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Abstract: Visualization of learning-based intrusion detection methods is a challeng-
ing problem. In this paper we propose a novel method for visualization of anomaly
detection and feature selection, based on prediction sensitivity. The method allows an
expert to discover informative features for separation of normal and attack instances.
Experiments performed on the KDD Cup dataset show that explanations provided by
prediction sensitivity reveal the nature of attacks. Application of prediction sensitivity
for feature selection yields a major improvement of detection accuracy.

1 Introduction

Transparency is an essential requirement for intrusion detection algorithms to be used in
practice. It does not suffice that an algorithm tells – perhaps with a degree of uncertainty
– if some attack (or a specific attack) is present; an algorithm must be able to provide a
credible evidence to its prediction.

While such evidence is easy to produce for rule-based detection methods, whose rules are
understandable to an expert, such credibility cannot be claimed by many approaches using
learning-based methods, such as Neural Networks or Support Vector Machines [GSS99,
MJS02]. The situation is somewhat better for misuse detection methods, for which several
feature selection techniques are available, e.g. [WMC+01, GE03]. The problem is much
graver for anomaly detection methods, for which almost no practical feature selection
techniques are known to date.

In this contribution we propose a technique that enables one to visualize predictions of
the quarter-sphere SVM, an anomaly detection technique proposed in [LSK04, LSKM04].
The technique is based on the notion of prediction sensitivity which measures the degree to
which prediction is affected by adding weight to a particular feature. Using this technique
we were able to gain interesting information about the predictions made by the quarter-
sphere SVM on the KDD Cup dataset. The information we obtained is comparable but not
identical to rules inferred by RIPPER, a classical rule-based method [Coh95].
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By averaging prediction sensitivity over several datasets one can select the features that
are most important for anomaly detection. In our experiments on the KDD Cup dataset
we have observed that reducing the set of features to the ones suggested by prediction
sensitivity remarkably improves the accuracy of detection by the quarter-sphere SVM.

2 Approach: analysis of prediction sensitivity

The notion of prediction sensitivity expresses the degree to which prediction is affected by
adding weight to individual features. Mathematically this can be described by the Jacobian
matrix of the prediction function with respect to the input features. The derivation of the
expression for this Jacobian matrix – which depends on a particular anomaly detection
method, in our case, the quarter-sphere SVM – is rather technical, therefore, due to space
limitations, only the main idea is presented in this section. The mathematical details will
be subject of a forthcoming publication.

Let X be a d×l data matrix containing d features collected over l observations. We assume
that an anomaly detection algorithm assigns the anomaly score s(xi) to every data point
xi ∈ X (a column in the data matrix). The l × d Jacobian matrix is defined as the partial
derivatives of s with respect to the components of xi:

J(ik) =
∂s(xi)
∂xk

, 1 ≤ i ≤ l, 1 ≤ k ≤ d. (1)

For the sake of more intuitive visualization we will always consider the transposed Jaco-
bian matrix JT whose dimensions are identical to those of the initial matrix X . Thus, each
column of the (transposed) Jacobian matrix can be seen as the sensitivity of the prediction
s(xi) of the algorithm on the data point xi with respect to the k-th feature of the data. The
definition of s(xi) for the quarter-sphere SVM used in this paper is given in Eq. (4) in
Sec. 3.

Further information can be gained by considering statistical properties of prediction sensi-
tivity. To perform such analysis, randomly drawn data samples X1, . . . ,XN are collected,
in which the percentage of attacks is fixed. Once the data samples are collected, one
computes the mean and the standard deviation of the respective Jacobian matrices over
N samples. Based on this information, heuristic criteria can be defined (cf. Sec. 5) for
selecting informative features for separating attacks and normal patterns.

3 Application: anomaly detection using quarter-sphere SVM

The quarter-sphere SVM [LSK04, LSKM04] is an anomaly detection technique based
on the idea of fitting a sphere onto the center of mass of data. Once the center of the
sphere is fixed, the distance of points from the center defines the anomaly score. Choosing
a threshold for the attack scores determines the radius of the sphere encompassing the
normal data points.
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This geometric model can be extended for non-linear surfaces. We first apply some non-
linear mapping Φ to the original features. Then, for each data point, the distance from the
center of mass in the transformed space – which is our score function – is computed as:

s(xi) = ||Φ(xi) − 1
l

∑l

j=1 Φ(xj)||. (2)

It remains to be shown how the score function (2) can be obtained without explicitly com-
puting the mapping Φ, since the latter can map the data into a high- or even infinite-
dimensional space.

It is well known in the machine learning literature (e.g. [MMR+01, SS02]), that, under
some technical assumptions, inner products between images of data points under a non-
linear transformation can be computed by an appropriate kernel function:

k(xi, xj) = Φ(xi)T Φ(xj).

For many interesting transformation the kernel function is known in advance and is easy
to compute. For example, for the space of radial-basis functions (RBF) the kernel function
is computed as

k(xi, xj) = e−
||xi−xj ||2

2γ .

To compute the score function s(xi) using the kernel function, the following steps are
needed:

1. Form the l × l kernel matrix K whose entries are the values of the kernel function
k(xi, xj) for all pairs of data points i and j.

2. Compute the centered kernel matrix [SSM98, SMB+99]:

K̃ = K − 1lK − K1l + 1lK1l, (3)

where 1l is an l × l matrix with all values equal to 1
l
.

3. The score function is given by the entries on the main diagonal of the centered kernel
matrix:

s(xi) =
√

K̃(ii). (4)

4 Experimental setup

Before presenting the operation of our visualization technique a few remarks need to
be made on data preprocessing. In our experiments we use the KDD Cup 1999 dataset
[Cup99], a standard dataset for the evaluation of data mining techniques. The set com-
prises a fixed set of connection-based features computed from the DARPA 1998 IDS eval-
uation [LCF+99] and contains 4898430 records of which 3925650 are attacks. A list of
all features is provided in [LS01, LSKM04]. In-depth description of some features, e.g.
the hot feature, is available in the Bro IDS documentation [Pax98, Pax04].
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The distribution of attacks in the KDD Cup dataset is extremely unbalanced. Some attacks
are represented with only a few examples, e.g. the phf and ftp write attacks, whereas
the smurf and neptune attacks cover millions of records. In general, the distribution
of attacks is dominated by probes and denial-of-service attacks; the most interesting – and
dangerous – attacks, such as compromises, are grossly under-represented.

In order to cope with the unbalanced attack distribution and to investigate the characteristic
features of particular attacks, we construct separate datasets containing a fixed attack ratio
of 5%. The desired ratio is achieved by combining two randomly drawn sub-samples. The
first sub-sample is drawn from the attacks in question. If an attack is under-represented,
i.e. there are too few samples to carry random sampling, all attack examples are drawn.
The second sub-sample is drawn randomly from normal data matching the services used
in the chosen attack. The number of examples in both sub-samples is chosen so as to attain
the desired attack ratio.

In order to analyze the statistical properties of prediction sensitivity, as indicated in Sec. 2,
10 datasets of 1000 data points are generated for each attack. If the number of available
attacks in the data is smaller than 50 (required to have 5% of attacks in datasets of size
1000), we reduce the dataset size to L < 1000, sufficient to accommodate all available
attacks, and increase the number of generated datasets by the factor of 1000/L.

After the sub-sampled datasets are generated, a data-dependent normalization [EAP+02] is
computed, a quarter-sphere SVM is applied to each dataset and the corresponding Jacobian
matrices (cf. Eq. (1)) are calculated.

5 Interpretation of anomaly detection on the KDD Cup dataset

The proposed prediction sensitivity criterion can be visualized by plotting the Jacobian
matrix. If multiple training sets are available the mean and the standard deviation Jacobian
matrices are plotted. The rows of the matrices correspond to features and the columns
correspond to normal and attack instances.

An example of such visualization for the land attack is shown in Fig. 1. The following
observations can be inferred from the prediction sensitivity matrices:

– Random sampling and averaging of prediction sensitivities emphasize the salient
features of the data. As a result, instances corresponding to a particular attack are
characterized by consistent regions in the mean Jacobian matrix, whereas the much
more heterogeneous normal data exhibits random sensitivity.

– The consistency of prediction sensitivity for attack instances can be quantified by
the standard deviation Jacobian matrix. Salient features exhibit low standard devia-
tion. Thus one can suggest the following heuristic criterion for feature selection: for
attack instances, features must have high values in the mean and low values in the
standard deviation Jacobian matrix.
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Figure 1: Visualization of prediction sensitivity. The mean and the standard deviation Jacobian
matrices for the land attack exhibit different patterns for attack and normal data, as well as different
impact of particular features on prediction. The grey-scale bars to the right of the figure illustrate
the range of matrix values.

In order to illustrate feature selection based on the proposed criterion, we calculate the
mean and the standard deviation of the mean Jacobian matrix for the attack instances
only. These quantities computed for the land attack are shown in Fig. 2. One can see
that the numerical characteristics of prediction sensitivity provide substantial information
for identifying candidate features. According to the “high mean/low variance” criterion,
most prominent for this example are the features 38, 39, 40, 45. Their names and brief
descriptions are shown in Table 1. These features are indeed meaningful for the land
attack. This attack is manifested in transmission of single TCP packets (with SYN set)
that crash a server without eliciting an ACK reply; as a result high SYN error rates are
observed. The features 48, 50, 52, 53 may also be added as second-choice candidates.

Number Name Description
38 srv count Number of connections to service
39 serror rate SYN error rate
40 srv serror rate SYN error rate for service
45 srv diff host rate SYN error rate for service on multiple hosts

Table 1: Feature subset selected using prediction sensitivity.
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Figure 2: Mean and standard deviation of mean Jacobian matrix for instances of the land attack.
According to the “high mean/low variance” criterion a subset of features and additional candidate
features have been selected.

We have performed the interpretation and analysis of all 21 attacks present in the KDD
Cup dataset. Due to space constraints we cannot present the detailed analysis here; so we
restrict ourselves to 5 characteristic attacks which demonstrate the strengths as well as the
limitations of the proposed visualization technique.

For each of the attack classes remote-to-local (R2L), user-to-root (U2R) and probe one
attack was arbitrarily selected. For the class of denial-of-service (DoS) attacks we decided
to interpret two attacks which differ in activity. The following attacks were chosen:

– the phf (R2L) attack exploits a security flaw in the input handling of CGI scripts
which allows the execution of local commands on a remote web server,

– the loadmodule (U2R) attack exploits an improper boundary check in the pro-
gram loadmodule of the Solaris operating system and allows a local attacker to
gain super-user privileges,

– the portsweep (probe) attack discovers active services on remote hosts by sys-
tematically requesting connections to multiple TCP ports,

– the pod (DoS) attack crashes or reboots remote systems by sending a single, over-
sized IP datagram corrupting the host’s packet reassembly,

– the smurf (DoS) attack uses misconfigured broadcast hosts to flood a victim host
with spoofed ICMP datagrams.

In order to qualitatively compare the proposed feature selection method with alternative
techniques, we applied the RIPPER classifier to our datasets, in a similar way as it was
previously used in [LSM99, LS01] for feature analysis and generation of detection rules.

Table 2 lists the selected features based on prediction sensitivity and corresponding RIP-
PER rule sets for the five example attacks.
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phf Feature selection based on prediction sensitivity:

hot, num_access_files, duration

RIPPER rule set:

phf :- root_shell>=1, src_bytes<=51.

loadmodule Feature selection based on prediction sensitivity:

dst_host_same_srv_rate, dst_host_diff_srv_rate,
dst_host_same_src_port_rate

RIPPER rule set:

loadmodule :- dst_host_count<=6, src_bytes<=0, count>=2.
loadmodule :- dst_host_count<=6, num_file_creations>=1,

duration<=103.

portsweep Feature selection based on prediction sensitivity:

rerror_rate, srv_rerror_rate, dst_host_rerror_rate,
dst_host_srv_rerror_rate

RIPPER rule set:

portsweep :- dst_host_srv_rerror_rate>=1,
dst_host_same_srv_rate<=0.01,
dst_host_same_src_port_rate>=0.02.

portsweep :- src_bytes<=1, dst_host_same_srv_rate<=0.02,
dst_host_same_src_port_rate>=0.03.

portsweep :- rerror_rate>=0.19, dst_host_same_srv_rate<=0.8,
dst_host_same_src_port_rate>=0.08,
dst_host_count>=78, protocol_type=tcp.

portsweep :- src_bytes<=0, service=private.
portsweep :- src_bytes<=8, protocol_type=icmp.
portsweep :- src_bytes<=0, service=ftp_data, dst_bytes<=0.
portsweep :- duration>=42908.
portsweep :- dst_host_rerror_rate>=0.95,

dst_host_diff_srv_rate>=0.47.
portsweep :- flag=OTH, service=smtp.

pod Feature selection based on prediction sensitivity:

src_bytes, wrong_fragment

RIPPER rule set:

pod :- src_bytes>=564.

smurf Feature selection based on prediction sensitivity:

count, src_count, src_bytes

RIPPER rule set:

normal :- src_bytes<=64.

Table 2: Feature selection based on prediction sensitivity and RIPPER rule sets for selected attacks
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Two questions arise from Table 2: How are the selected features related to the nature of
attacks and why do features extracted by RIPPER and prediction sensitivity differ?

– For the phf attack the selected features indicate malicious activity accessing system
files, e.g. /etc/passwd, and an anomal connection duration. These features
match the typical application pattern of the phf attack, in which system files are
retrieved by a short HTTP GET request. The corresponding RIPPER rule set reveals
the problem of overfitting. The rules match specific properties of the training sets,
but do not identify the general properties of the attack in question.

– The loadmodule attack belongs to the class of U2R attacks and thus evidence of
the attack is only present in content-based features. The selected features and the
RIPPER rules mainly contain traffic-based features. Both methods fail to select the
relevant features because no content-based features clearly reflect the presence of
the loadmodule attack.

– For the portsweep probe the prediction sensitivity reveals features related to re-
jection errors, e.g. rerror rate. A side effect of vanilla portscans, as in case
of portsweep, is a very high number of rejected connection requests because
only few services are present on most network hosts. The RIPPER rule set is too
complex for realistic application. Furthermore most rules involve the service and
protocol feature which are not inherent properties of the portsweep attack.

– The selected features for the pod attack indicate an influence of the number of
transmitted bytes and the presence of wrong fragments, which are very characteristic
for the ping-of-death (pod) attack. The RIPPER rule is, however, too specific: there
is no reason to believe that 564 bytes is a good threshold between normal data and
the pod attack.

– The smurf attack is represented by traffic-based features, such as count and
srv count. The attack involves tremendous traffic from various spoofed sources.
The selected feature set matches the smurf attack, but also contains generaliza-
tion which applies to successor attacks, e.g. fraggle. The RIPPER rule exhibits
similar overfitting as for the pod attack.

One can see that, provided relevant features are present in the data, both RIPPER and
prediction sensitivity succeed in selecting an informative subset of features. However
the RIPPER classifier is prone to overfitting, and the inferred rules often lack necessary
generality, which undermines the main advantage of rule-based learning: understandable
rules. Feature selection based on prediction sensitivity is more accurate and exhibits good
generalization ability. Another difference between the two techniques is that prediction
sensitivity determines a threshold for a combination of rather than for single features.
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6 Improvement of detection by feature selection

As it was shown in the previous section, the prediction sensitivity criterion allows one
to select an informative subset of features characterizing single attacks. Although we
used labels for feature selection, the underlying concept beyond the notion of prediction
sensitivity is anomaly detection in unlabeled data. In this section we demonstrate that the
feature selection based on our criterion improves the accuracy of the quarter-sphere SVM,
an unsupervised anomaly detection algorithm.

The experiments presented below were carried out under two scenarios. First we selected
features for single attacks and applied a quarter-sphere SVM on the reduced feature sets.
In the second experiment, the datasets – for feature selection as well as for anomaly de-
tection – were composed of multiple attacks (ab)using the same service: FTP, HTTP and
SMTP. The objective of both experiments is to investigate whether pre-selection of fea-
tures improves detection accuracy compared to the full set of features. In all experiments,
unseen data was used for the evaluation of feature selection in order to ensure that the
selection generalizes beyond the particular datasets.

The impact of feature selection on the accuracy of anomaly detection by the quarter-sphere
SVM is shown in Fig. 3. The evaluation criterion is the area under the ROC curve restricted
to the low false-positive interval [0, 0.1] (AUC0.1). The area is multiplied by a factor of
10; this allows one to interpret AUC0.1 as a percentage of the maximum attainable area on
the desired interval of interest.

It can be seen from Fig. 3 that reducing the features according to prediction sensitivity pro-
vides a major improvement of the AUC0.1 values. For no attack does the AUC0.1 decrease
after the feature selection. These results are very promising since detection accuracy at
low false-positive rates is extremely important in IDS.

The full ROC curves for four attacks analyzed in Sec. 5 are shown in Fig. 4. The ROC
curve for the pod attack was almost perfect before feature selection and thus is not shown
in Fig. 4.

7 Discussion and conclusions

We have presented a new technique for visualization of anomaly detection based on pre-
diction sensitivity. Its application enables an expert (a) to interpret the predictions made
by anomaly detection and (b) to select informative features in order to improve detection
accuracy.

Our experiments were conducted using the quarter-sphere SVM and the KDD Cup dataset.
The features highlighted by prediction sensitivity reasonably reveal the nature of attacks
present in this dataset, and, furthermore, exhibit more generality than the rules suggested
by RIPPER, a rule-based learning method.
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Figure 3: Anomaly detection accuracy before and after feature selection. The left part shows exper-
iments with single attack datasets. The right part corresponds to experiments with FTP, HTTP and
SMTP datasets.

The feature selection experiments showed major improvements of the accuracy for anomaly
detection on a specific subset of features chosen by prediction sensitivity, which confirms
the explanatory power of prediction sensitivity.

How can the proposed technique be useful in practice? It is true that the experimental setup
presented in Sec. 4 is not fully unsupervised. One cannot, as one would like to, simply
feed the data into the algorithm and obtain the explanations to predictions and the set of
informative features. On the other hand, the label information is anyway needed for test-
ing of intrusion detection systems: nobody would venture to deploy an IDS without ever
wondering if it works right. At this point, using our technique, one can utilize the avail-
able label information to look beyond the bare accuracy metrics and obtain insights into
why the anomaly detection produces the results it is producing and what can be done to
improve it. Although labels are used for feature selection, no explicit training is required,
and in this sense the procedure remains unsupervised. Furthermore, the explanatory infor-
mation provided by prediction sensitivity can be particularly useful as a first guidance for
development of signatures for unknown attacks.
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Figure 4: Full ROC curves for the attacks phf, portsweep, smurf and loadmodule after
feature selection.
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