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Abstract: In this paper we present a parallel prover for the propositional satisfiability
problem called PICHAFF. The algorithm is an adaption of the state-of-the-art solver
CHAFF optimised for our scalable, dynamically reconfigurable multiprocessor sys-
tem based on Microchip PIC microcontroller. Like usually in modern SAT solvers
it includes lazy clause evaluation, conflict-driven learning, non-chronological back-
tracking, and clause deletion. A simple but efficient technique called Dynamic Search
Space Partitioning is used for dividing the search space into disjoint portions to be
treated in parallel by up to 9 processors.

Besides explaining of how such a complex algorithm could be implemented on
simple microcontroller we also give experimental results demonstrating the potential
of the implemented methods.

1 Introduction

The NP-complete problem of proving that a propositional Boolean formula is satisfiable
(SAT) is one of the fundamental problems in computer science. Many problems can be
transformed into a SAT problem in that way, that a solution of the SAT problem is also
a solution of the corresponding original problem. On the basis of these facts a lot of
developments in creating powerful SAT algorithms werde made in the last years: SATO
[Zh97], GRASP [MSS96], or CHAFF [MMZ � 01] for example which are all based on
the classical Davis-Putnam method introduced in the early 1960s [DP60, DLL62]. These
algorithms have been successfully applied to real-world problems in the field of model
checking, equivalence checking, or timing analysis to name only a few [BCC � 99, MSG99,
SMSSS98].
Besides using faster CPUs parallel implementations seem to be a natural way to speed
up SAT algorithms and by this to offer new opportunities in handling large problem in-
stances. In the last decade powerful distributed SAT procedures have been developed: on
one hand implementations for network clusters of general purpose workstations [ZBH96,
SBK01, BSK03] and on the other hand realisations for special hardware architectures like
transputersystems [BS96] or application specific multiprocessing systems [ZMMM01b].
In this paper we combine the different strategies by implementing a parallel version of
a modern SAT solver for our special multiprocessor system using Mircochip microcon-
troller. The underlying hardware environment has been developed at the Chair of Com-
puter Architecture in the last few years [BDB97, DDM � 00]. As the basis for this dis-
tributed SAT algorithm called PICHAFF we use one of the most competitive prover for the
Boolean satisfiability problem: CHAFF. Hereby, all parts of the original implementation
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have been optimised for the limited resources of the Microchip PIC microcontroller. The
main aspects of our work are: (1) implementing a complex algorithm on simple microcon-
troller with restricted resources; (2) evaluating our multiprocessor system; and (3) getting
experiences in this field, which might be helpful when realising a version of PICHAFF for
a network cluster of standard PCs in the future.
The remainder of the paper is organised as follows: Section 2 introduces the SAT prob-
lem and the CHAFF algorithm. The multiprocessor system and the software environment
are presented in Section 3. After that the implementation details and the parallel search
method used in our approach are discussed in Section 4. Finally the results of the perfor-
mance measurements are reported in Section 5 followed by a conclusion of the work done
so far.

2 Satisfiability Problem

We assume the reader is familiar with propositional logic and related concepts. So we only
give a short definition of the notations used throughout the paper:

� Let � be a set of � Boolean variables.
���	� ��

� 
���
�� ��� is called the set of literals.
������� 
������ ���!���"
#��$&% with


��(')� � is called a clause.
�+*,�.-�/10 ���!� 0�-!2 with clauses - � is called a formula in conjunctive normal form

(CNF).

The propositional SAT problem now could be defined as the question if there exists an
assignment for the variables in � such that the given CNF formula * gets satisfied.
As mentioned before most of the complete backtrack search SAT algorithms are based
on the classical Davis-Putnam method. The pseudo-code not only of CHAFF but also
of Berkmin, SATO, or GRASP for example which extend this concept with additional
features is illustrated in Figure 1.

while(1) 3
if (decide next branch()) 3
while (deduce() == CONFLICT) 3
blevel = analyse conflict();
if (blevel == 0) return UNSAT;
else back track(blevel);44

else return SAT;4
Figure 1: Pseudo-Code of modern SAT Solvers
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The function decide next branch() selects the next branching variable. After that
deduce() propagates the effect of the assigned decision variable: some clauses may be-
come unit clauses. All the unit clauses are assigned to TRUE and the assignments are prop-
agated until no further unit clauses exist. If all variables are assigned, a model for the given
problem is found. Otherwise, if a conflict encounters the functionanalyse conflict()
is called: the reasons for the conflict are analysed and a backtrack level will be returned.
The backtrack level indicates where the wrong decision was made and back track()
will undo all the wrong branches in order to preserve the conflict. A backtrack level of
zero means that the given instance is unsatisfiable, because a conflict exists even without
assigning at least one variable.
Nearly all modern complete SAT solvers are based on the algorithm described above,
but they differ in the way the functions are implemented. In CHAFF the so-called 1UIP
learning scheme is used for conflict analysis stopping the process when the first Unique
Implication Point (UIP) was found [ZMMM01a]. Intuitively, a UIP is the single reason
that implies the actual conflict and has to be flipped to avoid the conflict.
For speeding up the deduce() function a lazy clause evaluation technique based on the
notion of watched literals is used: depending on the value of these 2 watched literals it is
easy to decide whether the clause is already solved (at least one literal defined correctly),
a unit clause exists (one literal improperly defined), or a conflict occurs (both literals im-
properly defined).
There are several other features like the Variable State Independent Decaying Sum branch-
ing heuristic, clause deletion, and restarts integrated in CHAFF. Due to the page limita-
tions, we will not delve into these topics, the reader may refer to [ZM03, MMZ � 01].

3 Multiprocessor System

In this section we describe the most important hardware and software components of our
Multiprocessor System called MPS. For further information see also [BDB97, DDM � 00].
A picture of the layout is given in Figure 2. It mainly consists of three elements: the
Carrier Board (CB), the Processor Nodes (PNs) and the Communication Processor (CP),
that will be described below.

Figure 2: Multiprocessor System
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3.1 Carrier Board (CB)

A long PC ISA slot card serves as the CB. Besides the communication processor up to 9
processor nodes fit onto one board. The CB is the core of the multiprocessor system and is
used for communication switching between the different processors. Hereby, the connec-
tion between the PNs is established by a so-called Field Programmable Interconnection
Device (FPID) from I-CUBE realising a hardware crossbar switch. Furthermore, all target
applications, i.e. the SAT solver is downloaded via the CB into the external memory of the
PNs using the interface to the PC. A dual port RAM on the CB serves for connecting the
local bus of the ISA card to the PC bus.

3.2 Processor Node (PN)

The PNs are the basic computing units and consist of the following main characteristics:

� Microchip PIC17C43 RISC type CPU, 20 MHz operating speed
� 8 Bit data bus, 16 Bit address bus
� 454 Byte local RAM, 64 kWord external RAM, 4 kByte local ROM

The PIC17C43 microcontroller from Microchip was chosen for our purposes, since it is
a low cost and for our applications satisfying module. The external RAM is reserved
for the target applications of the PN, while the local ROM contains a simple operating
system with basic functionality (refer to Section 3.4). The PN is equipped with one serial
communication channel, capable of transferring data at 5 Mbit/s. The serial ports of all
PNs are connected to the FPID device on the CB to enable communication between the
PNs. This can be used to transfer SAT specific data like subproblems - as can be seen
in Section 4.2 - or even to share useful information like generated conflict clauses for
example.

3.3 Communication Processor (CP)

The CP - located on a separate board in the middle of Figure 2 - serves for handling the
requests for communication issued by the PNs and for controlling the channel switching
FPID on the CB. Some of the features are:

� Motorola MC68340 CISC type CPU, 16.78 MHz operating speed
� 32 Bit data and address bus
� 256 kByte RAM, 128 kByte ROM

In our approach the CP also handles the overall communication to the PC like downloading
applications, transferring results and so on.
It is important to notice that the communication topology of the FPID can be reconfigured
by the CP during runtime in less than 1 ms. Due to the fact that the crossbar switch
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provides real hardware connections between the PNs the exchange of information can be
done very fast and without the influence of the CP.

3.4 Software Environment

To use our multiprocessor system in a wide field of applications, the software framework
is equally important as the hardware part. Therefore we implemented simple operating
systems for the three main components - the PNs, the CP, and the PC - which are totally
independent from the target application and provide the following functions: download
of compiled program files (applications), configuration of the FPID module, exchange of
data between the PNs, and transfer of received results.
Due to runtime critical aspects and the limited size of the internal ROM, the kernel for the
PNs has been programmed completely in assembler. The operating systems for the CP
and the graphical PC interface have been developed in C/C++ using a MC68340 Cross
Compiler and Microsoft Visual C++ / NuMega DriverAgent respectively (to access the
carrier board via the PC ISA bus).

4 PICHAFF Implementation

In this section we present the realisation of PICHAFF for our multiprocessor system intro-
duced in the section before. We will focus on the memory management, the data structures,
the extensions needed for the parallel execution, and the overall application flow. Due
to the limited resources of the Microchip microcontroller PICHAFF is also programmed
completely in assembler.

4.1 Memory Management / Data Structures

A sketch of the data structures and the organisation of the 64 kWord external memory of
the PNs is given in Figure 3.
At the top of the figure the overall partition of the memory is outlined. In our approach
only the block ranging from address 576&89878 to 5 *)*)*)* (56 kWord) is available for the
PICHAFF procedure and the given benchmark problem. This also limits the maximum
size of the problem instances to approximately 4000-5000 clauses. To overcome this lim-
itation an aggressive clause deletion mechanism has been integrated: if the number of
clauses (initial ones and conflict clauses) exceed the available memory all conflict clauses
that are currently not active1 will be deleted. The reader should notice, that deleting non-
active conflict clauses does not influence the correctness of the algorithm [ZM03]. Un-
fortunately, in the worst case it could happen that - even after the clause deletion process
- there aren’t enough memory cells left to store new clauses (for example if all assigned
variables are implications forced by a long conflict clause containing a huge number of
literals). In this case the algorithm stops with a corresponding failure message. As fu-
ture work it would be interesting to analyse in more detail the trade-off between the loss

1In this sense an active clause currently forces an implication.
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Figure 3: Memory Management

of information when deleting clauses and the benefit occuring from a decreased number
of clauses, which normally results in a faster Boolean Constraint Propagation during the
deduce step.
All parameters like the values of the variables, the decision stack, the lists of watched
literals, or the clauses are arranged in a linear list. As can be seen in the middle of Figure
3 pointers are used to access the first element of each memory block.
In PICHAFF, the clauses follow the data structure given at the bottom of the figure: a
pointer to the first literal of each clause and a special element (”0”) indicating the end
of the clause. To avoid additional pointers and to have access in constant time the two
watched literals for each clause are always located at the first two positions.

4.2 Parallel Search

In the previous sections we introduced our sequential PICHAFF procedure. For the par-
allel execution it has to be extended by a mechanism to divide the overall search space of
the given benchmark problem into disjoint portions. These parts of the search space than
could be treated in parallel by the processors.
To do so we adopt a technique called Dynamic Search Space Partitioning (DSSP) based
on Guiding Paths (GP) [ZBH96, BSK03]. A guiding path is defined as a path in the search
tree from the root to the current node, with additional information attached to the edges.
Each entry in a GP consists of the following information: (1) the literal :<; selected at level=

; and (2) a flag indicating whether the algorithm is in the first or second branch, i.e. if
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backtracking might be needed at this point (Flag B) or not (Flag N).
Due to this definition it is clear, that every entry in a GP attached with Flag B is a potential
candidate for a search space division, because the second branch has not been analysed
yet. Thus the whole subtree rooted at the node of the search space corresponding to this
entry in a GP can be examined by another processor.

(z,B)

(y,N)

(x,B)

Figure 4: Guiding Path

An example for dividing the search space is given in Figure 4. Assume that the search pro-
cess has reached the state indicated by the GP printed in black:

� � 

�?>@%�� �BA �DCE%F� �BG �?>H% � .
A new task can be started by defining a second GP

� � 

�DCE% � (printed with dotted lines),
as this part of the search space has not been examined so far. The original task will proceed
the search after modifying its initial GP from

� � 

�?>H%F� �BA �?CE%�� �BG �?>H% � into
� � 

�?CE%�� �BA �DCE%F��BG �?>H% � to guarantee that both processors work on different parts of the search space.

We have modified our PICHAFF algorithm to start at any arbitrary point in the search
space by specifying an initial guiding path. This means that every time a PN gets idle
during runtime, it contacts the CP by sending the corresponding signal. Then the CP
opens a communication channel of the crossbar switch to another active processor, which
is generating and encoding a new subproblem as a guiding path. This GP is finally trans-
ferred to the idle PN via the FPID device. An illustration of the communication process is
shown in Figure 5. Notice, that the CP is only responsible for enabling and disabling the
communication channels, not for transferring the data.

FPID

PN1 PN2

CP

CB

enable/disable
channels communication

requests for
communication
requests for

Figure 5: Principle of the Communication Process
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4.3 Application Flow

Besides the implementation of the extended DP method for the PNs several supporting
routines have been developed for the different types of processors, i.e. the CP and the PC.
For this purpose we defined an application flow, which is carried out in 5 phases:

1. First of all the user specifies one or even more benchmark problems and the number
of PNs.

2. Using the memory model given in Section 4.1 a problem specific PICHAFF algo-
rithm will be compiled containing all the necessary SAT functions, the addresses of
the memory blocks, the definition of the initial subproblems, the clauses, and the
lists of watched literals.2

For generating initial subproblems so-called splitting variables are assigned by the
PC interface and sent to the PNs using a static variable order. This ordering of
the variables is quite similar to the well known Dynamic Largest Individual Sum
heuristic: as an example assume that 4 PNs should work in parallel and that the
two literals with the highest occurrence in the given initial clause set are


 / and

�I

.
Then the guiding paths defining the four initial subproblems are J / � �K
 / � 
 I � ,J I � ��
 / �L
�I � , JNM � � 
 / � 
#I � , and J
O � � 
 / �L
�I � .

3. The received assembler code of the previous step will be used as the target applica-
tion and downloaded into the external memory of the PIC processors. After that all
PNs get started.

4. If a PN gets idle the DSSP method presented in Section 4.2 is called.

5. After the search process is finished the results are sent to the PC and the next exper-
iment could be started.

5 Experimental Results

For evaluating the performance of our implementation we made experiments using stan-
dard benchmarks available for download at http://www.satex.org. In columns 1
through 6 of Table 1 the main characteristics of the instances are given. The first column
denotes the name of the benchmark set, where columns 2 through 4 denote the number
of instances ( P I), the number of satisfiable ( P S), and the number of unsatisfiable bench-
marks ( P U). Also the number of variables ( P V) and the number of clauses ( P C) are listed
there. The results for the parallel PICHAFF algorithm using 9 PNs (including Dynamic
Search Space Partitioning) and for the sequential version using only 1 PN are presented in
the last 3 columns of Table 1. The CPU times are always the sum of the CPU times needed
to solve all the instances of the corresponding benchmark class.
As can be seen, the obtained speedup ranges from 4.2 to about 15 demonstrating that
our methods work very well on a wide range of satisfiable and unsatisfiable benchmark
problems. In case of the easily solvable benchmarks like the jnh instances, the overhead of

2Our experiments have shown that an optimised memory management according to the given benchmark
results in a more compact assembler code of the PICHAFF algorithm and by this increases the performance.
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Benchmark Set 1 PN 9 PN + DSSP
Name P I P S P U P V P C CPU [s] CPU [s] Speedup
jnh 50 16 34 100 800-900 95.43 22.65 4.21
hfo3l 40 20 20 120 510 877.38 95.29 9.21
hfo4l 40 20 20 48 487 1111.29 101.25 10.98
hfo5l 40 20 20 29 621 799.74 77.17 10.36
hfo6l 40 20 20 21 924 624.19 76.10 8.20
hfo7l 40 20 20 16 1460 525.11 67.76 7.75
hfo8l 40 20 20 13 2325 673.28 85.63 7.86
hfokl 40 20 20 55 1087 477.84 70.79 6.75
uf125 100 100 0 125 538 1540.38 166.98 9.22
uuf125 100 0 100 125 538 4948.95 450.94 10.97
uf150 100 100 0 150 645 6041.10 470.26 12.85
uuf150 100 0 100 150 645 23953.10 1563.86 15.32

Table 1: Experimental Results

communication between the 9 processors is the most time consuming part and results in a
lower speedup. In all other cases the received speedup is linear or even better. One reason
for this super-linear behaviour is the fact, that the PNs explore different parts of the search
space and by this usually generate different conflict clauses. These recorded clauses will
not be deleted when a PN switches to a new subproblem. It obviously turns out that this
obtained information is useful not only in the subproblem where the corresponding clauses
have been created but also in the whole search space.
And secondly, the total number of clauses every processor has to deal with is smaller than
the number of clauses one PN has to analyse in the sequential case resulting in a decreased
number of clause deletion operations (necessary when a memory overflow has occurred)
and an improved performance of the BCP procedure.

6 Conclusion

In this paper we demonstrated how a complex SAT procedure like CHAFF could be imple-
mented using simple microcontroller. The PICHAFF algorithm has been developed in less
than 2500 lines of assembler code. All features of modern backtrack search algorithms
like lazy clause evaluation, conflict-driven learning, non-chronological backtracking, and
clause deletion have been integrated and optimised for the limited resources of the Mi-
crochip PIC17C43 processors. For the parallel execution we enhanced PICHAFF by an
efficient technique for dividing the search space using the FPID device of our multiproces-
sor system. A PC interface serves as an easy-to-use and comfortable back-end to configure
all necessary parameters.
The experimental results point out the efficiency of the implemented methods and demon-
strate the potential of our scalable, low cost multiprocessor system. Lastly, our experi-
ences might also help to accelerate the performance of other classes of future parallel SAT
solvers.

346



References

[BCC Q 99] Biere, A., Cimatti, A., Clarke, E., Fujita, M., and Zhu, Y.: Symbolic model checking
using SAT procedures instead of BDDs. In: Design Automation Conference. 1999.

[BDB97] Biermann, P., Drechsler, R., and Becker, B.: Modularity as key element in modern
system design - a case study for industrial application of parallel processing. In:
European Design & Test Conference User Forum. 1997.
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