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Abstract: We present a formal framework to talk and reason about dependable sys-
tems. The framework is based on three distinct classes of (system specification) pro-
perties we call safety, liveness and information flow. We discuss several examples of
dependable systems within this framework and argue that these classes are sufficient
to model the functional requirements of dependable systems satisfying to high degrees
both fault-tolerance and security attributes. The framework is meant to be a minimal
security-specific extension of the asynchronous system model from fault-tolerant dis-
tributed algorithms and aimed to support teaching the concepts of fault-tolerance and
security within a uniform system model. To remain minimal, the framework does not
cover probabilistic or complexity theoretic aspects of dependability (like reliability or
computational security).

1 Introduction

Following the terminology of Laprie et al. [Lap92], a system is dependable if reliance can
be justifiably placed on the service it delivers. Dependability includes important quality
aspects of systems like fault-tolerance and security. The terminology of Laprie has been
very influential in the areas of safety-critical and fault-tolerant systems. But despite sever-
al attempts to integrate the view of security better into the terminological framework of
dependability [MAF, ALRL04], two distinct views and communities remain.

This paper presents a framework in which it is possible to precisely reason about important
aspects of a dependable system specification. The framework comprises a simple system
model which allows to formally define terms such as system and failure, and relate them
to others linked to a dependable system requirements’ description, such as property or
specification. The framework is mainly based on three classes of system properties which
we call safety, liveness, and information flow. These classes can be precisely defined and
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distinguished within the formal system model. We give several examples of dependable
systems in this framework and justify that these classes of system properties are sufficient
to describe the functional requirements of dependable systems satisfying to high degrees
both fault-tolerance and security attributes.

The framework can be understood as a “minimal extension” of the asynchronous (or time-
free) model which dominates large parts of the literature on fault-tolerant distributed algo-
rithms (see for example the book by Lynch [Lyn96]). There, safety and liveness properties
alone are regarded as a basis to describe functional requirements of fault-tolerant systems.
We extend this pair of properties with a single additional concept, that of information flow
properties, which can be shown to fall outside the scope of safety and liveness but which,
in our view, are vital to specify security requirements. One of the main goals of our frame-
work is to provide a basis with which to feach the concepts related to dependability and to
provide structured engineering support on how to specify a dependable system. The price
for this minimality is paid in that the framework does not cover probabilistic or complexity
theoretic aspects of dependability (like reliability or computational security).

The framework presented has been recently successfully used in a graduate-level lecture
“Dependable Distributed Systems” at RWTH Aachen. Apart from that, it may offer some
insights and unifying views and may contribute to the ongoing [Die04, Pfi04] discussions
within the GI Fachgruppe “Sicherheit” on terminology and model issues.

We first present the basics of the model (Section 2), then present several examples of how
to talk about dependable systems in the model (Section 3), and finally put the framework
into the context of previous and ongoing discussions (Section 4).

2 System Model

We now present the definition of a formal system model, the context in which we talk
about dependable systems. Due to a lack of space, we cannot explain the full formalism
but stress that all concepts can be fully formalized using, e.g., trace-based concepts from
linear temporal logic [MP91, Pnu81].

Systems, traces, and properties. A system is a black box with an interface (see Fig. 1).
Everything outside of the system is called the environment. The interface consists of a set
of actions which resemble interface operations which can be either invoked by the system
(output operations) or by the environment (input operations).

While the interface operations define the “syntax” of a system, its semantics are defined
by its externally visible behavior (i.e., the behavior at its interface). The visible behavior
is formalized using linear traces. A trace is a sequence of interface operations which may
happen at the interface of the system interleaved with a sequence of system states. A trace
property of a system is a set of traces. A system can be regarded as a generator of traces.
Depending on internal concurrency and different input operations a system may generate
many (possibly infinitely many) different traces. The system trace property is the set of all
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Abbildung 1: A system as a black box (left) and as the composition of subsystems (right).

traces which could possibly be observed at its interface.

As an example, consider a message system. For a given set of messages M such a sys-
tem has one input operation Send(m) and one output operation Receive(m) for every
m € M. Basically, Send(m) inserts a message into the message system and the operation
Receive(m') may spontaneously happen at the interface of the system when a message is
received. A possible trace of the system is the sequence

{}, Send(m), {m}, Send(m'), {m,m’}, Receive(m'),{m}, ...
but also
{}, Send(m'), {m'}, Receive(m’), {}, Send(m), {m}, Receive(m),{}, ...

is a possible trace.

Subsystems. A system can itself be composed of subsystems, which essentially are
again systems (see Fig. 1). The algorithms governing the interaction between the sub-
systems result in the behavior of the composed system at its interface. The recursion of
decomposing systems into subsystems must stop at some level which contains primitive
systems.

Continuing the example, the message system may be composed of a multiset system, i.e., a
component that implements a multiset!, and a activator system, i.e., a system which has no
input operation but one output operation activate which it periodically invokes. Invocations
of Send(m) result in an insertion operation of m into the multiset. If the multiset is not
empty and whenever the activator invokes activate, we remove some message m’ from the
multiset and invoke Receive(m') at the interface of the message system.

Agents. Since we aim at modeling distributed systems, we postulate a set A of agents.
An agent models a process or processor, i.e., an executor of (parts of) systems. Intuitively,
systems offer a vertical way to structure an application while agents offer a horizontal

' A multiset is a set which can contain the same element multiple times.
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decomposition (see Fig. 2). The set of input and output operations is then tagged with the
identity of the agents which a concerned with the operation. For a system which spans
several agents, we assume that there is a part of that system executing concurrently on
every agent.

In our running example, we can augment the syntax of the Send operation to contain
source and destination of a message. For example, Send(A, m, B) could denote that agent

A sends message m to agent B.

A

system (e.g., anonymous message system),
1 1

1 1 1
systerr'l (e.g., reliable mes'sage system) |
: : :
[ 1 1 1
! I
primitive systein

agent A | agent B | agent C' | agent D

Abbildung 2: Vertical and horizontal structures within systems.

Specifications. A trace specification is an intersection of properties, i.e., an intersection
of a set of traces, which is itself a set of traces. Intuitively, a specification defines acceptable
behavior, namely all traces which are allowed to be generated by a system. For example,
we would wish to disallow the following trace (it does not correspond to a sensible trace)
of a message system:

{}, Send(A, m, B),{m}, Receive(B,m’, A),{m},...

where B receives a message which was never sent.

We will use a natural language based on concepts from temporal logic to express specifica-
tions. The two central concepts of that language are the terms “always” and “eventually”.
The statement “always ” refers to all traces where ¢ holds in every suffix (¢ holds to
some arbitrary statement). The statement “eventually ¢ denotes all traces where at some
future point in the trace ¢ holds. For example, the expression

VA,B € A:Vm € M : always Send(A, m, B) implies eventually Receive( B, m, A)

refers to all traces where a message m sent by A is eventually received by B.
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A system satisfies a given is a subset of the set of traces specified by the specification.
Of course, in order to correctly implement a specification, a system usually has to execute
internal (unobservable) actions within the subsystem which are different from the interface
actions. Therefore, depending on the level of abstraction, there can be different views onto
a trace. For example, a trace of the message system in our running example may be viewed
at the level of the multiset subsystem, yielding traces like

{}, Send(A, m, B), {m},insert(A, m, B), {m}, activate, {m}Receive( B, m, A),{m}, ...
which at the level of the message system looks like this:
{},Send(A, m, B),{m}, Receive(B,m, A),{}, ...

These changing views on traces are known in the literature on refinement [Les83].

Faults and adversaries. When talking about dependable systems, we need a way to
express faulty or adversarial behavior. We assume that faulty behavior is tied to the notion
of an agent. At any point in time, an agent that executes correctly an algorithm in which
it is participating is called correct (regarding that algorithm). Otherwise, we call the agent
faulty.

A fault model describes what type of faulty behavior we allow from agents. We distinguish
two basic types of faulty behavior: crash and arbitrary. The crash model allows an agent to
simply stop executing steps whereas the arbitrary model (sometimes also called Byzantine
[LSP82]) allows an agent to act in arbitrary ways.

In a security context we treat all faulty agents to be under the control of an intelligent
adversary. We define a hierarchy of three increasingly powerful adversary classes which
specify in addition to the types of faulty behavior also the amount of information which
is visible to the adversary. For the exposition of this paper it suffices to mention attacker
class Al:

A1l The adversary sees only events which occur at the interfaces of faulty agents (this
corresponds to an adversary who sees only the behavior of faulty agents).

Safety and liveness. In 1977, Lamport [Lam77] observed that there are two fundamental
classes of trace properties, namely safety and liveness properties. Briefly spoken, safety
properties describe what is not allowed to happen, e.g., “no message is received unless it
was sent”. Liveness properties demand what eventually must happen, e.g., “every message
which is sent is eventually received”. Later, Alpern and Schneider [AS85] came up with
formal definitions of safety and liveness. They also were able to prove a decomposition
theorem, i.e., that every dependable property could be written as the intersection of a safety
and a liveness property. This theorem is a useful guideline for dependable system designers
to cleanly structure system specifications.

In the area of specifying and verifying security properties, trace-based formalisms have
been adopted, too (see for example Gray III. and McLean [GM95] or Mantel and Sa-
belfeld [MSO1]). Possibilistic security properties [McL94,McL90] use a particular type of
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trace-based formalization to specify the absence of information flow in multi-level security
environments. The idea of this approach is that information cannot be deduced by obser-
ving the system because the set of traces which might have generated this observation is
too large. Interestingly, possibilistic security properties fall outside of the safety/liveness
classification because they describe properties of trace sets, and hence must be formalized
as a set of sets of traces [McL.96].

Information flow. Mantel [Man00] proposed a modular formalism to specify informa-
tion flow properties using closure conditions on trace sets. Interface events are separated
into two classes H and L (usually referred to as high and low) with the idea that observing
events from L leaks no information about events from H.

In our example, we may wish to specify that the fact that agent A sent a message to agent
B remains confidential from other agents (this is sometimes called sender anonymity). For
this, we separate all interface events on agents A and B into the set H and all other ope-
rations into set L (i.e., all interface operations of the other agents including the activate
operation of the multiset system). To specify anonymity of the message system, the set
of traces P generated by the system must satisfy the following closure property: For any
trace o in P which includes Send(A, m, B) and Receive(B,m, A) there must exist ano-
ther trace o’ in P which is the same as ¢ but with all occurrences of Send(A, m, B) and
Receive(B, m, A) removed.

Why does this closure condition specify anonymity? The idea is that other agents do not
see the interface operations of A and B (those operations in H), i.e., they can only guess
from what they themselves see (operations in L) as to what A and B are doing. If the
message system had just one single behavior, namely the trace

Send(A, m, B), insert(A, m, B), activate, Receive(B, m, A), . ..

then the other agents would simply know from observing the activate operation (which
is in L) that a message has been sent between A and B. If for any such trace there is
another trace which only contains activate, then by observing operations from L it is now
impossible to deduce whether Send(A, m, B) or Receive(B, m, A) happened. Note that it
still may be possible to deduce whether these operations did not happen.

Information flow properties fall outside of the safety and liveness domain, and hence, they
are not subject to the Abadi-Lamport Composition Principle [AL93]. These properties
can therefore not be composed in general. The framework proposed by Mantel offers the
possibility to compose systems if certain conditions are met [Man03].

3 Talking About Dependable Systems

In this section, the core of the paper, we present several examples of dependable systems
and discuss them within our framework. The aim of this section is to show that it is possible
to talk and reason about classical fault-tolerance (i.e., safety and liveness) properties as
well as security (i.e., information flow) properties at the same time and in a natural way.
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3.1 A Reliable Message System

A reliable message system, which was used as running example in the previous section,
allows any two agents to exchange messages in a reliable manner. It is a component that
can be specified without any information flow properties.

The reliable message system abstraction has been used extensively in the literature on
fault-tolerant distributed algorithms (see for example the book by Lynch [Lyn96]). Two
agents, the sender S and the receiver R, want to exchange messages from a given set M.
There are two types of interface operations: Send(S, m, R) is invoked by S whenever it
wants to send a message m € M to R. The operation Receive(.S, m, R) happens at R
when the message finally arrives at its destination.

Formally, we specify a reliable message system as a system satisfying the following pro-
perties:

e (Liveness) If Send(S, m, R) happens and if S and R are both correct, then eventually
Receive(R, m, S) will happen.

e (Safety) If S and R are both correct, Receive( R, m, S) does not happen unless pre-
viously a corresponding Send(.S, m, R) happened.

e (Safety) Receive(R,m, S) happens at most once.

In this context, corresponding means that if the sender S sends a message m € M to the
receiver R invoking Send(S, m, R), then the operation Receive( R, m, S) can happen later
on in the trace. Note that Safety and Liveness specify two different aspects of the channel:
Liveness describes the progress of the channel, i.e., the promises it makes towards the
future. Safety expresses that no messages may be received which were not previously sent,
i.e., it restricts what may have happened in the past. Note that the channel is asynchronous,
there are no time bounds on the delivery delay. Such time bounds, however, can also be
expressed (in this case as an additional safety property).

3.2 An Anonymous Reliable Message System

On top of a reliable message system we now construct a message system that satisfies a
special security property, namely sender anonymity.

3.2.1 Specification

Similar to a reliable message system, an anonymous reliable message system has two
interface operations AnonSend and AnonReceive. The properties are also similar apart from
one additional information flow property which has to be satisfied. Formally, a anonymous
reliable message system satisfies the following properties:
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e (Liveness) If AnonSend(S, m, R) happens and if S and R are correct, then eventual-
ly AnonReceive(S, m, R) will happen.

e (Safety) If S and R are correct, AnonReceive(S, m, R) does not happen unless pre-
viously a corresponding AnonSend(.S, m, R) happened.

e (Safety) Receive(R,m,S) happens at most once.

e (Information Flow) If S and R are correct, the system leaks no information about
the fact that S sent a message to R to any agent who is not S or R.

Note that in a security setting, the safety property guarantees some weak form of authen-
ticity: upon arrival of a message m, it guarantees that m was in fact sent by S and m
is unchanged (m was sent and no other message m’). However, it provides no means to
identify the identity of the sender S.

3.2.2 An Implementation

An anonymous reliable message system can be implemented using a reliable message
system and standard privacy enhancing techniques, namely DC networks [Cha88]. We
briefly sketch an implementation here.

A DC network is time slotted and in each time slot all participating agents send a message,
although for successful transmission only one of them has to be the real message and the
others are dummy messages. Now the task is to hide the real message in the cover of the
dummy messages. For this task the agents exchange secret keys along a given key graph,
each agent then locally exclusive-ors (XORs) all of the keys it has with the dummy or
real message which it is about to send. After sending, every agents receives a message
from every other agents. The sent message is recovered by XORing all received messages
together.

Note that the implementation of a DC network requires a time-slotted execution of send
operations by the agents. This can be achieved in asynchronous systems by employing a
network synchronizer [Awe85, GP02]. Note also that in contrast to the safety and liveness
properties of the reliable message system, the validation of the information flow property
is much harder to achieve. In fact, the framework has not adapted yet the rigorous proof
techniques developed for proving the absence of information flow [Man03]. Developing
intuitive guidelines for validating these properties is still future work.

4 Dependability Revisited

The three classes of safety, liveness and information flow have interesting parallels to the
classification of security requirements known as the “CIA taxonomy” which seems to have
its origin in a paper by Voydock and Kent [VK83] and later appeared very prominently in
the harmonized IT security criteria of France, Germany, the Netherlands, and the United
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Kingdom which are known as “ITSEC” [ITS91]. “CIA” sees security as the combination
of three attributes: confidentiality, integrity and availability. There have been many discus-
sions on whether or not the CIA spectrum really covers all relevant security properties.
For example, accountability is often treated as a property aside from CIA, e.g., by Stel-
zer [Ste90], whereas others (e.g., Rannenberg ef al. [RPM99] or Amoroso [Amo94]) argue
that it falls into the domain of integrity. The framework presented in this paper offers a new
perspective onto the CIA taxonomy. Availability has some resemblance to liveness proper-
ties (at least if non-real-time availability, i.e., termination in finite time, is concerned).
Integrity properties have parallels to the class of safety properties (they describe the non-
occurrence of “bad” things). Finally, confidentiality properties are concerned with secrecy,
i.e., they have a large overlap with information flow properties. However note that our
framework does not allow to express aspects of safety and security which refer to comple-
xity or probabilities. For example, the concept of reliability (e.g., mean time to failure) or
measures of attacker effort [Cac02] cannot be formalized in our model. Also, the existing
work on possibilistic information-flow has not yet been extended to model confidentiality
achieved through encryption.

We have used the framework in the course “Dependable Distributed Systems” at RWTH
Aachen University. From our experience, the triangle of safety, liveness and information
flow offers a model which is simple enough to explain many fundamental concepts in the
design of dependable systems. For this domain it is a good compromise of expressiveness
and simplicity.
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