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Abstract: Large amounts of protein and domain interaction data are being
produced by experimental high-throughput techniques and computational
approaches. To gain insight into the value of the provided data, we used our new
similarity measure based on the Gene Ontology to evaluate the molecular functions
and biological processes of interacting proteins or domains. The applied measure
particularly addresses the frequent annotation of proteins or domains with multiple
Gene Ontology terms. Using our similarity measure, we compare predicted
domain-domain and human protein-protein interactions with experimentally
derived interactions. The results show that our similarity measure is of significant
benefit in quality assessment and confidence ranking of domain and protein
networks. We also derive useful confidence score thresholds for dividing domain
interaction predictions into subsets of low and high confidence.

1 Introduction

Experimental high-throughput techniques have produced enormous amounts of protein-
protein interaction (PPI) data for different species [1]. These data can now be mined for
new information on the functions and interrelationships of proteins [2]. In particular,
different bioinformatics methods, mainly based on the homology of protein sequences,
have supported the large-scale prediction of human protein networks [3-8]. Additionally,
manually curated literature data and four large-scale yeast-2-hybrid maps have recently
become available for the human interactome [9-13]. However, in contrast to predicted
data, the experimental coverage of the human interactome is still low. To predict protein
interaction networks, domain-domain interactions (DDIs) are often taken into account [8,
14-16]. For this purpose, different sets of DDIs have been predicted using bioinformatics
methods [16-18] and supplement experimental DDI sets derived from 3D structure data
[19,20].
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The Gene Ontology (GO) consortium provides a standardized vocabulary that is
commonly used to annotate genes and their products with biological processes and
molecular functions [21]. This annotation particularly allows for assessing the functional
similarity of genes or their products. Resnik [22] and Lin [23] introduced semantic
similarity measures for the comparison of single terms in “is-a” ontologies. Both
measures are based on the information content of ontology terms. Based on these
semantic similarity measures, several methods for the functional comparison of gene
products have been introduced. Lu ef al. [24] and Lin ef al. [25] evaluated the usefulness
of different features, ranging from expression profiles to functional relationships
between genes, for the prediction of PPIs. They concluded that functional similarity
based on GO annotation leads to high accuracy in predicting PPIs. Wu et al. also
introduced new similarity measures between GO terms and proteins [26]. Their measures
were used to create a predicted network of PPIs and to evaluate genome-scale datasets.
Very recently, Guo et al. assessed the applicability of GO-based similarity measures to
human regulatory pathways [27]. They showed that the functional similarity between
two proteins decreases as their distance within the same regulatory pathway increases.

One problem with existing GO-based similarity measures is that they do not account for
the frequent annotations of gene products or protein domains with multiple GO terms or
that they simply average over all annotations. To address this problem, we use our novel
GO similarity measure that explicitly deals with this functional multiplicity [28]. The
measure is applied to ranking the interaction networks and the corresponding prediction
methods based on the overall functional similarity of the interacting proteins or domains.
The comparison of experimentally derived sets with predicted sets of DDIs using our
GO similarity measure results in confidence score thresholds separating low- and high-
confidence subsets of predicted DDIs. In addition, we utilize our measure to analyze
experimental and predicted networks of human protein interactions.’

2 Materials and Methods

2.1 Experimental and predicted datasets

Two experimental sets of DDIs were taken from iPfam [19] and the database of 3D
interacting domains (3did) [20] and compared to three sets of predicted interactions
between Pfam-A domains [29]. The first predicted set is InterDom, a database of
putatively interacting domains compiled from different data sources [17]. The other two
sets are taken from two recent publications by Liu, Liu, and Zhao (LLZ) [16] and by
Riley et al. (domain pair exclusion analysis, DPEA). Their bioinformatics approaches
are methodological extensions of an expectation-maximization algorithm first applied to
the prediction of domain interactions by Deng et al. in 2002 [15]. The DDI prediction
methods assign a confidence score (CS) to each DDI and rank the predicted DDIs

3Abbrevia’tions: ATX, ataxin; BP, biological process; CS, confidence score; DDI, domain-domain interaction;
GO, Gene Ontology; HTT, huntingtin; MF, molecular function; PPI, protein-protein interaction; Y2H, yeast
two-hybrid.
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according to the score. InterDom uses different data sources to infer DDIs and calculates
the CS based on the support from each source [17]. LLZ and DPEA compute maximum-
likelihood estimates to derive a CS, and we use the probability A and the log-odds score
E as CS from LLZ and DPEA, respectively [16, 18]. The pfam2go file from the GO web
site (http://www.geneontology.org/external2go/pfam2go) contains a mapping of Pfam-A
domains to GO terms. This file (downloaded on July 7, 2005) was used to annotate the
Pfam-A domains with GO terms. Table 1 summarizes the number of DDIs in each
dataset.

Table 1: Total number of Pfam-A [pataset | Total | BP (%) | MF (%)
domains in the different datasets of DDIs [
(column 'Total'). The columns for |Pf.am 3,046] 52.07] 56.30
biological process ('BP') and molecular |3did 3,034/ 4951 54.19
function ('MF') contain the fraction of |interDom |29,957| 27.07| 37.64
interactions whose interacting domains

. LLZ 9,160 17.75 19.64
are both annotated with GO. ‘

DPEA 3,005 22.40 24.19

We also analyzed six predicted sets of human PPIs named Bioverse [6], HIMAP [8],
HomoMINT [7], Sanger [4], OPHID [5], and POINT [3]. Additionally, subsets of core
interactions with high confidence were derived from Bioverse, HIMAP and Sanger. The
Bioverse-core set contains very reliable interactions based on a sequence similarity
threshold of at least 80% between human and the homolog of the source species [30],
HiMAP-core interactions have a large likelihood ratio [8], and Sanger-core comprises
only predictions with the greatest experimental support [4]. Additionally, we assembled
five consensus sets named ConSetn that consist of protein interactions contained in at
least n predicted interactomes, with » ranging from 2 to 6.

As experimental datasets, we downloaded the manually curated human protein reference
database (HPRD) [13], release of 13 September 2005, and two yeast two-hybrid (Y2H)
maps that we named ‘Vidal’ [10] and ‘Wanker’ [11] after the senior authors. We also
merged the two Y2H maps into the combined dataset Vidal & Wanker. Both Y2H maps
and the HPRD data became available after the six predicted human networks were
published. Further experimental PPIs were extracted from the published networks of
direct and indirect interaction partners for ataxins (ATX) [12] and huntingtin (HTT) [9].
These networks include Y2H and literature-derived datasets, which we call ATX-/HTT-
Y2H and ATX-/HTT-literature, respectively. The ATX-interologs set comprises
interactions from the ATX network that have been derived by mapping interologs [12],
and thus we regard it as another predicted set of PPIs. Generally, the diverse gene and
protein accession numbers of the PPI sets were mapped to NCBI Entrez gene identifiers
[31]. The mapping of Entrez gene identifiers to GO annotations was obtained from
NCBI (ftp://ftp.ncbi.nih.gov/gene/DATA/gene2go.gz). Furthermore, we compiled
another set of PPIs using the interacting proteins that underlie iPfam DDIs with both
domains belonging to different proteins. This set was annotated from two different
sources, that is, with the GO annotation from the UniProt release 5.4 (IUP-set) and with
GO terms from the pfam2go file (IPG-set).
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2.2 Functional similarity measure

The GO controlled vocabulary consists of three different ontologies: biological process
(BP), molecular function (MF), and cellular component. The ontologies are organized as
directed acyclic graphs with terms being represented as nodes and parent-child
relationships as edges. There are two types of edges: “is-a” links, indicating that the
child is an instance of its parent, and “part-of”, used if the child is a component of its
parent. Each node may have several parents and children.

Our semantic similarity measure is an extension of previous measures by Resnik and Lin
[22, 23]. As suggested by Resnik, we defined the probability of a term as its relative
frequency of occurrence in a set of annotated gene products. The root node of each
ontology has the probability 1. We used the GO annotation of all proteins in the UniProt
release 5.4 for the calculation of term frequencies. The semantic similarity of two terms
is defined as follows:

2 xlog p(a)
log p(tl ) +log p(tz)

max *(l—p(a))j,

sim(t,,t, ) = max [

where ¢; and ¢, are GO terms, p(t;) and p(t,) their probabilities, and CA4 is the set of their
common ancestors in the graph. This similarity measure takes into account how similar
and detailed both terms ¢, and ¢, are, and it ranges from O (for terms that only have the
root node in common) to 1.

This semantic similarity measure for single GO terms can be expanded to a functional
similarity measure of gene products. Let g; and g, be two gene products annotated with
the GO term sets GO' and GO’ of size N and M, respectively. The similarity matrix S
containing all pair-wise similarity values is computed as

s; = sim(GO; ,GO? ), ¥i € {0,... N}, ] € {0.... M.

The row vectors and column vectors of matrix S represent the two possible directions of
comparing g; and g,. While the similarity computed from g; to g, (rowScore) is defined
as the average over the row maxima, the similarity from g, to g; (columnScore) is
defined as the average over the column maxima:

N 1 M
rowScore =—7>, maxs; ; columnScore =— 3, maxs, .
N i=1 1£jsM M j=1 ISisN ~

The rowScore and the columnScore are always between 0 and 1. Furthermore, we define
the functional similarity of two gene products with respect to one ontology as

GOscore(g,,8,) = max{rowScore(gl, g, ).columnScore(g,,g, )} .
We refer to this GOscore as MFscore for MF and BPscore for BP. One important aspect

of this score is that it allows for comparing gene products with multiple functions. This
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property is especially important when comparing GO annotations of domains because
they occur in diverse proteins involved in different processes. For more details on our
GO similarity measure, see Schlicker ef al. [28].

3 Results and Discussion

3.1 Comparing confidence scores for domain interactions

The predictions of DDIs by InterDom, LLZ and DPEA are compiled from diverse data
sources using different bioinformatics methods. To gain insight into the similarity and
the quality of the predictions, we compared the predicted sets of DDIs with each other
and to the experimentally derived sets iPfam and 3did. The overlap of the datasets
InterDom, LLZ and DPEA regarding Pfam-A domains as well as regarding their
predicted interactions are given in Table 2. LLZ and DPEA share many Pfam-A domains
and predicted DDIs with InterDom, while the overlap between LLZ and DPEA is much
smaller.

Table 2: Overlap of the InterDom, LLZ and DPEA datasets with regard to Pfam-A domains and
predicted domain interactions. Each number refers to the percentage of domains or interactions in
the row datasets that are also contained in the respective column dataset. Percentages in
parentheses give the number of DDIs shared between two datasets in ratio to the overall number of
DDIs with interacting domains contained in both datasets.

Pfam-A domains (%) Domain-domain interactions (%)
Dataset | InterDom | LLZ |DPEA| InterDom LLZ DPEA
InterDom 100.0 44.4 | 25.1 [ 100.0 (100.0) | 11.4(19.3) 4.8 (23.2)
LLZ 79.3 100.0 | 26.9 58.8 (72.7) | 100.0 (100.0) | 10.6 (60.8)
DPEA 86.5 51.9 [ 100.0 | 78.9(89.3) 32.9 (62.2) | 100.0 (100.0)

Figure 1 and Table S1 give an overview of the overlap of the experimental interactions
contained in iPfam and 3did and the three sets of predicted interactions InterDom, LLZ
and DPEA. 11.8% of the DDIs predicted by DPEA are confirmed by iPfam or 3did,
whereas only 7.4% and 3.0% of the DDIs predicted by InterDom and LLZ, respectively,
are in common with iPfam or 3did. Thus, DPEA appears to be the best of the three
prediction methods.

Fig. 1: Overlap of the datasets containing predicted or experimental Pfam-A domain interactions.
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Other criteria for prediction quality are the CS and the rank assigned to domain
interactions observed experimentally. The distributions of CSs show that many
interactions in iPfam and 3did receive a high CS by LLZ and a low CS by InterDom and
DPEA (Figure S1). However, DDIs contained in iPfam and 3did are assigned top ranks
by all three prediction methods (Figure S2). Surprisingly, further analyses indicate only
weak correlations between CSs and ranks of different prediction methods (Figures S3-
S5). However, DDIs from iPfam that are predicted by two different computational
methods are assigned a good rank by at least one method. This suggests that all methods
are able to detect correct domain interactions. Further details on the results are described
in the online supplement.

3.2 Background distribution and randomized domain networks

In order to obtain a background distribution, all available Pfam-A domains (release 17.0)
were mapped to BP and MF terms of GO, and the distributions of the MFscore and
BPscore for all pairs of Pfam-A domains were calculated (Figure S6). Apparently, most
domain pairs have very low MFscore, which indicates that the molecular functions of the
domains are generally quite distinct. The mean is about 0.1 and the median is 0. The
BPscore is distributed similarly, but there are fewer domain pairs with BPscore below
0.1. This finding is also reflected by the higher mean and median of 0.23 and 0.17,
respectively. These results indicate that the BPscore should generally be higher than the
MFscore.

Subsequently, we randomized all DDI networks in our analysis to determine a possible
bias towards specific functions or processes. This was accomplished by keeping one of
the two nodes of the interaction edges fixed while randomly shuffling the other nodes of
the edges. The obtained distributions are all very similar and closely resemble the
background distribution for BP and MF (Figures S7 and S8). The distributions of the
randomized experimental iPfam and 3did networks for BP contain more DDIs with
BPscore below 0.1, but fewer with BPscore between 0.1 and 0.2 in contrast to the
predicted datasets. The means and medians of all randomized experimental and predicted
networks are similar, suggesting that neither of the networks is biased towards specific
processes or functions.

3.3 Computing and analyzing GOscore distributions

The BPscore distributions for iPfam and 3did (Figure 2) show that most DDIs have a
very high similarity score exceeding 0.8, which means that the corresponding interacting
domains are part of the same process or closely related processes. This is supported by
high means of about 0.9 and medians of almost 1. The distributions for the predicted sets
InterDom or DPEA look alike. Interestingly, only one third of the predicted interactions
have a BPscore above 0.8. Furthermore, both datasets include a large fraction of
interactions with BPscore below 0.4, indicating almost no functional similarity between
the domains. The mean is 0.51 for both datasets and the medians 0.39 and 0.41 for
InterDom and DPEA, respectively. The LLZ predictions contain substantially fewer
interactions with high BPscore, and many more interactions with very low BPscore. This
is reflected by the relatively low mean of 0.35 and the median of 0.2. In summary,
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DPEA performs slightly better than InterDom, and both show a better performance than
LLZ.

90%
85% | |l iPfam ‘
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Fig. 2: BPscore distribution for the different datasets of experimental DDIs (iPfam and 3did) and
predicted DDIs (InterDom, LLZ and DPEA). The BPscore bins correspond to the following
intervals: B1: [0.0, 0.1[; B2: [0.1, 0.2[; B3:[0.2, 0.3[; B4: [0.3, 0.4[; B5: [0.4, 0.5[; B6: [0.5, 0.6[;
B7:10.6, 0.7[; B8: [0.7, 0.8[; B9: [0.8, 0.9[; B10: [0.9, 1.0].

Figure S9 contains the MFscore distributions of all datasets. Interestingly, the
distributions for iPfam and 3did are quite distinct from the other distributions. Almost
80% of the domain interactions in iPfam or 3did have an MFscore above 0.8, which
indicates related molecular functions annotated to the interacting domains. In addition,
both sets contain very few interactions with very low MFscore. The means of over 0.8
and the medians of almost 1 corroborate this interpretation. The predictions made by
InterDom and DPEA show similar distributions, but rather low means and medians.
Similar to the findings for the BPscore distribution, predictions made by LLZ show a
lower MFscore. As in the case of the BPscore distribution, InterDom and DPEA have
similar performance and both perform significantly better than LLZ.

3.4 Deriving confidence score thresholds

The methods InterDom, LLZ and DPEA all provide CSs for the prediction of DDIs.
However, in order to utilize sets of predicted interactions in practice, it is important to
derive reasonable thresholds for low- and high-confidence sets of DDIs. It is to be
expected that the functional similarity of domains predicted to interact increases as the
confidence in these predictions rises. To verify this expectation, we used different CS
thresholds to calculate the GOscore means and medians of all interactions with a CS
larger than the respective threshold. We also calculated the overlap of these interactions
with iPfam and 3did.

Figure 3 shows the change in BPscore mean and median, and the change in dataset size
with varying CS threshold for the DPEA dataset. When raising the DPEA CS threshold
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from 3 to 6, the BPscore median increases from slightly over 0.4 to almost 1, and the
mean raises from 0.51 to approximately 0.7. The MFscore median and the overlap with
iPfam and 3did show a steep increase in this CS range (Figures S10 and S11).
Consequently, we suggest assigning predictions with a CS between 3 and 6, and above 6
to DPEA subsets of low- and high-confidence DDIs, respectively.
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Fig. 3: Change in BPscore mean and median, and in dataset size with varying confidence score
threshold for DPEA. Size refers to the number of DDIs with confidence score above the threshold.

The analysis of the InterDom set reveals that the BPscore median reaches 0.98 with a CS
threshold of 30 (Figure S12). The BPscore mean is 0.68 at this point and increases with
higher thresholds. The same score development holds true for MFscore, but it is shifted
slightly towards higher thresholds (Figure S13). At a threshold of 60, the dataset consists
of 1,888 interactions and the median increase diminishes. The overlap with iPfam and
3did increases with rising InterDom score and is about 27% for a threshold of 60 (Figure
S14). Altogether, these results suggest a threshold of 60 for InterDom predictions of high
confidence.

The analysis of LLZ predictions reveals that the BPscore mean and median, and the
overlap with iPfam and 3did are very low over the whole CS range (Figures S15-S17).
These results do not allow deriving any reasonable CS threshold for some LLZ subset of
DDlIs.

3.5 Comparing human protein interaction networks

We calculated the BPscore for all datasets of PPIs. Table 3 summarizes the results
ranked by the average BPscore. The BPscore means range from 0.82 for Bioverse-core
to 0.37 for Wanker PPI set. While the average BPscores for the predicted datasets vary
significantly, the experimental Y2H datasets have rather low mean BPscore. In contrast,
predicted datasets such as both HIMAP datasets and Bioverse-core as well as the
manually curated sets HPRD and HTT-literature receive high mean scores. The different
results for the HTT and ATX networks also indicate that literature-curated, carefully
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validated, PPIs reach a higher BPscore than PPIs derived by high-throughput
experiments.

Table 3: Ranking of predicted and experimental protein networks based on BPscore. The column
'Scored' contains the fraction of PPIs with an assigned BPscore. The two rightmost columns give
the percentages of PPIs contained in HPRD or the combined Y2H set Vidal & Wanker.

Dataset Interactions| Scored (%) B Pgliarg HPRD (%) W;/rilf(zlr%% )

Bioverse-core 3,266 83.2 0.823 28.9 1.1
IPG-set 1,931 45.9 0.815 15.9 0.7
HiMAP-core 8,832 84.6 0.813 9.1 0.6
HIMAP 38,378 89.4 0.799 3.8 0.2
IUP-set 1,931 22.8 0.764 15.9 0.7
ConSet6 484 77.5 0.709 21.3 1.2
HPRD 20,121 86.1 0.662 100.0 0.6
HTT-literature 428 97.4 0.643 90.2 0.2
ConSet5 1,565 73.2 0.642 16.1 1.3
Bioverse 233,941 81.4 0.572 1.5 0.1
ConSet3 10,844 66.5 0.561 9.2 0.8
ConSet4 4,747 67.1 0.559 10.2 0.9
ConSet2 38,258 69.3 0.556 6.0 0.4
Sanger-core 11,131 65.3 0.551 45 0.6
ATX-literature 4,796 67.5 0.537 46.9 39.1
HomoMINT 10,870 57.5 0.510 5.6 0.7
OPHID 28,255 62.6 0.499 4.4 0.2
Vidal 2,754 40.2 0.471 35 100.0
HTT-Y2H 164 62.2 0.456 3.8 5.1
POINT 98,528 56.9 0.451 2.6 0.2
Sanger 67,518 62.3 0.427 1.3 0.1
ATX-interologs 1,527 62.0 0.418 6.8 1.2
ATX-Y2H 770 39.9 0.394 1.4 1.0
Wanker 2,033 54.8 0.370 1.2 100.0

The BPscore means of the iPfam-derived IUP- and IPG-sets with the same PPIs, but
distinct GO annotations, are 0.76 and 0.81, respectively. These values are lower than the
mean of the corresponding DDIs in iPfam, which may be partly due to the fact that we
excluded self-interactions in the two PPI sets. The score distributions for the IUP- and
IPG-sets show that using the GO annotation of proteins or Pfam domains leads to
different results (Figure S18). In contrast to the small increase in mean BPscore, the
distributions of the IUP- and IPG-sets differ significantly. In comparison, the manually
curated HPRD set has a mean similarity measure of 0.66. The distribution of this set
shows that over 50% of the interactions have a BPscore above 0.7 (Figure S20).
However, 10% of the interactions have a score between 0.1 and 0.2. The consensus PPI
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sets ConSetl-4 show a similar mean BPscore, and ConSet5 and ConSet6 score higher,
but they constitute small interaction sets only.

Especially on the lower ranks, the BPscore ranking of the datasets is similar to rankings
resulting from the computed HPRD or Y2H verification rate (Table 3), that is, the
percentage of interactions contained in HPRD or the combined Y2H dataset Vidal &
Wanker. The predicted Bioverse-core set and the consensus sets have the best
verification rates with respect to HPRD. The fact that the Vidal and Wanker sets have
published validation rates of 78% and 62-66%, respectively, agrees well with the slightly
higher mean BPscore 0.47 of Vidal in contrast to the mean 0.36 of Wanker [10, 11]. The
lower mean BPscore of Wanker may also be due to the use of many protein fragments in
contrast to full-length proteins employed by Vidal [10, 11].

4 Conclusions

Following the idea that interacting domains or proteins should have highly similar
biological process (BP) annotation and, to a smaller degree, similar molecular function
(MF) annotation, we evaluated the functional similarity of three predicted and two
experimental domain-domain interaction (DDI) networks as well as several predicted
and experimental human protein-protein interaction (PPI) networks. Furthermore, we
analyzed to which extent predicted DDIs or PPIs overlap with experimentally derived
interactions.

We demonstrated that the application of functional similarity measures is not restricted
to the validation of PPIs [27], but also useful for DDIs. Our analysis of DDIs revealed
that the BP similarity of interacting domains is generally higher than the corresponding
MF similarity. This observed difference between BP and MF similarity agrees well with
findings by Guo et al. for PPIs using other GO similarity measures [27]. The difference
may be partly due to the fact that interacting domains or proteins may perform different
functions though they act in similar processes. Another reason may be that GO terms are
more densely connected in the top levels of the BP ontology than of the MF ontology.

The iPfam-derived IUP- and IPG-sets encompass the same PPIs, but the TUP-set is
annotated with the GO terms of the proteins in UniProt and the IPG-set with the GO
terms of the Pfam domains. The comparison of these two sets revealed that the BPscore
results depend on the annotation used. This indicates that the choice of the annotation
source contributes to the differing findings for DDIs and PPIs. Moreover, a higher
number of proteins annotated with diverse BPs may decrease the mean BPscore of
protein networks in contrast to sets of DDIs annotated with more generic GO terms.

In agreement with our results on human protein interaction networks, Reguly et al.
observed for yeast interaction datasets that the GO annotation of literature-curated PPI
sets is more coherent than the GO annotation of high-throughput PPI sets [32]. Since
manually curated datasets of PPIs taken from scientific literature have a higher mean
BPscore than most predicted and high-throughput sets, the latter sets may contain a
significant number of false interactions or a large amount of proteins involved in novel
processes. This can lead to a considerable decrease in BPScore. Furthermore, proteins
described in the literature may be annotated particularly well with GO. Therefore, a
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more thorough analysis of the PPI results using alternative measures will be required to
explain differences between predicted and experimental datasets.

Our functional similarity analysis in conjunction with an evaluation of the overlap
between experimentally derived and predicted DDIs allowed the definition of confidence
score thresholds for DDI prediction results. These thresholds are useful for improving
PPI predictions based on DDIs as well as for assessing the confidence of PPIs derived by
high-throughput experiments. In the future, incorporating other similarity criteria besides
GO may improve the confidence assessment of predicted interactions further. As the
coverage and quality of GO annotations improves, the importance of approaches that use
functional similarity for the validation and prediction of PPIs and DDIs will increase.
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