E(0,j+1)=E(0,j)+ 6 (yj+1)) (10)

fori=0tom —1do
foryj=0ton—1do
E(i,j+1) + 6(D(zit1))
E(i+1,j+1)=maz< E(i+1,7) +6(I(yj+1)) (11)
E(i,j) 4 6(R(zit1,yj+1))
return E(m,n) (12)

The space and time efficiency of these recurrences is O(mn).

10

Often, rather than computing the (global) similarity of two strings, it is
required to search for local similarities within two strings. In molecular se-
quence analysis, we study DNA sequences, given as strings from four types of
nucleotides, or Protein sequences, given as strings from twenty types of amino
acids. In DNA, we often have long non-coding regions and small coding regions.
If two coding regions are similar, this does not imply that the sequences have
a large global similarity. If we investigate a protein with unknown function, we
are interested in finding a ‘similar’ protein with known biological function. In
this situation the functionally important sequence parts must be similar while
the rest is arbitrary.

Local similarity asks for the best match of a subword of z with a subword of
y. The Smith and Waterman algorithm [SW81] needs O(mn) time and space to
solve this problem. We compute a matrix C, », where the entry (4, j) contains
the best score for all pairs of suffixes of z1...2; and y; ...y;.

C(i,7) = max{score(z',y")|z’ suffix of zy ...z; and y' suffix of y1 ...y;} (13)

Since we look for a local property, it must be possible to match arbitrary
subwords of £ and y without scoring their dissimilar prefixes and suffixes. In
order to reject prefixes with negative scores, all we need to change in comparison
to the recurrences for global similarity (see Equations 8 — 12) is to fix the first
line and column to Zero-values and to add a Zero-value case in the calculation
of the entry C(i + 1,7 + 1). This Zero amounts to an empty prefix joining the
competition for the best match at each point (¢, j). This leads to the following
recurrences:

Ifi=0orj=0, then C(i,j) = 0. (14)
Otherwise,

0

Cli,j+ 1)+ 6(D(xit1))
C(i+1,7) + 6(I(yj1))
C(i,j) + 6(R(zit1,Y541))
return max; ; C (4, §) (16)

Ci+1,j+1)=mazx (15)

Equation 16 performs another traversal of table C' to obtain the highest score
overall.

Exercise 3 Add appropriate for-loops to Equations 14 - 16.0

Exercise 4 Remove maximization in Equation 16. Use instead another table
Dy, such that D(4, j) = maxj<; x<;C(i,7). Can we compute D within the
for-loops controlling Equation 157 O

11

2.4 Fibonacci numbers and the case of recursion versus tabulation

In this last introductory example, we make our first deviation from the tradi-
tional view of dynamic programming. There are many simple cases where the
principles of DP are applied without explicit notice. Fibonacci numbers are a
famous case in point. They are defined by

F1)=1 (17)
F2) =1 (18)
F(i+2)=F@i+1)+ F(i) (19)

Fibonacci numbers may seem atypical as a DP problem, because there is no
optimization criterion. We have already seen (cf. Exercise 1) that optimization is
an important, but not an essential part of the dynamic programming paradigm.

Every student of computer science knows that computing F' as a recursive
function is very inefficient — it takes exactly 2F(n) — 1 calls to F to compute
F(n). Although we really need only the n values F(1) through F(n — 1) when
computing F'(n), each value F'(n — k) is calculated not once, but F'(k+ 1) times.
The textbook remedy to this inefficiency is strengthening the recursion — define

F(n) = F'ib(0,1,1), where (20)
Fib(a,b,i) = if (i = n) then b else F'ib(b,a + b,i + 1) (21)

Here we shall consider another solution. This one requires no redefinition of F" at
all, just a change of data type: Consider F' as an integer array, whose elements
are defined via Equations 17 — 19. In a data driven programming language, its
elements will be calculated once when first needed. In an imperative language,
since F' is data now rather than a function, we need to add explicit control
structure — an upper bound for n and a for-loop to actually calculate the array
elements in appropriate order.

The lesson here is the observation that a table (matrix, array) over some
index domain, defined by recurrences, is mathematically equivalent to a recursive
function defined by the very same recurrences. This gives us a first guiding rule
for the systematic development of DP algorithms: Think of a DP algorithm
as a family of recursive functions over some index domain. Don’t worry about
tabulation and evaluation order, this can always be added when the design has
stabilized.

Exercise 5 Show how this discussion applies to the local similarity problem.
Implement table C as a recursive function, and use another function D for the
last equation. Does function D require tabulation to be efficient?O

12

3 Foundations of the algebraic approach to dynamic
programming

3.1 Basic terminology

Alphabets. An alphabet A is a finite set of symbols. Sequences of symbols are
called strings. € denotes the empty string, A! = A, A" = {az|a € A,z € A"},
At = Un21 A" A = AT U {e}.

Signatures and algebras. A (single-sorted) signature X over some alphabet A
consists of a sort symbol S together with a family of operators. Each operator
o has a fixed arity o : s1...s;,, — S, where each s; is either S or 4. A Y-algebra
7T over A, also called an interpretation, is a set Sz of values together with a
function oy for each operator o. Each oy has type oy : (s1)r...(sk,)1 — Sr where
Ar=A.

A term algebra T arises by interpreting the operators in X as constructors,
building bigger terms from smaller ones. When variables from a set V' can take
the place of arguments to constructors, we speak of a term algebra with variables,
Ts(V), with V' C Tx(V). By convention, operator names are capitalized in the
term algebra.

Tree grammars. Terms will be viewed as rooted, ordered, node-labeled trees
in the obvious way. All inner nodes carry (non-nullary) operators from X, while
leaf nodes carry nullary operators or symbols from A. A term/tree with variables
is called a tree pattern. A tree containing a designated occurrence of a subtree ¢
is denoted C[...t...].

A tree language over Y is a subset of T's;. Tree languages are described by tree
grammars, which can be defined in analogy to the Chomsky hierarchy of string
grammars. Here we use regular tree grammars originally studied in [Bra69]. In
[GS88] they were redefined to specify term languages over some signature. Our
further specialization so far lies solely in the distinguished role of A.

Definition 1 (Tree grammar over X and A.)
A (regular) tree grammar G over X and A is given by

— a set V of nonterminal symbols
— a designated nonterminal symbol Az called the axiom
— a set P of productions of the form v — ¢, where v € V and t € Tx(V)

The derivation relation for tree grammars is —*, with C[..v...] — C[...t...] if
v = t € P. The language of v € V is L(v) = {t € Tx|v —* t}, the language of
Gis L(G) = L(Ax).O

For convenience, we add a lexical level to the grammar concept, allowing
strings from A* in place of single symbols. By convention, achar denotes an
arbitrary character, char c a specific character ¢, string an arbitrary string and
empty the empty input. Also for brevity, we allow syntactic conditions associated
with righthand sides.

13

Grammar globsim, axiom alignment

aignment — match ‘ D ‘ I

SN N

achar alignment aignment achar

N

'$ achar alignment achar

Fig. 3. The tree grammar globsim for global similarity (see Section 2.3)

The yield of a tree is normally defined as its sequence of leaf symbols. Here
we are only interested in the symbols from .4*; nullary constructors by definition
have yield e. Hence the yield function y on T is defined by y(t) = w, where
w € A* is the string of leaf symbols in left to right order.

3.2 Conceptual separation of recognition and evaluation

Any dynamic programming algorithm implicitly constructs a search space from
its input. The elements of this search space have been given different names: pol-
icy in [Bel57], solution in [Mor82], subject under evaluation in [Gie00]. Since the
former two terms have been used ambiguously, and the latter is rather technical,
we shall use the term candidate for elements of the search space. Each candidate
will be evaluated, yielding a final state, a cost, or a score, depending whether
you follow [Bel57], [Mor82] or [DEKM98]. We shall use the term answer for the
result of evaluating a candidate.

Typically, there is an ordering defined on the answer data type. The DP
algorithm returns a maximal or minimal answer, and if so desired, also one or
all the candidates that evaluate(s) to this answer. Often, the optimal answer is
determined first, and a candidate that led to it is reconstructed by backtracking.
The candidates themselves do not have an explicit representation during the DP
computation. Our goal to separate recognition and evaluation requires an explicit
representation of candidates. Figure 4 shows a global similarity candidate.

Imagine that during computing an answer, we did not actually call those
functions that perform the evaluation. Instead, we would apply them symbol-
ically, building up a formula that — once evaluated — would yield this answer
value. Clearly, this formula itself is a perfect choice of candidate representation:

— The formula represents everything we need to know about the candidate to
eventually evaluate it.

— The complete ensemble of such formulas, considered for a specific problem
instance, is a precise description of the search space.

14

candidatel = D ’d” (R ’a’ (I (R ’r’ (R ’1> (R ’i’ (R ’n’ (R ’g’> (Nil
)$)))e)) ’I].’))i)))1)) ’I") ’i’) ;aa)

L) 219) ’ ’

a r n’ e
S S S S
D—R—I“—R—R—R—R—R—NIil—’%’
\d! 70 R\Z7\717 ;I::xn7

a 7g7

219 ’

i

Fig.4. The term representation of a global similarity candidate candidatel for
darling and airline, and the tree representation of this term.

— The idea works for any DP algorithm. After all, when we compute an answer
value, we can as well compute it symbolically and record the formula.

To design a DP algorithm, we hence need to specify the language of formulas,
the search space spawned by a particular input, and their eventual evaluation.

3.3 Evaluation algebras

Definition 2 (Evaluation algebra.) Let X' be a signature with sort symbol Ans.
A Y-evaluation algebra is a X-algebra augmented with an objective function
h : [Ans] — [Ans], where [Ans] denotes lists over Ans. O

In most DP applications, the purpose of the objective function is minimizing
or maximizing over all answers. We take a slightly more general view here. The
objective may be to calculate a sample of answers, or all answers within a certain
threshold of optimality. It could even be a complete enumeration of answers. We
may compute the size of the search space or evaluate it in some statistical fashion,
say by averaging over all answers. This is why in general, the objective function
will return a list of answers. If maximization was the objective, this list would
hold the maximal answer as its only element.

We formulate a signature II for the global similarity example:

Nil: Ans — Ans
D: A x Ans — Ans
I: Ans x A — Ans
R: A x Ans x A — Ans
h: [Ans] — [Ans]

We formulate two evaluation algebras for signature II. The algebra unit
(Figure 5 right) scores each matching character by +1, and each character mis-
match, deletion or insertion by —1. The algebra wgap (Figure 5 left) is a minor
generalization of unit. It uses two parameter functions w and gap, that may score
(mis)matches and deletions or insertions depending on the concrete characters
involved. For example, a phoneticist would choose w(’v’,’b’) as a (positive)
similarity rather than a (negative) mismatch.

15

AnngaP =N Ansynit =IN

wgap = (nil,d,i,r,h) unit = (nil,d,i,r,h)

where where

nil(a) =0 nil(a) =0

d(x,s) =s + gap(x) d(x,s) =s -1

i(s,y) =s + gap(y) i(s,y) =s-1

r(a,s,b) =s + w(a,b) r(a,s,b) =if a==b then s + 1 else s - 1
h([1) =[] h([1) =1

h (1) = [maximum(1)] h () = [maximum(1)]

Fig. 5. Algebras wgap (left) and unit (right)

For term candidatel of Figure 4, we obtain candidatel,; = 2 and
candidatel,gqp = gap(’d’) + w(’a’,’a’) + gap(’i’) + w(’r’,’r’) +
w(?l),)l?) + W(,i,,,i,) + W(,n,,,n,) + w(?e,’,g?) + 0_

3.4 Yield grammars

We obtain an explicit and transparent definition of the search space of a given
DP problem by a change of view on tree grammars and parsing:

Definition 3 (Yield grammars and yield languages.) Let G be a tree grammar
over X and A, and y the yield function. The pair (G, y) is called a yield grammar.
Tt defines the yield language £(G,y) = y(L£(G)). O

Definition 4 (Yield parsing.) Given a yield grammar (G, y) over A and w € A*,
the yield parsing problem is: Find Pg(w) := {t € L(G)|y(t) = w}.O

The search space spawned by input w is Pg(w). For the similarity example
we consider the string z$y~' as input, where $ is a separator symbol not occur-
ring elsewhere. In Section 5.1 the relation between single sequence analysis and
pairwise sequence comparison is discussed. Yield parsing is the computational
engine underlying ADP.

3.5 Algebraic dynamic programming and Bellman’s principle

Given that yield parsing traverses the search space, all that is left to do is
evaluate candidates in some algebra and apply the objective function.

Definition 5 (Algebraic dynamic programming.)

— An ADP problem is specified by a signature X over A, a yield grammar
(G,y) over X, and a Y-evaluation algebra I with objective function hj.

16

— An ADP problem instance is posed by a string w € A*. The search space it
spawns is the set of all its parses, Pg(w).
— Solving an ADP problem is computing

hz{tz | t e Pg(w)}
in polynomial time and space.

O

So far, there is one essential ingredient missing: efficiency. Since the size of the
search space may be exponential in terms of the input size, an ADP problem
can be solved in polynomial time and space only under a condition known as
Bellman’s principle of optimality. In his own words:

“An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.” [Bel57]

We formalize this principle:

Definition 6 (Algebraic version of Bellman’s principle.) For each k-ary op-
erator f in X, and all answer lists z1,..., zx, the objective function h satisfies

[flzr, ... zp) | 21 21, 2 < 2])
=h([fla,...;z5) | 21 < h(z1), ..,z < h(z)])

Additionally, the same property holds for the concatenation of answer lists:

O

The practical meaning of the optimality principle is that we may push the
application of the objective function inside the computation of subproblems,
thus preventing combinatorial explosion. We shall annotate the tree grammar to
indicate the cases where h is to be applied.

3.6 ADP notation

For practical programming in the ADP framework, we introduce a simple lan-
guage. The declarative semantics of this language is simply that it allows to
describe signatures, evaluation algebras and yield grammars. The signature X
is written as an algebraic data type definition in Haskell style. Alike EBNF, the
productions of the yield grammar are written as equations. The operator <<< is
used to denote the application of a tree constructor to its arguments, which are
chained via the ~~~-operator. Operator ||| separates multiple righthand sides
of a nonterminal symbol. Parentheses are used as required for larger trees. The
axiom symbol is indicated by the keyword axiom, and syntactic conditions may
be attached to productions via the keyword with. Using this notation, we write
the signature I and the grammar globsim:

17

data Alignment = Nil Char I
D Char Alignment |
I Alignment Char |
R

Char Alignment Char

globsim alg = axiom alignment where
(nil, d, i, r, h) = alg

alignment = nil <<< char ’§’ 11
d <<< achar "~ alignment 11
i <K alignment ~~~ achar |||
r <<< achar 7" alignment “~"~ achar ... h

3.7 Parsing, tabulation and choice

Given a yield grammar and an evaluation algebra, a tabulating yield parser will
solve a problem instance as declared in Definition 5. Implementation of yield
parsing is explained in detail in Section 5.2. For programming with ADP, we
do not really have to know how yield parsing works. Think of it as a family
of recursive functions, one for each nonterminal of the grammar. However, the
yield parser needs two pieces of information not yet expressed in the grammar:
Tabulation and choice.

If nothing is said about tabulation, the yield parser may compute partial
results many times, quite like our original Fibonacci function. By adding the
keyword "tabulated", we indicate that the parser for a particular nonterminal
symbol shall make use of tabulation. When a tabulated symbol v is used in a
righthand side, we write p v instead of v, indicating that this means a table
lookup rather than a recursive call. Using both tabulated and p v is actually
redundant, but facilitates checking the grammar for consistency.

If nothing was said about choice, the parser would not apply the objective
function and hence return a list of all answers. By adding "... h" to the right-
hand side of a production, we indicate that whenever a list of alternative answers
has been constructed according to this production, the objective function h is to
be applied to it.

With these two kinds of annotation, our yield grammar example globsim
looks like this:

globsim alg = axiom (p alignment) where
(nil, d, i, r, h) = alg

alignment = tabulated(
nil <<< char ’§’ I
d <<< achar “~" p alignment I
i <K p alignment “~~ achar |||
r <<< achar “"7 p aligmnment ~~~ achar ... h)

18

3.8 Efficiency analysis of ADP programs

From the viewpoint of programming methodology, it is important that asymp-
totic efficiency can be analyzed and controlled on the abstract level. This prop-
erty is a major virtue of ADP — it allows to formulate efficiency tuning as gram-
mar and algebra transformations. Such techniques are described in [GMO02]. Here
we give only the definition andthe theorem essential for determining the efficiency
of an ADP algorithm.

Definition 7 (Width of productions and grammar.) Let ¢ be a tree pattern,
and let & be the number of nonterminal or lexical symbols in ¢ whose yield
size is not bounded by a constant. We define width(t) = k — 1. Let 7 be a
production v — tq|...|t,. width(n) = maz{width(ty,..., 1)}, and width(G) =
maz{width(r) | = production in G}. O

Theorem 8 Assuming the number of answers is bounded by a constant, the
execution time of an ADP algorithm described by tree grammar G on input w
of length n is O(n>tTwidth(G)),

Proof: See [GS02] O

3.9 Summary

By means of an evaluation algebra and a yield grammar we can completely spec-
ify a dynamic programming algorithm. We can execute it using a yield parser,
and analyze its efficiency using Theorem &. This completes our framework. Let
us summarize the key ideas of algebraic dynamic programming:

Phase separation: We conceptually distinguish recognition and evaluation phase.
Term representation: Individual candidates are represented as elements of a
term algebra T'x; the set of all candidates is described by a tree grammar.
Recognition: The recognition phase constructs the set of candidates arising from
a given input string, using a tabulating yield parser.

Evaluation: The evaluation phase interprets these candidates in a concrete X-
algebra, and applies the objective function to the resulting answers.

Phase amalgamation: To retain efficiency, both phases are amalgamated in a
fashion transparent to the programmer.

The virtue of this approach is that the conglomeration of issues criticised
above — the traditional recurrences deal with search space construction, evalu-
ation and efficiency concerns in a non-separable way — is resolved by algorithm
development on the more abstract level of grammars and algebras.

4 Four example problems and variations, solved with
ADP

In this chapter, we shall solve our four introductory problems with ADP. We
shall emphasize the systematics of this effort, and in all cases, we shall proceed
as follows:

19

1. We design the signature, representing explicitly all cases that might influence
evaluation.
2. We design three or more evaluation algebras:
— the enumeration algebra, implementing the enumeration of all candidates
of a particular problem instance,
— the counting algebra, computing the size of the search space, in a way
much more efficient than by enumeration,
— one or more scoring algebras, solving our optimization problem.
3. We specify the yield grammar in ADP notation, and apply the ADP program
to some simple example data.
4. We formulate some problem variations.

Executable versions of these algorithms can be found at
http://bibiserv.techfak.uni-bielefeld.de/adp.

4.1 El Mamun’s problem

The signature Rather than adding parentheses, our signature Bill intro-
duces operators Add and Mult to make explicit the different possible internal
structures of El Mamun’s bill.

data Bill = Mult Bill Char Bill |
Add Bill Char Bill |
Ext Bill Char |
Val Char

In the sequel, we consider the three different readings of El Mamun’s bill as
discussed in Section 2.1:

the original bill: (1+2)*((3x4) +5)
the dealer’s reconstruction: ((1+2) % 3) % (4 4 5)
El Mamun’s favourite: 1+ ((2%(3x4))+5)

Figure 6 shows the term representations of these candidates, and their tree rep-
resentations.

The evaluation algebras

The enumeration and the counting algebra.

Ansemm = TBill Anscount =IN

enum = (val,ext,add,mult,h) where count = (val,ext,add,mult,h) where
val =Val val(c) =1

ext = Ext ext(n,c) =1

add = Add add(x,t,y) =x %y

mult = Mult mult(x,t,y) =x *y

h =id h([1) =[]

hilzi,...,z,1) = &1 4+ 4+ 2,]

20

original = Mult (Add (Val ’1°) ’+’ (Val ’2’)) ’#’ (Add (Mult (Val ’3’)
Tk (Val ;4;)) L (Val ;5;))

dealer = Mult (Mult (Add (Val ’1°) ’+’ (Val ’27)) ’%’ (Val ’3’)) ’%’
(Add (Val ’4’) ’+’ (Val ’57%))

elmamun = Add (Val ’1’) ’+’ (Add (Mult (Val °2’) ’%’ (Mult (Val ’3’)
7 (Val ’47))) ’+’ (Val ’57))

Add
VAN

Mult Mult Val '+’ Add

N RN RN
Add ald Add Mult ** Add 17 Mult ’+’ Val
/ I\ VAN JIN /TN JIN]
Val ’+’ Val Mult ’4’ Val Add ’* Val Val '+’ Val Val * Mult ’5’

| | /1IN] JIN T | | /N
o 2 Val % Val 5 Vlal "+ Vlal 34 5 2 Val ** Val
5£7 7L7 717 727 737 747

Fig. 6. The term representations of the three candidates for El Mamun’s bill and their
tree visualizations.

The buyer’s and the seller’s algebra. The following two scoring algebras use
the function decode to convert a digit to an integer value. The buyer, of course,
seeks to minimize the price, the seller seeks to maximize it.

Ansbuyer =IN Ansseller =N

buyer = (val,ext,add,mult,h) where seller = (val,ext,add,mult,h) where
val(c) = decode(c) val(c) = decode(c)

ext(n,c) =10 * n * decode(c) ext(n,c) =10 * n * decode(c)
add(x,t,y) =x +y add(x,t,y) =x +y

mult(x,t,y) =x * y mult(x,t,y) =x *x y

h([]) =[] h([1) =[]

h (1) = [minimum(1)] h (1) = [maximum(1)]

The yield grammar The yield grammar describes all possible internal read-
ings of El Mamun’s formula (and any other such formula).

bill alg = axiom (p formula) where
(val, ext, add, mult, h) = alg

formula = tabulated (
number |||
add <<< p formula ~~~ plus ~~~ p formula |||

mult <<< p formula ~~~ times ~~~ p formula ... h)

21

number = val <<< digit ||| ext <<< number ~~~ digit

digit = char ’0’ ||| char ’1’> ||| char ’2’ ||| char ’3’ |||
char ’4’ ||| char ’5° ||| char ’6° ||| char *7’ |||
char ’8’ ||| char ’9’
plus = char ’+’
times = char ’*’
Using this grammar, the four algebras, and input z = "1+2%3x4+5" we ob-
tain:
bill enum = [Add (Val °1’) ’+’ (Add (Mult (Val ’2’) ’*’ (Mult (Val ’3?)

7%’ (Val ’4’))) ’+’ (Val ’57)), Add (Val ’1’) ’+’ (Add (Mult (Mult (Val
222) ’x? (Val ’3%)) ’*’ (Val ’4°)) ’+’ (Val ’5’)), Add (Val ’1°) °’+’
(Mult (Val ’2°) °’%’> (Add (Mult (Val °3’) ’%’ (Val ’4°)) ’+’ (Val ’5°))),
..

bill count = [14]
bill buyer = [30]
bill seller = [81]

The first call yields a protocol of the complete search space traversed in all
four cases. This is feasible only for small inputs, but is a most helpful testing
aid. The second call merely computes the size of the search space - for all z, note
the invariance [length(bill enum)] = bill count. The other two calls solve
the problems of minimizing and maximizing the value of the formula.

Problem variation: A processor allocation problem

Computation in the days of El Mamun was very slow. A good computing
slave took about 2 minutes to perform an addition, and 5 minutes to perform a
multiplication. Even then, understanding the value of a number (once read) took
practically no time (0 minutes). Fortunately, there were slaves abound, and they
could work in parallel as much as the formula permitted. The following algebra
selects for the formula that has the shortest computation time:

Anstime =IN (meaning minutes)

time = (val,ext,add,mult,h) where
val(c) =0

ext(n,c) =0

add(x,t,y) =max(x,y) + 2
mult(x,t,y) =max(x,y) + 5

h([D) =[]

h (1) = [minimum(1)]

Evaluating the three candidates shown in Figure 6 we find computation times
between 12 and 14 minutes

hloriginal,dealer,elmamun] =
minimum[12, 12, 14] =12

and we find that 12 minutes is actually optimal: bill time = [12].

22

Exercise 6 Modify the algebra to compute the average computation time of a
formula under the assumption that all possible readings are equally likely.O

4.2 Optimal matrix chain multiplication

The signature As in the previous example, we introduce two operators to
represent parenthesization of an expression. An expression can consist of a single
matrix or of a multiplication of two expressions.

data Matrixchain = Mult Matrixchain Matrixchain
Single (Int, Int)

Taking from Section 2.2 our example matrices, A; : 10 x 100, A5 : 100 x 5
and Az : 5 x 50, we get two candidates for matrix chain multiplication. Figure 7
shows the term representation of these candidates and their tree representation.

candidatel = Mult (Single (10,100)) (Mult (Single (100,5)) (Single
(5,50)))
candidate2 = Mult (Mult (Single (10,100)) (Single (100,5))) (Single
(5,50))
Mult Mult
Single Mult Mult Single
(10,100) Single Single Single Single (5,50)
(100,5) (5,50) (10,100) (100,5)

Fig. 7. The term representations of the two candidates for the example matrices and
their tree representations.

The evaluation Algebras

The enumeration and the counting algebra.

AnSenum = Tratrizehain AnScount =IN

enum = (single,mult,h) where count = (single,mult,h) where
single = Single single((r,c)) =1

mult = Mult mult (x,y) =x *y

h =id h([1) =[]

h(lzy,...,2.]) = [x1+ -+ x.]

23

The scoring algebra The algebra for determining the minimal number of scalar
multiplications uses a triple (r,m, ¢) as answer type. (r,¢) denotes the dimension
of the resulting matrix and m the minimal number of operations needed to
calculate it. With this answer type writing down the algebra is simple:

Ansminmult =IN x IN x IN

minmult = (single,mult,h) where

single((r,c)) = (r,0,c)
mult((r,m,c),(r’,m’,c’)) = (r,m+m’ + r*c*c’,c’)
h([1) =[]

h (1) = [minimum(1)7*

The yield grammar The yield grammar describes all possible combinations
of parentheses.

matrixmult alg = axiom (p matrices) where
(single, mult, h) = alg

matrices = tabulated (
single <<< achar 11
mult <<< p matrices “”~ p matrices ... h)

For input z = [(10,100), (100,5),(5,50)] we obtain:

matrixmult enum = [Mult (Single (10,100)) (Mult (Single (100,5))
(Single (5,50))),Mult (Mult (Single (10,100)) (Single (100,5)))
(Single (5,50))]

matrixmult count

[2]
[(10,7500,50)]

matrixmult minmult

Problem variation: Minimizing intermediate storage

Another interesting exercise is to determine the optimal evaluation order for
minimizing the memory usage needed for processing the matrix chain. This is
motivated by the fact that memory allocated during calculation can be released
in succeeding steps. Consider two matrix chains Cy and C3. For multiplying
C1 * Uy we have two possible orders of calculation. When processing C first
we have to store the resulting matrix while processing C; and then store both
results during this multiplication. As a second possibility, we can process Cs
first and store the resulting matrix while calculating C;. Let maxloc C be the
biggest memory block allocated during calculation of matrix chain C. Let loc C'
be the size of the resulting matrix. loc A; = 0 for all input matrices. The minimal
memory usage for processing C; x Cs is given by

! The objective function considers all three triple elements for minimization. But since
r and c are the same for all candidates for a fixed subchain, only m is relevant to
this operation.

24

mazloc C1 Cy = (22)
min{maz{mazloc Cy,loc C1 + mazloc Cz,loc C1 + loc C2 + loc C1Cs}
maz{mazloc Cz,loc Cy + mazloc C1,loc C1 + loc Ca2 + loc C:1C2}}

This can be expressed by the following algebra:

AnSminmem =INxIN x IN

minmem = (single,mult,h) where
single((r,c)) = (r,0,c)
mult((r,m,c),(r’,m’,c’)) = (r, minimum
[maximum [m,r*c+ m’,r*c + r’* c’ + r*c’],
maximum [m’,r’#c’+ m,r*c + r’* ¢’ + r*c’]],c?)
h([1) =1
h (1) [minimum(1)]

Exercise 7 It is true that this approach determines the minimal memory usage
of a given matrix chain problem, but it does not report the responsible candidates
of the solutions. Find a simple extension to the grammar which also reports an
optimal candidate.O

4.3 Global and local similarity in strings and biosequences
The signature

data Alignment = Nil Char I
D Char Alignment |
I Alignment Char I
R Char Alignment Char

Figure 8 shows the term representation of a global similarity candidate and
its tree representation.

candidatel = D ’d” (R ’a’ (I (R ’r> (R ’1> (R ’i’ (R ’n’ (R ’g’> (Nil
)$)))e)) ’I].’))i)))1)) ’I") ’i’) ;aa)

I P oy 4R 370 n’ ‘e’
D Lléﬁé L
Ny N - o N

T

7$7

717 ;I::\

Fig. 8. The term representation of a global similarity candidate candidatel for
darling and airline and the tree representation of this term (lying on its side).

25

The evaluation algebras

The enumeration and the counting algebra

Ansenum = TAlignment Anscount =N
enum = (nil,d,i,r,h) where count = (nil,d,i,r,h) where
nil =Nil nil(a) =1
d =D d(x,s) =5
i =1 i(s,y) =s
r =R r(a,s,b) =5
h =id h([1) =[]
h{lzy,...,2:1) = [&1 + - + z,]
The scoring algebras
Answgep = IN Ansynit = IN
wgap = (nil,d,i,r,h) where unit = (nil,d,i,r,h) where
nil(a) =0 nil(a) =0
d(x,s) =s + gap(x) d(x,s) =s -1
i(s,y) =s + gap(y) i(s,y) =s -1
r(a,s,b) =s + w(a,b) r(a,s,b) =if a==b then s + 1 else s - 1
h([1) =1 h([1) =[]
h (1) = [maximum(1)] h (1) = [maximum(1)]

The yield grammars

Global similarity The yield grammar describes all possible ways to transform
one string into the other by character replacement, deletion and insertion.

globsim alg = axiom (p alignment) where
(nil, d, i, r, h) = alg

alignment = tabulated(
nil <<< char °’$’

Y
d <<< achar “~" p alignment I
i < p alignment ~~~ achar |||
r <<< achar “"" p alignment ~~~ achar ... h)
For input z = "darling$enilria" we obtain:

globsim enum = [D ’d’ (D ’a’ (D ’r’ (D ’1’ (D ’i’ (D ’n’> (D ’g’ (I (I (I
(I (I (T (T (Nil ’$°) ’e’) ’n’) ’i’) °1°) ’r’) ’i’) ’a’))))))),D ’d> (D
’a’ (D ’r?> (D °1”> (D ’i’> (D ’n’> (I (D ’g’ (I (I (I (I (I (I (Nil °$’)
’e?) 'n?) i) 1) ’r?) i) ’a’)))))),D ’d? (D ’a’ (D ’r’ (D ’1’ (D
’i> (D ’n’ (I (T (D ’g’ (I (I (I (T (I (Nil ’$’) ’e’) ’mn’) ’i’) °17)
’r2)) i) Ca’)»N)...]

globsim count = [48639]

globsim unit = [2]

26

Local similarity To formulate the yield grammar for local similarity, we modify
the signature. We introduce two new operators skip_left and skip_right for
skipping characters in the beginning of z and y. To allow skipping at the end of
z and y, we modify the argument of Nil to be an arbitrary string, including the
separator symbol.

locsim alg = axiom (p loc_align) where
(nil, d, i, r, h) = alg

skip_right a b = a
skip_left a b b

loc_align = tabulated (
p alignment

skip_right <<< p loc_align """ achar
skip_left <<< achar "~ p loc_align ... h)
alignment = tabulated (

nil <<< string [11

d <<< achar """ p alignment [11

i << p alignment “~~ achar |||

r <<< achar """ p alignment “~~ achar ... h)

For input z = "darling$enilria" we obtain:

locsim enum = [Nil (0,15),D ’d’ (Nil (1,15)),D °’d’ (D ’a’ (Nil (2,15))),
D ’d’ (D ’a’ (D ’r’ (Nil (3,15)))), ...]

locsim count = [682662]

locsim unit = [4]

Problem variation: Affine gap scores

In the algebras presented so far, succeeding insertions respectively deletions
achieve the same score as the same number of single gaps (deletions and inser-
tions). But in order to analyze biological sequence data, it is more adequate to
use an affine gap score model. This means to assign an opening cost (open) to
each gap and an extension cost (extend) for each deleted respectively inserted
character. This results in a better model favouring few long gaps than having
over many short gaps. The use of affine gap scores was introduced in [Got82].

The signature In order to distinguish the opening of a gap and the extension
of a gap we have to extend the signature Alignment:

data Alignment = Nil Char I
D Char Alignment |
I Alignment Char I
R Char Alignment Char |
Dx Char Alignment |
Ix Alignment Char

27

Affine gap score algebra

Ansaffine =IN

affine = (nil,d,i,r,dx,ix,h) where

nil(a) =0

d(x,s) =s + open + extend
i(s,y) =s + open + extend
r(a,s,b) =s + w(a,b)
dx(x,s) =s + extend
ix(s,y) =s + extend

h([1) =[]

h (D = [maximum(1)]

The yield grammar In the modified yield grammar for global similarity, we
have to distinguish the opening of a gap and the extension of a gap.

affineglobsim alg = axiom (p alignment) where
(nil, d, i, r, dx, ix, h) = alg

alignment = tabulated (
nil <<< char ’$’ Y

d <<< achar “77 p xDel 1
i < p xIns “~~ achar |||
r <<< achar ~"7 p alignment ~~~ achar ... h)
xDel = tabulated (
p alignment [
dx <<< achar ~~~ p xDel ... h)
xIns = tabulated (

p alignment [

ix <<< p xIns “~~ achar ... h)

To achieve the yield grammar for local alignments using the affine gap score
model, the grammar for global alignments has to be modified in the same manner
as shown for the simple gap score model.

4.4 Analyses on Fibonacci

The examples we have seen so far work on sequences of input data. Calculating
the Fibonacci numbers F'(n) with this approach seems inappropriate, since the
input consists of a single number here. Of course, n can be encoded in unary as
a sequence of length n. But why at all should one want to compute F'(n) in such
a complicated way? We shall provide a grammar which captures the Fibonacci
recursion pattern. Each string of length n gives rise to F(n) parses, and therefore
F(n) is computed by the counting algebra. The interesting part here is the use
of other evaluation algebras, which can be designed to compute other properties
of Fibonacci numbers.

28

The signature

data Fib = F1 1Int
F2 1Int
Fn Fib
Fnl Fib
Fn2 Fib

Int

Int
Int Int

The key idea is that an input string? of length n gives rise to F(n) different
candidates. Operators F1, F2 and Fn shall represent the three equations of the
original Fibonacci definition. Operators Fnl and Fn2 denote the function calls
F(n—1) and F(n—2) — here the input is shortened by 1 respectively 2 elements.
Figure 9 shows the term and tree representations of the two candidates for input

length n = 3.

fib3; = Fn (Fnl (F2 1 1) 1)

fib3, = Fn (Fn2 (F1 1) 1 1)

Fn

Fn2
/I
F|1 1 1

1

Fig. 9. The term and tree representations of the two candidates for F(3).

Evaluation algebras

The enumeration and the counting algebra.

Ansenum = Trip

enum = (f1,f2,fn,fnl,fn2,h) where
f1 =F1

£2 =F2

fn =Fn

fnl =Fnl

fn2 =Fn2

h =id

Anscount =IN

count = (f1,f2,fn,fnl,fn2,h) where
f1(al) =1

f2(al,a2) =1

fn(x) =x

fnl(x,al) =x

fn2(x,al,a2) =x

h([D) =[]

h(lzi,...,z,1) = [z1 + -+ x,]

2 For reasons we will see in the course of this example, we choose input type Int here.

29

The yield grammar

fibonacci alg = axiom (p fib) where
(f1, £2, fn, fnl, fn2, h) = alg

fib = tabulated(
f1 <<< achar 11

f2 <<< achar """ achar 1

fn <<< fibn ‘with® minsize 3)
fibn = fnl <<< p fib ~~" achar Il

fn2 <<< p fib "7 achar """ achar ... h

Note that this example makes use of the syntactic predicate minsize 3 which
guarantees that the alternative fn <<< fibn is only considered for an input of
at least 3. Otherwise we would obtain two possible derivations for fib 2.

For input z = [1,1,1] we obtain:

[Fn (Fn1 (F2 1 1) 1),Fn (Fn2 (F1 1) 1 1)]
[2]

fibonacci enum

fibonacci count

Problem variations: Properties of Fibonacci

In the rest of this section, we show how ADP can be of some use in com-
binatorics. It can be used to compute certain properties or to test a certain
hypothesis. Of course, it does not do inductive poofs, nor can it provide a closed
formula for a combinatorial problem.

In Section 2.4 we made two statements on the properties of F' as a recursive
function: Tt takes exactly 2F(n) — 1 calls to compute F(n), and each value
F(n — k), with n — k > 1, is calculated F(k + 1) times. Giving an algebra for
testing the first statement only needs a slight modification to the above one:

Anscalls =IN

calls = (f1,f2,fn,fn1,fn2,h) where
fi(al) =1

f2(al,a2) =1

fn(x) =1+ x

fnl(x,al) =x

fn2(x,al,a2) =x

h([1) =[]

h(lzy,...,2:1) = [z + - + 2,]

For the second statement we need to introduce some more extensive changes
to the algebra, both in type of the answer value, the definition of the evaluation
functions, and our interpretation of the input sequence. The two parameters n
and k shall be represented as a sequence of length n, with each element the
numeric value m =n — k.

30

Anscale =INx IN x IN (calculations of F(m),n, m)
calc = (£f1,f2,fn,fn1,fn2,h) where

£1 (m) =if m==1 then (1,1,m) else (0,1,m)
£f2(m,m’) =if m==2 then (1,2,m) else (0,2,m)
fn((c,n,m)) = if n==m then (c+1,n,m) else (c,n,m)
fn1((c,n,m),m’) = (c,n+1,m)

fn2((c,n,m),m’,m’?’) = (c,n+2,m)

h([1) =[]

h([(c1,n1,m1), ..., (¢r,np,mr)]1) = [(c1 + ... + ¢r,n1, m1)]

5 Three ways to implement ADP

5.1 Unifying single sequence analysis and pairwise sequence
comparison

We have been considering two kinds of problems: In El Mamun’s and in the
matrix chain problem, the task was to recover an internal structure in a single
sequence x. A candidate ¢ for z has yield(t) = z. In the similarity problem, we are
comparing two sequences z and y. We saw that here a candidate ¢ for inputs z, y
has yield(t) = xy~!. If we choose to include a separator symbol $ between z and
the reverse of y, we have yield(t) = 2$y~!. This is a matter of convenience. To
unify both cases, in the sequel we assume we have a single input z, where either
z==xorz=uxy ! orz=a8y . We assume that z,m = |z|,n = |y|,l = |2|
are known and represented by global variables. Thus, in the pairwise case, even
when we do not use the separator symbol, we know the boundary between x and
y~!in z.

Since z is global, a subword zjt1,...,2; of z is simply represented by the
subscript pair (i,j). Note that ¢ marks the subscript position before the first
character of subword (i,7). This convention allows to use k as the common
boundary of adjacent subwords when splitting (¢, j) into (i, k) and (k, j).

The DP tables storing intermediate results for a subword (¢, §) are triangular,
since we always have ¢ < 7. In the pairwise case, the different parts 4, B and
C of the triangle, as indicated in Figure 10, have a different meaning. Entries
A; ; are derived from the subword (4, j) of z, which is z;1;...z;. Entries C; ; are
derived from the subword (4, j) of z, which is ymint2—j.-.Ymynt1—i. Entries B; ;
are derived from z;11...2y, and Ymint2—j...yn. Depending on the problem at
hand, only a part of A, B or C' may need to be calculated; the global similarity
problem, for example, only needs part B. We shall describe the implementation
for the general case, however.

5.2 Embedding in Haskell

An algorithm written in ADP notation can be directly executed as a Haskell
program. Of course, this requires that the functions of the evaluation algebra

31

0 m m+n+1
0 L
| |
A
X L B
| |
| |
unused L
m | |
__________ e
$ L
|
o C
| |
-1 | |
Y unused L
L
| |
L unused
m+n+1 L

Fig. 10. Compartments of the triangular DP tables

are coded in Haskell. This smooth embedding is achieved by the technique of
parser combinators [Hut92], which essentially turn the grammar into a parser.
We introduce suitable combinator definitions for yield parsing, and add tabula-
tion.

Generally, a parser is a function that, given a subword of the input, returns
a list of all its parses.

Lexical parsers The lexical parser achar recognizes any single character except
the separator symbol. Parser string recognizes a (possibly empty) subword.
Specific characters or symbols are recognized by char and symbol. Parser empty
recognizes the empty subword.

> type Subword (Int,Int)
> type Parser b = Subword -> [b]

> empty :: Parser ()
> empty (i,j) = [O | 1 == j]

> achar :: Parser Char
> achar (i,j) = [z!j | i+l == j, z!j /= ’$’]

32

> char :: Char -> Parser Char
> char ¢ (i,j) [c | i+1 == j, z!j == <]

> string :: Parser Subword
> string (i,j) = [(i,3) | i <= j]

> symbol :: String -> Parser Subword

> symbol s (i,3j) = [(i,j)] and [z!(i+k) == s!!(k-1) | k <-[1..(j-1)]]

Nonterminal parsers The nonterminal symbols are interpreted as parsers,
with the productions serving as their mutually recursive definitions. Each right-
hand side is an expression that combines parsers using the parser combinators.

Parser combinators The operators introduced in the ADP notation are now

defined as parser combinators: | | | concatenates result lists of alternative parses,
and <<< grabs the results of subsequent parsers connected via ~~~ and suc-
cessively “pipes” them into the tree constructor. Combinator ... applies the

objective function to a list of answers.

> infixr 6 |||
> (11D :: Parser b -> Parser b -> Parser b
> (I rq (1,j) = (1,)) ++ q (1,]7)

> infix 8 <<
(<<<) :: (b => ¢) -> Parser b -> Parser c
> (<) £ q (4,j) = map £ (q (i,3))

A\

> infixl 7 7
> (7)) :: Parser (b -> c¢) -> Parser b -> Parser c
> (") rq (1,7 [fy | k< [i..3], £<-r (i,k), y <- q (k,j)]

> infix 5 ...
> (...) :: Parser b -> ([b] -> [b]) -> Parser b
>(...>)rh (E,j) =h (r (1,j)

Note that the operator priorities are defined such that an expression £ <<<
a~™" b """ cisread as ((f <<< a) “~~ b) ~~~ c. This makes use of cur-
ried functions: the results of parser £ <<< a are calls to £ with (only) the first
argument fixed.

The operational meaning of a with-clause can be defined by turning with
into a combinator, this time combining a parser with a filter. Finally, the keyword
axiom of the grammar is interpreted as a function that returns all parses for the
specified nonterminal symbol and the complete input.

> type Filter = (Int, Int) -> Bool
> with :: Parser b -> Filter -> Parser b
> with q ¢ (i,3) if ¢ (i,j) then q (i,j) else []

33

> axiom :: Int -> Parser b -> [b]
> axiom ax = ax (0,1)

When a parser is called with the enumeration algebra — i.e. the functions
applied are actually tree constructors, and the objective function is the identity
function —, then it behaves like a proper yield parser and generates a list of trees
according to Definition 4. However, called with some other evaluation algebra,
it computes any desired type of answer.

Tabulation Adding tabulation is merely a change of data type, replacing a
recursive function by a recursively defined table. We use a general scheme for this
purpose: The function table records the results of a parser p for all subwords of
an input of size n. The function p does table lookup. Note the essential invariance
p (table n f) = f. Therefore, if r is a tabulated parser, then p r can be
used as a parser function. This is another use of curried functions, which allows
to freely combine tabulated and non-tabulated parsers in the grammar. The
keyword tabulated is now defined as table bound to the global variable I, the
length of the input.

> type Parsetable b = Array (Int,Int) [b]

> table :: Int -> Parser b -> Parsetable b
> table n q = array ((0,0),(n,n))
> [((i,j),q9 (i,7)) | i<- [0..n], j<- [i..nl]

> tabulated = table 1

>p :: Parsetable b -> Parser b
pt (i,j) = if i <= j then t!(i,j) else []

\4

Removing futile computations Consider the production a = £ <<< a "~
char. Our definition of the ~~~ combinator splits subword (i, j) in all possible
ways, including empty subwords on either side. Obviously, achar, which recog-
nizes a single character, has a fixed yield size of 1, leaving the subword (7,7 — 1)
for the yield of nonterminal symbol a. In this case, iteration over all splits of
(7,4) into (i, k) and (k,) is mathematically correct, but a futile effort. The only
successful split can be (¢, j—1) and (j—1, 7). What is worse, since the production
is left-recursive, the last split considered without need is (7, j) and (j, j), which
leads to infinite recursion.

Both situations are avoided by using specializations of the combinator
that are aware of bounded yield sizes and avoid unneccessary splits. For the case
of splitting of a single character, we use ==~ and ~~-, while the fully general case
of an arbitrary, but known yield size limit is treated by the ~~ combinator.

34

> infixl 7 °7,-7"7 , “7-

> (-"") qr (1,j) = [xy | i<j, x <- q (1,i+1), y <- r (i+1,j)]
> (=) qr (1,j) =[xy | i<j, x <-q (E,j-D, v <~ (G-1,))]
> (") :: (Int,Int) -> (Int,Int)

> -> Parser (b -> ¢c) -> Parser b -> Parser c

> (") (1,w) (1’,u’) r q (1,j)

> =[xy | k <= [max (i+1) (j-u’) .. min (i+u) (j-1°)],

> x <-r (i,k), y <- q (k,j)]

These combinators are used in asymptotic efficiency tuning via width re-
duction as described in [GMO02]. Using these special cases, our global similarity
grammar is now written in the form

> globsim alg = axiom (p alignment) where
> (nil, d, i, r, h) = alg

> alignment = tabulated(

> nil <<< char ’$’ 11

> d <K< achar -"" p alignment [

> i < p alignment ~~- achar |||

> r <<< achar -"" p alignment ~"- achar ... h

which now, as a functional program, has the appropriate efficiency of O(mn).

5.3 Deriving explicit recurrences

In the previous section we showed how to embed an ADP algorithm smoothly in
a functional language. Although there exist efficient implementations of Haskell,
it still seems desirable to derive an imperative version of the algorithm. The
sheer amount of data volume present in most dynamic programming domains
and an easy integration in existing systems are two of the reasons. The classic
approach in dynamic programming is to implement the imperative version of
the algorithm starting from the matrix recurrences derived by experience or
intuition. In this section we show how to derive the recurrences in a systematic
way from an algorithm in ADP notation.

Each tabulated production will result in a matrix recurrence relation. The
definitions of non tabulated productions can be inserted directly at the occur-
rences of the corresponding nonterminal symbols in the grammar. In the follow-
ing, we assume that all productions are tabulated.

Translation patterns The matrix recurrences for a grammar G can be derived
by the following translation patterns starting with C[G] in Pattern 23. We use
list comprehension notation, in analogy to set notation: [f(z,y)|z € zs,y € ys]
denotes the list of all values f(z,y) such that z is from list zs and y from

35

list ys. To distinguish a parser call ¢(i,7) from a semantically equivalent table
lookup, we denote the latter by ¢!(4,5). The function pair (low(p),up(p)) shall
provide the yield size of a tree pattern p and is defined by (low(p),up(p)) =
(infyecip) 19l supgep(p) lal) i L(p) # 0, and (low(p), up(p)) = (o0, 0) otherwise.

Clgrammar alg = axiom p where vi =Qq ... Vg = dn] = (23)
forj=0to!
fori =0toj

vnl(i,) = Clanl(i,)
return p!(0,1)

Cla ...n]() = h(Cla] (4, 1)) (24)
Clas 111 oo 111 ae] (4, 7) = Claud(i,5) ++ ... ++Clal(i,5) (25)
Clt <<< a1 """ oo ™77 Qi 4) = (26)

[t(P1, - pr)lp1 € Claa](is ka), - pr € Clae] (Rr—1,)]

for k1,...,k._1, suchthat ko =1, k = J,
mazx(ki—1 + low(q), ki1 —up(qie)) < ki <
min(ki—1 +up(q), ki1 — low(qi1))

Clq with <](i,) =if ¢(i, 7) then C[q](i, j) else [] (27)
Clv](, 5) =ol(i,5) forveV (28)
Clt](, 4) = TIt](,) for t terminal (29)

In Pattern 26, note the direct correspondence to the definition of the
combinator in Section 5.2.

Translation patterns 7 [w] for terminal symbols must be chosen according to
their respective semantics. We give three examples:

Tlchar c](i,j) =ifi+1=jAz; =c then [c] else []
Tlachar](i,j) =ifi+1=jAz; #'$ then [z;] else []
Tlstring](i,j) = if i < j then [(¢,7)] else []

Example We demonstrate the translation for the global similarity example of
Section 4.3:

globsim alg = axiom alignment where
(nil, d, i, r, h) = alg

alignment = nil <<< char ’$’ [11
d <<< achar """ alignment [11
i << alignment ~~~ achar [11
r <<< achar """ alignment ~~~ achar ... h

36

Applying Pattern 23 to this grammar provides the framework of the control
structure:

for j =0to!
fori=0toj
alignment!(i, j) = C[nil <<< ..](4,)

return alignment!(0,1)

Starting with alignment!(i,j) = C[nil <<< ..]J(i,j) we apply Patterns 24
and 25 to the righthand side of the production:

alignment!(i, 7) = h(

C[nil <<< char ’$’](i,5) ++ (30)
Cld <<< achar ~~~ alignment]|(i,j) ++ (31)
C[i <<< alignment ~~~ achar]|(i,j) ++ (32)
C[r <<< achar ~~~ alignment "~~~ achar](i,j)) (33)

The resulting four expressions can be translated separately according to Pat-
tern 26. Expression 30 translates to:

[nil(p1)|py € Tchar *$](i, 5)]
=ifi+1=jAz ="'$ then [nil('$")] else []

Translation of Expressions 31 — 33 makes use of the yield size functions low
and up. Table 1 shows their values for the expressions needed in this example.
The constant yield sizes of the terminal symbols can be taken directly from the
corresponding parser definitions. For nonterminal symbols and arbitrary expres-
sions this needs a deeper analysis of the grammer. This is detailed in [GS02].
Despite the risk of ending with suboptimal code for the resulting matrix recur-
rences, a yield size (0, 00) is always a safe approximation.

z_|(low(x), up(x))

char c (1,1)
achar (1,1)
alignment (1,00)

Table 1. Yield sizes needed for alignment example

37

Proceeding with Expression 31 leads to the following calculation:

Cld <<< achar ~~~ alignment]|(i,)
= [d(p1,p2)|p1 € T[achar](i, k1), ps € C[alignment](ky,j)]
for k1 such that
maz(i + low(achar), j — up(alignment)) < ky <

min(i + up(achar), j — low(alignment))

With yield sizes (1,1) and (1, 00) for achar and alignment the loop variable
kq1 simplifies to a constant k1 = ¢ + 1 and the condition i + 2 < j:

[d(p1,p2)|i +2 < j,p1 € Tlachar](i,i + 1), p2 € Calignment](i + 1,7)]
= [dp1,p2)i +2 < jAzig1 # '$.p1 € [2i11],p2 € alignment!(i + 1, j)]
= [d(ziy1,p2)li +2 < j A ziga £ '8, p2 € alignment!(i 41, j)]

Translating Expressions 32 and 33 in the same way we arrive at the following
recurrence relation for the matrix alignment:

alignment!(i, j) = h((34)
ifi+1=jAz =% then [nil('$")] else [] ++
[d(ziz1,p2) i +2 < A zip1 # 'S, pa € alignment!(i + 1, 5)] ++
[i(pr,z)i +2<jAz #'$,p1 € alignment!(i,j — 1)] ++
[r(ziv1,p2, 2j)[i +3 < jAziw1 # '$' Nz '8,
p2 € alignment!(i+ 1,5 — 1)])
The explicit recurrences derived so far can be used together with code imple-

menting the functions of an arbitrary evaluation algebra. If this code is simple,
it can be inlined, which often allows further simplification of the recurrences.

Inlining evaluation algebras We demonstrate inlining by means of the count
algebra and the unit cost algebra introduced in Section 4.3:

Anscount =N Ansunit =N

count = (nil,d,i,r,h) where unit = (nil,d,i,r,h) where

nil(x) =1 nil(x) =0

d(x,s) s d(x,s) =s -1

i(s,y) =s i(s,y) =s -1

r(a,s,b) =5 r(a,s,b) =if a==b then s + 1 else s - 1
h([D) =[] h([1) =[]

h(lz1,...,2:1) = [x1+ -+ 2] h (1) = [maximum(1)]

38

For the counting algebra this results in the following recurrence for the matrix
alignment:
alignment!(i, j) =
(ifi+1=jAz ='8$ then 1 else 0)+
(ifi+2<jAzi1# '8 then alignment!(i + 1,7) else 0)+
(ifi+2<jAz #'$ then alignment!(i,j — 1) else 0)+
(ifi+3<jAziz1 # '8 Azj # '8 then alignment!(i + 1,5 — 1) else 0)
And for the unit cost algebra:
alignment!(i, j) = max(
(ifi+1=jAz ="'$ then [0] else []) ++
(ifi+2<jAzie1 # 'S then [alignment!(i +1,5) — 1] else []) ++
(ifi+2<jAz; #'$ then [alignment!(i,j — 1) — 1] else []) ++
(fi+3<jAzis1# 'S ANz #£'$ then [if 2,41 = 2
then alignment!(i+ 1,7 — 1)+ 1
else alignment!(i+1,j —1) — 1] else []))

Solving dependencies Consider the example of local similarity shown in Sec-
tion 4.3. By adding the production

loc_align = alignment
skip_right <<< loc_align ™" achar
skip_left <<< achar """ loc_align ... h

we extended the algorithm for global similarity to an algorithm for local
similarity. Following the translation scheme of the last paragraphs we derive the
matrix recurrence for loc_align:

loc_align!(i, j) = max(
[alignment!(i, §)] ++
(ifi+2<jAz #'$ then [loc.align!(i,j — 1)] else []) ++
(ifi+2<jAz41 # '8 then [localign!(i + 1,5)] else []))

The dependency between loc_align!(i, j) and alignment!(i, j) leads us to a
new issue not present in the functional version of the algorithm. Functional
languages are data-driven, so in the functional prototype of the algorithm the
computational model of the programming language guarantees that all computa-
tions are made on demand. Since we cannot assume this in an imperative setting,
we have to find a suitable ordering of calculation, so that all dependencies are
solved and all values are calculated before they are used. For the small example
shown here this is an easy task. But consider an algorithm with about 20 pro-
ductions and various dependencies between them. Finding a suitable order of
calculation is a strenuous and error-prone venture. Solving this problem is one
of the tasks of the compiler described in the next section.

39

5.4 Compiling ADP notation to C

In the previous section we showed how to derive the traditional recurrences in a
systematic way, as an intermediate step towards an implementation of an ADP
algorithm in an imperative programming language, such as C. The C program
can be tested systematically against the Haskell prototype, a procedure that
guarantees much higher reliability than ad-hoc testing. Still, the main difficulties
with this approach are twofold: It proves to be time consuming to produce by
hand a C program equivalent to the Haskell prototype. Furthermore, for sake
of efficiency, developers are tempted to perform ad-hoc yield size analysis and
use special combinators in the prototype. This introduces through the backdoor
the possibility of subscript errors otherwise banned by the ADP approach. The
compiler currently under development eliminates both problems.

Aside from parsing the ADP program and producing C code, the core of
the compiler implements yield size and dependency analysis, and performs the
translation steps described in the previous section. With respect to the evalua-
tion algebra we follow the strategy that simple arithmetic functions are inlined,
while others must be provided as native C functions. Compiler options provide a
simplified translation in the case where the evaluation algebra computes scalar
answers rather than lists. As an example, the code produced for the grammar
globsim is shown in Figure 11.

We also added a source-to-source option to the compiler, reproducing ADP
input with all “~~ operators replaced by variants bound to exact yield sizes.
Hence, the user of the prototype is no longer committed to delicate tuning ef-
forts.

6 Conclusion

6.1 Virtues of ADP

What has been achieved with respect to our goal of making dynamic program-
ming a more systematic effort? First of all, we can give clear methodical guidance
for the development of DP recurrences.

1. Design the signature X', representing explicitly all cases that might influence
evaluation of candidates.

2. Design evaluation algebras, at least the enumeration, counting and one scor-

ing algebra, the latter describing the objective of the application.

. Design the grammar defining the search space.

. Improve efficiency by grammar and algebra transformations (see below).

5. Test the design using search space enumeration and plausibility checking via
the counting algebra.

6. Experiment with alternative algorithmic ideas using the functional proto-
type.

7. When the algorithm design has stabilized and has been successfully tested,
generate the C implementation and validate it against the functional proto-

type.

= o

40

void calc_alignment(int i, int j)

{

struct t_result *v[8];

if ((j-1) == 1) { if (2[j] == ’$") {
v[0] = allocMem(Q);
} else { v[0] = NULL; };
} else { v[0] = NULL; }; /* nil x =0 */

if ((§-i) >= 2) { if (z[i+1] '= ’$’) {
v[1] = allocMem(alignment[i+1][j] + gap(z[i+1]));
} else { v[1] = NULL; };
} else { v[1] = NULL; }; /¥ dxs =35+ gap(x) =*/

if ((G-i) >= 2) { if (z[j] '= ’$") {
v[2] = allocMem(alignment[i][j-1] + gap(z[j1));
} else { v[2] = NULL; };
} else { v[2] = NULL; }; /*isy =s + gap(y) =*/

if ((3-1) >= 3) { if ((z[i+1] !'= ’$’) && (z[j1 !'= ’'$*)) {
v[3] = allocMem(alignment[i+1][j-11 + w(z[i+1l, z[j1));
} else { v[3] = NULL; };
} else { v[3] = NULL; }; /¥*Tasb=s+uwu(a,b) */

v[4] = append(v[2], v[3]); /% 11 */
v[5] = append(v[i]l, v[4]); /% 11 %/
v[6] = append(v[0], v[51); /e |1 %/
v[7] = maximum(v[6]); /% h x [maximum x] */

freemem result (v[6]);
alignment [i] [j] = (*v[7]).value;
freemem result (v[7]);

};

void mainloop()

{

int i; int j;

for (j=0; j<=n; j++)
for (i=j; i>=0; i--)
calc_alignment (i, j);
printAxiom(alignment [0] [n]);

+;

Fig.11. C-Code produced by the ADP compiler for grammar globsim with algebra
wgap

41

Compared to the classic description of DP algorithms, formulated exclusively
by matrix recurrences, we have achieved several improvements:

An ADP specification is more abstract than the traditional recurrences. Sepa-
ration between search space construction and evaluation is perfect. Tree gram-
mars and evaluation algebras can be combined in a modular way, and the re-
lationships between problem variants can be explained clearly. With a little
experience, it becomes easy to judge whether a new problem variation affects
the algebra, the grammar, or both.

The ADP specification is also more complete: DP algorithms in the literature
often claim to be parametric with respect to the scoring function, while the
initialization equations are considered part of the search algorithm [DEKM98].
In ADP, it becomes clear that initialization semantically is the evaluation of
empty candidates, and is specified within the algebra.

Dynamic programmers have discovered many tricks that improve the effi-
ciency of a DP algorithm. In the ADP framework, many such tricks turn into
techniques, which can be formalized as transformation schemes, taught, and re-
used. This aspect is elaborated in [GMO02].

Our formalization of Bellman’s principle is more general than commonly seen.
Objectives like complete enumeration or statistical evaluation of the search space
now fall under the framework. If maximization is the objective, our criterion
implies Morin’s formalization (strict monotonicity) [Mor82] as a special case.

The ADP specification is more reliable. The absence of subscripts excludes a
large class of errors that are traditionally hard to find. Furthermore, the func-
tional language prototype allows systematic testing of alternative algorithmic
ideas, and validation of the ultimate imperative program code.

6.2 Scope and limitations of ADP

The scope of a programming method can hardly be defined formally. We think
that ADP as presented here is applicable to all DP problems over sequential
data. (“Sequential” here does not mean we are restricted to problems on textual
strings, as witnessed by our example of optimal matrix chain multiplication.)
This claim of scope results from the observation that our initial idea - computing
symbolically the formulas that evaluate to answers - is universally applicable.

This does not mean that our simple ADP notation is sufficient to express
all the ingenuity that practitioners of dynamic programming may exhibit. Yet,
many ideas that we have seen integrate smoothly into the ADP framework. Some
algorithms compute different types of informations from different subproblems.
This leads to many-sorted evaluation algebras, with one objective function per
sort, but otherwise no change. More difficult are the recurrences that use precom-
puted information to reduce the number of nested for-loops. In the functional
prototype, this can be accommodated by providing combinators with extra ar-
guments, but the resulting programs can no longer be interpreted as a regular
tree grammar.

42

6.3 Future work

Moving on from sequences to more structured data like trees or two dimensional
images, the new technical problem is to provide a suitable tabulation method.
To this end, we currently study local similarity problems on trees.

Another interesting extension in the realm of sequential data is to consider
language intersection and complement. We may allow productions with end and
butnot operators, written v — v &&& 2z and u - v \\'\ z. The former means
that an input string can be reduced to u if it can be reduced to both v and z.
The latter means that it can be reduced to u if it can be reduced to v, but not
to z. While this clearly leads out of the realm of context free yield languages, it
is easy to implement in the parser, and quite useful in describing complicated
pattern matching applications.

Returning to the ADP method as presented here, we end with pointing out an
open problem that can be studied systematically now for the first time. In many
DP applications, particularly in biosequence analysis where data size is large,
space rather than time is the limiting resource. Algorithm designers therefore try
to minimize the number of tables used by the algorithm. With ADP, we can first
describe the algorithm by the yield grammar, and then decide which parsers for
the nonterminals of the grammar must be tabulated to prevent combinatorial
explosion, and which may be implemented as functions or inline code. These
decisions are not independent. If one parser is tabulated, another one need not
be. Given the grammar, is there an algorithm to determine the minimal number
of required tables?

7 Acknowledgements

We are grateful to Marc Rehmsmeier for a careful reading of this manuscript.

References

[AHUS83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and Algo-
rithms. Addison-Wesley, Reading, MA, USA, 1983.

[BBSS] G. Brassard and P. Bratley. Algorithmics: Theory and Practice. Prentice-
Hall, 1988.

[BD62] R. Bellman and S.E. Dreyfus. Applied Dynamic Programming. Princeton
University Press, 1962.

[Bel57] R. Bellman. Dynamic Programming. Princeton University Press, 1957.

[BM93] R. S. Bird and O. de Moor. From dynamic programming to greedy algo-
rithms. In B. Moeller, editor, State-of-the-Art Seminar on Formal Program
Development. Springer LNCS 755, 1993.

[Bra69] W. S. Brainerd. Tree generating regular systems. Information and Control,
14:217-231, 1969.

[CLR90] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms.
MIT Press, Cambridge, MA, 1990.

43

[Cur97]

S. Curtis. Dynamic programming: A different perspective. In R. Bird
and L. Meertens, editors, Algorithmic Languages and Calculi, pages 1-23.
Chapman & Hall, London, U.K., 1997.

[DEKM98] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence

[EGO1]
[Gie00]

[GKW99)

[GM02]

[Got82]

[GS8S]

[GS02]

[Gus97]
[Hut92]
[Mehs4]
[MG02]

[Mit64]

[Moo99]
[Mor82]

[Sed89]
[SW81]

[ZS84]

Analysis. Cambridge University Press, 1998.

D. Evers and R. Giegerich. Reducing the conformation space in RNA struc-
ture prediction. In German Conference on Bioinformatics, 2001.

R. Giegerich. A Systematic Approach to Dynamic Programming in Bioin-
formatics. Bioinformatics, 16:665-677, 2000.

R. Giegerich, S. Kurtz, and G. F. Weiller. An algebraic dynamic program-
ming approach to the analysis of recombinant DNA sequences. In Proc.
of the First Workshop on Algorithmic Aspects of Advanced Programming
Languages, pages 77-88, 1999.

R. Giegerich and C. Meyer. Algebraic dynamic programming. In 9th In-
ternational Conference on Algebraic Methodology And Software Technology
(AMAST), 2002. To appear.

O. Gotoh. An improved algorithm for matching biological sequences. J.
Mol. Biol., 162:705-708, 1982.

R. Giegerich and K. Schmal. Code selection techniques: Pattern matching,
tree parsing and inversion of derivors. In Proc. European Symposium on
Programming 1988, pages 247-268. Springer LNCS 300, 1988.

R. Giegerich and P. Steffen. Implementing algebraic dynamic program-
ming in the functional and the imperative paradigm. In E.A. Boiten
and B. Moller, editors, Mathematics of Program Construction, pages 1-20.
Springer LNCS 2386, 2002.

D. Gustield. Algorithms on Strings, Trees, and Sequences. Cambridge Uni-
versity Press, 1997.

G. Hutton. Higher order functions for parsing. Journal of Functional Pro-
gramming, 3(2):323-343, 1992.

K. Mehlhorn. Data structures and algorithms. Springer Verlag, 1984.

C. Meyer and R. Giegerich. Matching and Significance Evaluation of Com-
bined Sequence-Structure Motifs in RNA. Z.Phys.Chem., 216:193-216,
2002.

L. Mitten. Composition principles for the synthesis of optimal multi-stage
processes. Operations Research, 12:610-619, 1964.

O. de Moor. Dynamic Programming as a Software Component. In M. Mas-
torakis, editor, Proceedings of CSCC, July 4-8, Athens. WSES Press, 1999.
T. L. Morin. Monotonicity and the principle of optimality. Journal of
Mathematical Analysis and Applications, 86:665—674, 1982.

R. Sedgewick. Algorithms. Addison-Wesley, 2nd edition, 1989.

T. F. Smith and M. S. Waterman. The identification of common molecular
subsequences. J. Mol. Biol., 147:195-197, 1981.

M. Zuker and S. Sankoff. RNA secondary structures and their prediction.
Bull. Math. Biol., 46:591-621, 1984.

44

