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Abstract: The Domain Name System (DNS) has been the naming service of the
Internet for more than 20 years. It is the foundation of virtually all other distributed
service. The deficiencies of DNS with respect to performance, availability, and reli-
ability are well known. We want to systematically improve DNS by (1) measuring
DNS performance, (2) evaluating past proposals, and (3) try to come up with a new
architecture for DNS. SEDNS is a system in which we investigate various design ideas
to speed up DNS requests and improve availability, reliability, and security.

1 Introduction

The Domain Name System (DNS) is a hierarchical distributed database that can map
names to some data. In most cases it is used to map a name to an IP address. The system is
mature and very successful. There is hardly any distributed Internet-based application that
does not use it. Unfortunately DNS is not always sufficiently dependable for companies
that must depend on it. Almost always some DNS servers are not reachable. Sometimes
none of the DNS servers might be available (e.g., when DNS is misconfigured or under
attack). DNS responses are not always correct, which may have different reasons, e.g.,
cache poising. However, the most alarming problem is that DNS can be used to attack
other services or a downtime of DNS can make services unusable. Many systems depend
on DNS without having a fallback. So a good way to attack a distributed application is,
first to make sure that itself or its clients cannot resolve names anymore.

We are designing a system, SEDNS, to cope with all these problems. SEDNS is not a
replacement for DNS. Replacing DNS would be difficult since it is mature, quite well
understood, popular, and such a shotgun approach often fails. So we will continue to use
DNS and, just in case that it does not work according to our expectations, we provide a
combination of local caches together with a peer-to-peer based fallback system. We show
how to optimize the performance using local caches similar to Supercaches as introduced
by [AMTO3].

The rest of the article is organized as follows: Sections 2.1 and 2.2 discuss the different
sources for unavailability of DNS. Section 3 discusses DNSSEC in this context. Section 4
introduces our SEDNS approach and discusses how to optimize a Peer-to-Peer overlay for
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this use. Section 5 concludes the paper.

2 DNS Dependability Issues

DNS is inherently unreliable, due to the fact that it is using plain-text communication via
UDP as the default setting. Hence, modifications of the content can not be detected and
in the case of packet loss, retries include the resolvers time-out as an extra delay penalty.
TCP, which would solve this problem, is only used when the amount of data is too large
to be contained in a single UDP packet. Of course, TCP introduces some overhead so that
UDP seems to be the better choice if performance is the main concern.

The consequence of using UDP is that applications have to deal with requests not being
answered or replies being dropped. To optimize yield, i.e., the ratio of answered requests
out of the number of requests sent, we need to investigate the factors that impact the yield.
We say that a failure occurred if the time-out of the resolver has expired, i.e., 5 seconds in
most implementations, or that an error is returned by the server. Failures can be classified
in client-side and server-side failures, like proposed by Park et al. [PPPWO04].

Client-side failures are failures caused by the client’s infrastructure, i.e., the stub resolver,
the recursive resolver, or the LAN connection. Server-side failures are failures caused by
the DNS servers involved in the processing of the request, including WAN communication
failures. The following subsections describe these problems in more details.

2.1 Server-side problems

When a recursive resolver tries to find a certain resource record, it iteratively traverses the
DNS name space. Starting from the top of the tree, i.e., a root server, it tries to find a DNS
server that is responsible for the top level domain (TLD). From this server the search goes
on from name server to name server until the request can be answered.

Since a successful DNS lookup depends on the cooperation of many remote components
it is worth looking how reliable this process is. Jung et al. [JSBMO1] tried to examine
the effectiveness of DNS caching. In addition, their work shows the reliability of the DNS
server infrastructure. They captured DNS packets at two locations, i.e., two Internet gate-
ways. The traces show that over a third of all lookups where not successfully answered.
The number of query packets is larger than the number of lookups because if a DNS server
does not receive an answer for a query, it retransmits the query. This is a robustness mecha-
nism that deals with UDP packet loss, leading to the fact that query packets for unanswered
lookups account for more than 50% of the DNS query packets in the trace.

Another interesting behavior is that between 3.1% and 4.9% of the unanswered lookups
formed a querying loop between two or more DNS servers. This is obviously a config-
uration problem. Erroneous configurations also cause many negative answers. Negative
answers account for 10% to 42% of the answers in the trace. Often they are caused by
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querying a name that does not exist. Of cause, this might be a result of user input, such as
“ww.att.com” in the address field of a browser, but the largest cause are inverse lookups.

Usually an administrator configures at least two mappings for a name. One mapping points
from the name to the IP address, another one points from the IP address to the name.
This is very useful and many services are using this feature, e.g., ssh. Obviously many
administrators omit configuring these inverse mapping.

Other significant causes are NS or MX records that point to names that do not exist. This
might be a problem of inconsistency in a DNS zone, where old entries have not been
removed or new entries have not been checked for typos.

Apart from these configuration issues there is also the problem that servers might fail
completely. Reasons are software and hardware failures as well as occasional denial-of-
service (DOS) attacks.

DNS is a compelling target for DOS attacks since DNS servers are well known and easy to
find, a successful attack to a single server or pair of servers can cut of a whole branch of the
DNS name space, and DNS outages often cause outages of other services as well. Such an
attack (in this case ping flooding) hit the 13 root servers on October 23, 2002, causing some
slowdown in the Internet [Nar02]. Only four root servers were able to continue service
during the attack. In January 2001, Microsoft suffered from such an attack resulting in
downtime for its Web presence [ThuO1]. As a result, Microsoft hired Akamai Technology
to ensure that such attacks do not succeed in the future. Akamai maintains geographically
separated DNS servers, while all of Microsoft’s DNS servers were in the same location
and thus easy to attack.

2.2 Client-side problems

Many DNS outages are not caused by global network outages or server failures, but by
problems with local components, like recursive resolvers or stub resolvers. Stub resolvers
are using local DNS servers (LDNS) as recursive resolvers. These servers are responsible
for resolving names iteratively and also provide a cache for DNS resource records. Hence,
they do the main part of resolving a name. This is necessary since stub resolvers are too
limited for this task.

If these LDNS servers suffer from network problems, more or less frequent overload sit-
uations, or hardware and software failures, the DNS is unavailable. Now this seems to
be a problem that can be solved by the DNS administrators. As discussed by Park et al.
in [PPPW04], there might be reasons that are deterring administrators from solving this
problem: Most of them optimize cost-to-benefit ratio expressed by CPU utilization. DNS
is not CPU bound and it typically leaves enough CPU power to run other services on the
same machine. Installing more services improves utilization but introduces a competition
between services for resources. Waiting for memory or CPU, DNS might fail from time to
time, i.e., let the resolvers time-out expire.

Park et al. propose to use an insurance-like service (CoDNS) where many partners share
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Figure 1: Comparison of average answer time without caching

their recursive resolvers. DNS requests can be forwarded, using a peer-to-peer overlay
network, to other recursive resolvers. The performance of the system depends on a good
selection of time-out values and knowledge about the health of other peer’s LDNS servers.
According to benchmarks in [PPPW04] CoDNS outperforms standard DNS by 27-82 %
(latency) and increases availability by an extra 9. This can be reached by exchanging
information about the health of the LDNS server, i.e., its performance and availability,
with other peers in an overlay network. If the LDNS server fails, the DNS request is
forwarded to a nearby overlay peer with a good LDNS server. CoDNS is deployed in
Planet-Lab [Ros05], where we are using it to compare it with the front-end for SEDNS.
It is configured using one extra peer for lookups and 200 ms time-out for the initial DNS
request to the LDNS server. The overhead that is needed is, to monitor 10 other peers and
keep track of their LDNS server’s health.

SEDNS uses a modified stub resolver to query a super cache first. After a short time-
out, other LDNS servers are queried in parallel requests. Using several LDNS servers
masks client-side problems. In the case that this still does not obtain an answer, another
local resolver is queried. It is using a peer-to-peer approach to find DNS data even in the
presence of server-side problems.

Two benchmarks are presented here: (1) We measure our front-end without caching, i.e.,
we try to eliminate caching as good as it gets!, and (2) with warmed-up caches. The first
setting shows that the extra effort of almost doubled number of DNS messages is sensible
and that performance is good in the case that the SEDNS super-cache does not produce

'We did not have exclusive access to the DNS servers. So our measurements have been influenced by each
other and other resolvers.
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Figure 2: Comparison of weighted average answer time without caching

a hit. The second one shows the influence of LDNS and network failures on the request
delay. The result is that our approach is most effective in masking client-side failures.

For using SEDNS the user must install a glibc patch for stub resolvers and the local admin-
istrator has to set up additional resolvers and a super cache in the LAN. SEDNS is usable
even in the case that DNS is globally unavailable, which is not possible with CoDNS since
it relies on DNS.

In comparison to CoDNS, we do not require a peer-to-peer component to be installed on
each client machine, even though it would be possible, of course. Neither do we monitor
the health of DNS servers.

Our approach separates different techniques to reach different goals as discussed in Sec.
4. We are still early in the design and development process, but we can already present
some promising measurements.

So far we have implemented a glibc extension that uses parallel requests to the primary
and secondary name server. Of course this doubles the DNS traffic in the case that both of
them are doing fine, but we don’t need any monitoring traffic and we keep the caches of
both servers up to date. If the added traffic is of concern, one can delay the second request
by a short time-out sufficient to get fast replies from the first server. In this way, one can
balance the network load vs. the response time. Given the fact that most requests will be
answered from cache, there is almost no additional load on the CPU, and LAN traffic is
cheap, so this seems to be a practical approach.

Figure 1 shows a comparison between our resolver (parallel DNS), CoDNS and DNS. We
used a list of 23771 DNS names and calculated the average of our measurements from 490
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Method lookups total time | avg. time/lookup
DNS 23771 | 18074599ms 760ms
CoDNS 23771 | 9735546ms 409ms
parallel DNS 23771 9176794ms 386ms

Table 1: Results without caching

Planet-lab nodes®. We found out, that measuring the performance without caching effects
is difficult. The graph shows that parallel DNS has gotten more responses within 40 and
200 ms than any of the other approaches. CoDNS has advantages for answers between
200 and 1000 ms. This is due to the ability to choose the best performing peer out of 10
neighbors while we just use our LDNS servers. However, we did not succeed in getting
rid of caching effects between the different measurements, which makes evaluating the
benchmark difficult. This is also caused by the fact that we had not the exclusive access to
the used DNS servers. Without these effects our parallel resolver should always be at least
as good as DNS.

For better comparison we provide a weighted CDF? in Fig.2. It shows the distribution of
answer times weighted by the answer time itself. This is interesting because the extremely
slow answers dominate the time, that a resolver spends for resolving queries. One can see
that, e.g., our approach uses 21% of the overall lookup time for requests taking longer than
1 second. DNS spends 60% and CoDNS spends almost 50% of the overall lookup time
for this fraction. This result differs from the benchmarks in [PPPW04], because these are
our own measurements, where we used the CoDNS version that is available and deployed
in Planet-Lab. Altogether our benchmark results show that parallel DNS outperforms the
other approaches as shown in Table 1. The table shows that the additional number of DNS
messages is justified by roughly 50% improvement of answer time.

Since DNS gains most of its performance from caching, we performed a measurement in
which we repeated some queries to exploit caching. The main benefit of this benchmark is
to isolate the delay penalty of LDNS failures. A fair measurement with caching is difficult
to achieve, since the chronological order of benchmarks has an influence on the result.
KyoungSoo Park proposed to show the better performance of an approach by running it
first. All other approaches would find better caching behavior since the first run warmed
caches. This might be unfair because the result would hardly be comparable with other
benchmarks. Repeating small junks of queries solved this problem, since the 2nd junk
always finds a warm cache*. Figure 3 and Table 2 show the results. Parallel requests
always reach the best results. The reason is that LDNS or network failures are the reasons
for higher delay in this case. Parallel requests perfectly hide these failures while the other
approaches trigger timeouts and need retransmissions.

We also learned that asynchronous socket I/O is much better than multithreading. To
simplify matters, we first used threads that parallelized calls to the glibc function send_dg

2Not all of them were available all the time. Reasons can be network problems in the Internet, nodes being
re-booted after OS updates, node failures, and other problems. Usually we have been able to use half of them.

3as used by Park et al. [PPPW04]

40f course this does not work for names that are not cacheable due to TTLs of just a few seconds. But this
makes the method even more realistic.
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Method lookups total time | avg. time/lookup
DNS 23771 | 5164570ms 217ms
CoDNS 23771 | 4169531ms 175ms
parallel DNS 23771 | 984413ms 41ms

Table 2: Results with caching
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Figure 3: Comparison of average answer time with caching

that sends and receives UDP packets containing the DNS messages. When we tried to use
a thread pool the performance dropped under the DNS performance in the area up to 16
ms.

CoDNS tries to pick the same peer for the same name to get some cache locality, but in
the Planet-Lab configuration it uses just one peer, so this strategy might not even be used.
However, CoDNS can also outperform DNS in the area between 40 and 500 ms.

Another important point for comparison is trustworthiness. Using CoDNS, the user agrees
to forward DNS requests to other peers. Of course, this leaks information about the DNS
names she resolves, i.e. the web sites she reads or the e-commerce services she uses.
Furthermore, information about the internal structure of a company’s network may also
be disclosed. Using SEDNS, users can prevent this by carefully configuring their LDNS
servers.
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3 DNS Security Issues

Many security attacks on DNS are possible. DNS messages could be intercepted and
modified on their way. This would not only be a source of confusion but would be a
serious threat for many systems.

DNS Security Extensions (DNSSEC) have been designed to cope with this problem. A
public key infrastructure is woven into DNS to allow using signed resource records.

With DNSSEC, the manipulation of DNS resource records is getting more difficult. An
attacker can not just intercept a DNS message and change its contents. Sending a faked
DNS answer directly to the stub resolver should also not be possible, since a security
aware resolver, according to RFC 2535, must not trust the AD flag unless there is a secure
communication channel between itself and the server, e.g., a VPN, which would prevent
such attacks.

Hence, the introduction of a public key infrastructure solved many trustworthiness prob-
lems - but at the same time new problems are introduced. We have seen in Sec. 2.1
that configuration issues cause many failures. With DNSSEC the configuration of a DNS
server gets even more difficult.

DNSSEC uses a hierarchical trust model that makes DNS even more fragile in the presence
of configuration errors. Hence, if we want to improve the availability, DNSSEC does
not seem to be the right choice. A solution that could reduce the configuration effort
is a self-organizing completely decentralized peer-to-peer system. But it is already well
understood, that these overlays without massive use of caching are too slow to satisfy the
answer time expectations of a naming service [CMMO02]. The complexity of the DNSSEC
trust model can be reduced by using SSL-Certificates like described in [FPJO5]. This
solutions helps to reduce DNS server dependencies, since the certification chain can be
much shorter.

4 SEDNS

SEDNS tries to cope with all the dependability problems mentioned so far. We dedicate a
part of our systems design to each of the problems: a local cache to improve QoS by re-
ducing DNS latency, parallel requests to LDNS servers to mask client-side dependability
problems, and a peer-to-peer approach to mask server-side dependability problems includ-
ing misconfigurations and network problems. Figure 4 shows how an SEDNS resolver
works in pseudocode.

Step 1 The resolver sends a query to a nearby caching-only name server. (Line 9 in Fig.
4) These servers are easy to install and the maintenance overhead is negligible. The
main advantage is that the stub-resolver can learn, how long it takes to resolve a
name from cache (Lines 21, 22). The time-out for this operation is dynamically
adapted.
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Step 2 In the case of a cache-miss, the resolver does not wait for the caching-only server
to resolve the name. It proceeds to issuing parallel requests to the LDNS Servers.
The earliest successful answer is delivered to the application. The number of needed
DNS messages can be reduced by introducing small time-outs between transmitting
the requests (Lines 10, 11). In this case the first name server should be selected
randomly or using the rotate scheme in resolv.conf to have a better load distribution
(Not shown in Fig. 4).

Step 3 In the case that no answer is obtained there must be a client-side failure or a server-
side problem. The resolver now makes use of a peer-to-peer application. This ser-
vice can be found using the resolv.conf as well® (Line 12, We assume that the last
resolver is the peer-to-peer application). It implements the DNS protocol and is used
as a gateway to the overlay network. The peer-to-peer network locates the DNS re-
source record and delivers it to the application, even during global DNS outages.

There have been some attempts to implement a DN'S compatible service by using peer-to-
peer overlay structures. Cox et al. [CMMO02] simulated a Chord [SMK*01] based overlay
implementing a DNS compatible server using the DNS traces of Jung et al. [JSBMO1].
The results show that even for a small network of 1000 Nodes the additional delay of the
overlay routing leads to rather slow answers. The estimation of answer times shows that
less than 30% of the DNS queries can be answered within 200ms.

Ramasubramanian et al. [RS04b] showed that proactive caching and replication can mask
this problem. An rather good performance was reached using Beehive [RS04a], a frame-
work for proactive caching. More than 50% of all DNS requests did not incur any network
traffic at all. They have been served from the local cache.

Now this approach seems to be great for long-TTL entries of DNS but for entries with
short TTL it would suffer from the same problems as the solution of Cox et al. [CMMO02].

The common problem is that in structured peer-to-peer networks data is located using
distributed hash tables (DHT). The hash sum of objects or their names is calculated and
the object is located at the peer with a node ID closest to this hash sum. If an object shall be
retrieved, the distance to this node ID is reduced in each routing step. This does not mean
to get closer to the target, since these IDs are not linked to the location in the network. So
peers having almost the same ID can still be far away from each other in terms of round
trip time.

There are some approaches to optimize the routing behavior in these overlays, e.g. Castro
et al. [CDHRO3]. The goal to use network layer knowledge for overlay routing decisions
was achieved, but the core problem remains: The location of an object is determined by
a DHT. All locality information is destroyed. This might be alright as long as the object
or its name does not contain location related data, but in the case of DNS this would be a
wrong assumption.

51t has to listen at the standard DNS port to receive the query.
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01 resolve(request){

02

03 query=read(request);

04

05 cache=readln(”/etc/resolv.conf”);

06 for(i=0; i<resolvers_count; i++)

07 resolvers[i]=readln(”/etc/resolv.conf”);

08

09 scheduleQuery (cache, query, now);

10 for(i=0; i<resolvers_count — 1; i++)

11 scheduleQuery (resolver [0], query, cache_timeout + ixoffset);
12 scheduleQuery(resolver[resolvers_count — 1], query, cache_timeout + p2p_offset);
13

14 pending = resolvers_count+1;

15 while(!valid & —pending > 0){

16 if ((error = select(inBuf, timeout))!=0) return error;

17 response = inBuf.read();

18 valid = !response.isError();

19 }

20

21 if(response.source ()==cache) adapt(cache_-timeout, LESS);
22 else adapt(cache_timeout, MORE)
23  return response.getAnswer();

Figure 4: Pseudocode of the SEDNS stub resolver

4.1 P2P overlay design

In the case, that the DNS infrastructure fails, we want to use a overlay network that effi-
ciently locates DNS data. For this purpose we need a hash function that does not destroy
any locality information.

DNS requests show locality, otherwise caching would not be as successful as it is. But the
distance between two object’s names or two URLs is often not determined by the round
trip time between the hosts they are stored on but by the language of their content. This
information is in many cases already included in the name in the shape of the country code.

While other approaches tried to exploit common keywords like Lu et al. [LHLOS], we
exploit the hierarchical structure of DNS. If some user looks up www.harry-potter.uk, it
is more probable that the next lookup is www.books.uk instead of www.harry-potter.fr. So
the design of our hash scheme must map this hierarchy into the hash. Therefore, we are
using a prefix routing scheme, like used by Pastry [RD01] or Tapestry [HHWXO01]. DNS
names offer postfixes that indicate their location in the DNS name space. We directly map
these postfixes to prefixes in the hash sum.

To improve the routing algorithm we exploit heterogeneity to select “Superpeers”, i.e.,
nodes with more resources usable for routing. These Superpeers use group membership
information to implement 1-hop routing.
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5 Conclusion

We propose a multi-staged resolution scheme for DNS which can improve answer times
by using an adaptive time-out for querying a caching-only server. Furthermore is uses
different techniques to mask client-side failures and to reduce answer times at the same
time. A peer-to-peer backend is only used in the case that DNS is unavailable due to client-
side or server-side failures or attacks. The peer-to-peer network will be self-organizing and
incrementally deployable.

The changes to the stub resolver will be implemented as glibc patch. No other software
on the clients machine is necessary to install. The performance improvements will also be
usable without participating in the overlay network.
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