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Chairs’ Message

Welcome to the annual international conference of the Biometrics Special Interest Group

(BIOSIG) of the Gesellschaft für Informatik (GI) e.V.

GI BIOSIG was founded in 2002 as an experts’ group for the topics of biometric person

identification/authentication and electronic signatures and its applications. Over more

than a decade the annual conference in strong partnership with the Competence Center

for Applied Security Technology (CAST) established a well known forum for biometrics

and security professionals from industry, science, representatives of the national gov-

ernmental bodies and European institutions who are working in these areas.

The BIOSIG 2017 international conference is jointly organized by the Biometrics Spe-

cial Interest Group (BIOSIG) of the Gesellschaft für Informatik e.V., the Competence

Center for Applied Security Technology e.V. (CAST), the German Federal Office for

Information Security (BSI), the European Association for Biometrics (EAB), the Euro-

pean Commission Joint Research Centre (JRC), the TeleTrusT Deutschland e.V. (Tele-

TrusT), the Norwegian Biometrics Laboratory (NBL), the Center for Research in Securi-

ty and Privacy (CRISP), Institution of Engineering and Technology Biometrics Journal

Biometrics Journal (IET Biometrics), and the Fraunhofer Institute for Computer

Graphics Research (IGD). This year’s international conference BIOSIG 2017 is once

again technically co-sponsored by the Institute of Electrical and Electronics Engineers

(IEEE) and is enriched with satellite workshops by the TeleTrust Biometric Working

Group and the European Association for Biometrics.

The international program committee accepted full scientific papers strongly according

to the LNI guidelines (acceptance rate ~33%) within a scientific double-blinded review

process of at minimum five reviews per paper. All papers were formally restricted for

the printed proceedings up to 12 pages for regular research contributions including an

oral presentation and up to 8 pages for further conference contributions including a post-

er presentation at the conference site.

Furthermore, the program committee has created a program including selected contribu-

tions of strong interest (further conference contributions) for the outlined scope of this

conference. All paper contributions for BIOSIG 2017 will be published additionally in

the IEEE Xplore Digital Library.

We would like to thank all authors for their contributions and the numerous reviewers

for their work in the program committee.
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Biometrics provides efficient and reliable solutions to recognize individuals. With in-

creasing number of identity theft and misuse incidents we do observe a significant fraud

in e-commerce and thus growing interests on trustworthiness of person authentication.

Nowadays we find biometric applications in areas like border control, national ID cards,

e-banking, e-commerce, e-health etc. Large-scale applications such as the European

Union Smart-Border Concept, the Visa Information System (VIS) and Unique Identifica-

tion (UID) in India require high accuracy and also reliability, interoperability, scalability

and usability. Many of these are joint requirements also for forensic applications.

Multimodal biometrics combined with fusion techniques can improve recognition per-

formance. Efficient searching or indexing methods can accelerate identification effi-

ciency. Additionally, quality of captured biometric samples can strongly influence the

performance.

Moreover, mobile biometrics is an emerging area and biometrics based smartphones can

support deployment and acceptance of biometric systems. However, concerns about

security and privacy cannot be neglected. The relevant techniques in the area of presen-

tation attack detection (liveness detection) and template protection are about to supple-

ment biometric systems, in order to improve fake resistance, prevent potential attacks

such as cross matching, identity theft etc.

BIOSIG 2017 addresses these issues and will present innovations and best practices that

can be transferred into future applications. Once again a platform for international ex-

perts’ discussions on biometrics research and the full range of security applications is

offered to you.
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Resting-state EEG: A Study on its non-Stationarity for

Biometric Applications

Gabriel Emile Hine, Emanuele Maiorana, Patrizio Campisi 1

Abstract: In the last years, several papers on EEG-based biometric recognition systems have been
published. Specifically, most of the proposed contributions focus on brain signals recorded in rest-
ing state conditions, with either closed or open eyes. A common assumption is that the acquired
signals are quasi-stationarity. In this paper, we investigate such property in terms of discriminative
capability, and we analyze whether or not it holds throughout the entire duration of data collected
over long periods. An extensive set of experimental tests, conducted over a database comprising sig-
nals collected from 50 subjects in three distinct acquisition sessions, shows that the most distinctive
information of the brain signals is temporally located at the beginning of each recording.

Keywords: EEG, Biometrics, non-Stationarity.

1 Introduction

Brain signals, after having been investigated in the medical field since the beginning of

the twentieth century, have recently attracted the attention of the scientific community as

biometric identifiers, to be used in automatic people recognition systems [PM07]. In fact,

it has been postulated that our brain possesses peculiar subject-specific properties, whose

analysis could efficiently allow discriminating between distinct persons [Ri08]. Within

this framework, among the different modalities that can be used to sense brain’s activity,

electroencephalography (EEG) has received most of researchers’ interest, since it permits

collecting brain information using portable and relatively inexpensive devices, a notable

advantage to foster the adoption of such trait in practical biometric recognition systems

[Kl13].

EEG signals are sensed through electrodes placed on the head scalp surface as voltage

differences of the electrical field generated by the synchronous firing of specific spatially-

aligned neurons of the cortex, i.e., the pyramidal neurons [Ga77]. The characteristics of the

collected data commonly depend on the acquisition protocol employed to elicit a specific

subjects’ behavior. Different task-related responses, typically represented in terms of small

time-locked changes in the electrical activity of the brain, can in fact be obtained using

stimulation paradigms involving various sensory, cognitive or motor stimuli [CLR14].

However, the elicitation protocol most commonly employed in both medical- and biomet-

rics–related studies simply requires the considered subjects to remain in a relaxed, yet

vigilant, state, in either eyes-closed (EC) or eyes-open (EO) conditions. Since EEG sig-

nals thus acquired do not contain characteristics related to some specific event but the

1 Section of Applied Electronics, Department of Engineering, Roma Tre University, Rome, Italy,

{gabriel.hine, emanuele.maiorana, patrizio.campisi}@uniroma3.it
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beginning of the recording, they are typically processed by splitting the available data

into multiple (possibly overlapping) epochs of a given duration [NWS07], from which

representative features can be then extracted. The common assumption underlying this ap-

proach is that resting-state EEG data exhibit a quasi-stationary behavior, at least for the

considered epoch length [Bl95]. Nevertheless, it is also widely agreed that brain signals

are inherently non-stationary over long time periods [Al14], due to the properties of the un-

derlying neural processes [Jo12]. Within medical literature, several statistical studies have

investigated the extent of the time interval where the EEG stationarity assumption may

hold [CG10], with controversial results estimating amounts ranging from several seconds

to several minutes [Ra16].

On the other hand, to the best of our knowledge, no work has so far explicitly assessed the

effects of brain signals non-stationarity on the distinctive characteristics of EEG data used

for biometric applications. Such aspect has in fact been only partially taken into account

in [MLRC16], where the permanence of EEG discriminative traits over a period of one

month, implicitly connected to long-term stationarity of brain signals, has been analyzed.

Actually, it would be extremely important to understand if variable discriminative prop-

erties are exhibited by distinct epochs extracted during an EEG recording, that is, if EEG

non-stationarity affects the characteristics of epochs taken at different time distances from

the beginning of a resting-state acquisition session. This issue, besides providing inter-

esting insights on the properties of the neural processes generating EEG signals, could

guide the optimization of both the enrolment and the recognition stages in EEG-based

biometric recognition systems, from an applicative point. In fact, determining that EEG

non-stationarity affects the achievable recognition performance could for instance sug-

gest to limit the length of both enrolment and recognition phases to intervals where the

available data could be considered stationary, in order to allow the extraction of coherent

discriminative features. Moreover, depending on the results of such analysis, it may also be

advisable to perform continuous recognition schemes using resting-state EEG biometrics

only in case the available recordings could be separated into multiple instances, through

the periodic presentation of specific stimuli to the considered subjects.

The proposed paper is organized as follows: the biometric recognition system considered

to evaluate the effects of EEG non-stationarity on the achievable accuracy performance is

presented in Section 2, while the employed EEG database is outlined in Section 3. The

performed experimental tests, together with the obtained results, are then discussed in

Section 4, with the deriving conclusions drawn in Section 5.

2 Employed Recognition System

The present section describes the biometric system employed to evaluate the effects of

EEG non-stationarity on the achievable recognition accuracy. The considered system is

designed according to the best performing architecture evaluated in [MLRC16]. In more

detail, let us assume that an M-channel EEG system is available for either enrolment or

identification purposes. The preprocessing applied to the available EEG data comprises:
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• common average referencing (CAR) spatial filtering, applied to reduce artifacts re-

lated to unsuitable reference choices or not-expected reference variations [Mc97];

• band-pass filtering in the EEG range {α,β} = [8,30] Hz, carrying the most discrim-

inative information according to the performed experimental tests;

• down-sampling from the original rate to 64 Hz, in order to reduce the computational

complexity of the subsequent processing;

• segmentation in epochs lasting L = 5 s, with an overlapping factor of O = 40%. It

is implicitly assumed that the treated EEG signals show a stationary behavior along

the considered epoch length.

After preprocessing, discriminative features are extracted from each signal available in a

given EEG epoch. The considered features are the Burg’s reflection coefficients of an auto-

regressive (AR) model, which have proven to allow achieving the best possible recognition

performance when exploited for representing EEG data in [MLRC16]. In more detail, an

AR model of order Q =12 is here employed for template generation, to minimize the in-

formation loss in fitting the considered data according to the Akaike information criterion

(AIC). The reflection coefficients extracted from each EEG channel are then concatenated

to form a single feature vector v with length B = Q ·M to represent the whole epoch.

Having indicated with vu
e [b], b = 1, . . . ,B and e = 1, . . . ,E, the representation obtained

from the e-th epoch of user u’s enrolled EEG data, and with vi[b], i = 1, . . . , I the template

associated to the i-th epoch of the probe EEG signal submitted during an identification

attempt, matching the two considered EEG recordings requires computing the I scores

Du
i = min

e
du

i,e,

du
i,e =

B

∑
b=1

|vi[b]−vu
e [b]|, i = 1, . . . , I,

(1)

through a Manhattan (L1) distance metrics. Such values can be then used to estimate a

potential identity ûi = argminu {Du
i } for each available i-th identification epoch. The final

decision û is taken according to a majority voting rule, selecting the identity with the

highest number of occurrences among the votes ûi, i = 1, . . . , I.

The tests described in Section 4 leverage both on the distributions of genuine scores Du
i , as

well as on the overall identification rate achievable with the outlined recognition system,

to assess the effects of signals non-stationarity on EEG discriminative capabilities.

3 EEG Database

The EEG database exploited for testing has been collected in the authors’ lab. The database

contains data taken from 50 healthy subjects, whose age ranges from 20 to 35 years with

an average of 25. EEG signals are acquired at an original sampling rate of 256 Hz through

M = 19 electrodes placed on the scalp according to the 10-20 international system [MP95],
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Fig. 1: The 10-20 International system seen from left (A) and above the head (B), from Jaakko

Malmivuo and Robert Plonsey, Bioelectromagnetism, Oxford University Press, 1995, WEB version).

as shown in Figure 1. Three different EEG recordings, indicated in the following as S1,

S2 and S3, acquired during three distinct sessions spanning a period of approximately one

month, are available for each subject. During each session, EEG signals are first recorded

for four minutes in EO conditions, while fixing a small spot of light on a screen. EEG

signals are then taken for other additional 4 minutes in an EC scenario.

The experimental tests described in Section 4 are performed by comparing EEG data ac-

quired in different sessions. It has to be remarked that, although rarely followed in lit-

erature, such approach is actually the preferable one to be used for properly evaluating

the discriminating characteristics of brain signals [MLRC16]. The vast majority of studies

dealing with EEG biometrics in fact performs tests on data collected during a single acqui-

sition session, leveraging on different partitions of the available data to generate training

and testing samples [CLR14]. Nevertheless, the reliability of such methodology is ques-

tionable, since it is hard to state whether the reported recognition performance depends

only on the characteristics of each subject’s neural activity, or also on session-specific ex-

ogenous conditions, such as the capacitive coupling of electrodes and cables with lights or

computer, induction loops between the employed equipment and the body, power supply

artifacts, and so on. These latter may in fact significantly differ between distinct acquisition

sessions, thus affecting both inter- and intra-class variability of EEG recordings.

4 Experimental Results

The first experimental test conducted to verify the influence of EEG non-stationarity on

brain signals discriminative capabilities is performed taking into account the scores du
i,e ob-

tained comparing the e-th epoch made available during each subject u’s enrolment, and the

i-th epoch extracted from the identification probe. Six different scenarios are considered to

exploit the EEG data recorded from the U =50 available subjects, using signals captured

during session S1 for enrolment and those recorded in session S2 as identification data (S1

vs S2), and analogously S1 vs S3, S2 vs S1, S2 vs S3, S3 vs S1, and S3 vs S2. For each
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{i,e} correspondence between enrolment and identification epochs, 50x6=300 genuine

scores and 50x49x6 = 14700 impostor scores are evaluated on the basis of the distances

du
i,e, u = 1, . . . ,U computed over the six considered scenarios. Distributions of genuine

scores are then characterized through their mean µ
(G)
i,e and standard deviation σ

(G)
i,e , as well

as distributions of impostor scores, represented with the associated mean µ
(F)
i,e and stan-

dard deviation σ
(F)
i,e . The distinctiveness of EEG signals is then evaluated through d-prime

measure [BPR00]:

δ (i,e) =
|µ

(G)
i,e −µ

(F)
i,e |√

(σ
(G)
i,e )2 +(σ

(F)
i,e )2

, (2)

for each considered {i,e} couple of enrolment and identification epochs. Larger values of

this metric indicate higher discriminative capabilities, being obtained from larger differ-

ences between the means of genuine and impostor scores, or smaller variances of the com-

puted distributions. Figures 2 and 3 show the behavior of δ (i,e) in EC and EO conditions,

with respect to the time distances from the beginning of enrolment and identification ses-

sions τe and τi at which the compared epochs are selected, with τe =L · [1+(e−1) ·(1−O)]
and τi = L · [1+(i−1) · (1−O)]. The locally weighted scatter plot smoothing (LOWESS)

method [Cl79] is applied to the obtained data in order to show a well-defined trend, for

both the aforementioned and following experimental tests.

From the shown figures it is possible to observe that, in both the considered resting state

protocols, processing epochs close to the beginning of each acquisition allows to exploit

EEG characteristics much more discriminative than those available at a later time. The

amount of subject-specific information present in a single epoch of EEG signals acquired

in resting conditions therefore seems to diminish as long as the length of recording sessions

increases.

The effects of such behavior on the rank-1 identification performance achievable when

employing the recognition system described in Section 2 are outlined in Figures 4 and 5 for

the two considered resting state protocols. The obtained correct recognition rates (CRR)

show rapid improvements when enrolment and identification phases initially increase in

length, yet only a negligible improvement is obtained when the employed phases last more

than a couple of minutes, approximately.

Further evidence of the presence of more discriminative characteristics in epochs close to

the beginning of an EEG acquisition is obtained when evaluating the identification rates

achievable comparing signals of fixed length, yet taken at different starting offsets from

the actual beginning of a resting-state EEG recording session. Figures 6 and 7 show the

CRRs obtained in this experiment, when using enrolment and identification signals lasting

90 s. Also this test outlines that better identification rates can be attained when consider-

ing EEG signals starting at offsets close to the actual beginning of the performed recording

sessions. In more detail, we can appreciate that the identification offset affects the achiev-

able performances much more than the enrolment offset does. Such behavior is however

specifically due to the employed identification scheme, which searches in (1) for the min-
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Fig. 2: Distinctiveness of EEG in EC resting states, expressed in terms of the measure δ , evaluated

comparing epochs extracted at different time distances τe and τi from the beginning of enrolment

and identification recording sessions. (a): surface plot with contour lines; (b) mesh plot.
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Fig. 3: Distinctiveness of EEG in EO resting states, expressed in terms of the measure δ , evaluated

comparing of epochs extracted at different time distances τe and τi from the beginning of enrolment

and identification recording sessions. (a): surface plot with contour lines; (b) mesh plot.

imum L1 distance from the specific identification probe and each of the epochs available

in the enrolment set.

5 Conclusions

The present paper has investigated the effects of non-stationarity for EEG signals collected

according to resting state protocols with either EC or EO conditions on their discrimina-

tive capabilities, when such data are exploited as biometric identifiers. The reported exper-
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Fig. 4: CRR vs enrolment and identification durations, in EC resting states. (a): surface plot with

contour lines; (b) mesh plot.
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Fig. 5: CRR vs enrolment and identification durations, in EO resting states. (a): surface plot with

contour lines; (b) mesh plot.

imental tests, executed on a database comprising recordings taken from 50 users during

three distinct sessions, highlight that the initial part of an EEG acquisition performed in

resting state conditions contains most of the discriminative characteristics offered by the

considered biometrics. As an EEG recording is carried on, the acquired signals hold less

subject-specific information, being their relevance for biometric purposes diminished. The

obtained results suggest to not perform EEG recordings lasting more than a couple of

minutes for either enrolment or identification purposes. In case a continuous recognition

framework should be realized, it would be required to include some intermission during the

procedure, in order to divide the acquired EEG signal into multiple instances of reduced

duration, beginning from a repeated starting stimulus.
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Fig. 6: CRR vs enrolment and identification offsets (90-s duration), in EC resting states. (a): surface

plot with contour lines; (b) mesh plot.
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plot with contour lines; (b) mesh plot.
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Multimodal Neural Network for Overhead Person

Re-identification

Aske R. Lejbølle , Kamal Nasrollahi , Benjamin Krogh , Thomas B. Moeslund1 2 3 4

Abstract: Person re-identification is a topic which has potential to be used for applications within
forensics, flow analysis and queue monitoring. It is the process of matching persons across two or
more camera views, most often by extracting colour and texture based hand-crafted features, to iden-
tify similar persons. Because of challenges regarding changes in lighting between views, occlusion
or even privacy issues, more focus has turned to overhead and depth based camera solutions. There-
fore, we have developed a system, based on a Convolutional Neural Network (CNN) which is trained
using both depth and RGB modalities to provide a fused feature. By training on a locally collected
dataset, we achieve a rank-1 accuracy of 74.69%, increased by 16.00% compared to using a sin-
gle modality. Furthermore, tests on two similar publicly available benchmark datasets of TVPR and
DPI-T show accuracies of 77.66% and 90.36%, respectively, outperforming state-of-the-art results
by 3.60% and 5.20%, respectively.

Keywords: Multimodal; Person Re-identification; Convolutional Neural Networks; Feature Fusion

1 Introduction

Person re-identification (re-id) i.e. identifications of persons across two or more cameras,

is a topic with increasing interest due to potential usage in forensics, analysis of pedestrian

flow in urban areas or monitoring of queue times in, for example, an airport. Meanwhile, it

is also a topic still in research due to challenges that include changes in lighting, view and

pose between camera views. To cope with these challenges, focus often lies in extracting

robust hand-crafted feature descriptors from each person that are matched between views.

For this purpose, soft biometrics are considered, such as colour and texture of the clothing,

either represented as histograms [Li15] or transformed to sparse descriptors [LSF15]. To

further improve accuracy of correct matches, supervised learning algorithms are applied

that learn to separate similar feature pairs from dissimilar ones [Ch16, ZXG16]. More

recently, deep learning has drawn increasing interest from the research community with

Convolution Neural Networks (CNN) outperforming hand-crafted feature descriptors, as

they are able to learn more expressive features [AJM15, WCZ16].

Besides aforementioned challenges, privacy preservation is often related to person re-id as

a potentially large amount of data needs to be stored. Other than representing images as
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feature descriptors, camera placement can be considered as a means of privacy preserva-

tion. Most current benchmark datasets within re-id consider a frontal view [GT08, Li14]

while only few consider an overhead view which has the advantage of reducing pri-

vacy issues and avoid occlusions between persons or objects and persons in the scene

[HAFF16, Li17]. Furthermore, other modalities that are more anonymous can be used, for

example depth, from which information is captured using either passive stereo, i.e. a stereo

camera or active, for example, a Microsoft Kinect. From depth information, the height and

width of the person can be extracted along with different body ratios [Ba12]. Instead of re-

lying on a single modality, combining (fusing) different modalities have shown to improve

performance in related applications such as object recognition [Ei15] and object segmen-

tation [Ha16]. Such fusing can be done either at feature level (feature fusion), for example,

by concatenation of respective feature descriptors or at decision/score level (late fusion)

by fusing the output decisions/scores from different modalities [Ki98].

To consider challenges regarding changes across views and the advantages of fusing dif-

ferent modalities, we propose a novel framework for applying colour and depth (RGB-D)

based re-id to images, captured with an overhead view. More specifically, we take advan-

tage of the recent advances within deep learning and train a CNN using information from

both RGB and depth modalities to improve accuracy compared to using either modality

independently. To that extend, we collect a novel RGB-D based dataset in an uncontrolled

environment from a stereo camera placed overhead to avoid occlusions and, at the same

time, preserve privacy by not recording faces. Our dataset is collected to resemble real-life

situations by having multiple persons within view, while current overhead datasets only

consider a single person within view at a time. In summary, the main contributions of our

work include:

• We train a CNN using RGB and depth modalities information and show that fusion

of these improves accuracy.

• We collect and annotate a novel RGB-D and overhead based dataset which can be

used to both evaluate re-id accuracy but also multi-target detection and tracking

algorithms in RGB and depth domain.

2 Related Work

While re-id using hand-crafted colour and texture features or CNN’s are widely studied,

overhead re-id is rarely considered. In addition, only a limited number of articles suggest

depth modality for this purpose.

Overhead re-id As most current re-id datasets are collected in outdoor scenes, a frontal

view is typically considered. A few systems have been proposed for evaluating datasets

with an overhead view [Ar08, AC12]. [AC12] proposes feature extraction using a His-

togram of Oriented Gradients (HOG) algorithm combined with a linear Support Vector

Machine (SVM) for classification while [Ar08] extracts features based on the colour and

texture of the hair. While both datasets are recorded in an indoor environment, they only

extract colour information.
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Overhead RGB-D-based re-id More RGB-D based datasets for re-id are currently being

proposed. While the first considered a frontal view [Mu14], the most recent consider an

overhead view [HAFF16, Li17]. [HAFF16] collected a dataset in a hallway and applies a

combined CNN and Long-Short-Term-Memory (LSTM) network using depth based im-

age sequences to learn spatio-temporal representations of each person. Meanwhile, [Li17]

extracts seven different depth features and two colour features that are feature fused by

concatenation. While the former extracts only depth information, the latter considers only

hand-crafted features from both modalities.

Multi-modal CNN While the work of [HAFF16] to our knowledge is the only previous

proposed neural network using depth information for re-id, multi-modal CNN’s have been

proposed for related applications [Ei15, Ha16]. [Ei15] trains a CNN for object recognition

using both colour and depth images by fusing respective features in late layers of the net-

work to consider both modalities during training. To that extend, [Sa16] shows that feature

fusion of colour and depth features in a CNN outperforms similar fusion scheme using

other classification methods, such as SVM and Deep Belief Networks (DBN). Meanwhile,

[Ha16] proposes a multi-modal encoder-decoder network for semantic segmentation by

fusing outputs from each layer in an RGB and depth based encoder, respectively, before

passing the output through an RGB-D based decoder. In this case, fusing is applied as an

element-wise summation. To our knowledge, no multi-modal neural networks have pre-

viously been proposed for re-id. Although, [WCZ16] proposes a fusing scheme similar

to that of [Ei15], but instead of fusing different modalities, complementary feature types

are fused, i.e. CNN and hand-crafted features. To our knowledge, the system proposed in

this paper, is the first to incorporate multiple modalities in a CNN to learn a multi-modal

feature representation.

3 Methodology

As we desire to exploit both colour and depth information, along with the potential of

CNN’s, our aim is to use an architecture which jointly processes the two modalities, RGB

and depth, simultaneously. For person re-id, such architecture has not previously been

applied, although, in object recognition the work of [Ei15] shows an increase in accuracy

compared to using a single modality.

We apply an architecture similar to that of [Ei15], having two CNN streams separately

processing an input image while being fused in a later fully connected layer, as shown

in Figure 1. The structure of each separate CNN follows the AlexNet architecture (please

see [KSH12] for details) and consists of five convolution layers, the first, second and fifth

followed by a max pooling and normalization layer. The outputs from the last convolution

layers are followed by two fully connected layers, transforming the feature maps to sparse

representations for RGB and depth, respectively. The feature representations (fc7RGB and

fc7D) are concatenated and used as input to a fully connected layer (fc8) which learns a

joint RGB-D feature representations based on both colour and depth images. Finally, a

softmax layer (fc9) calculates output probabilities for each class, defined as a person ID,

which combined with a loss function is used to update the parameters of the network. We
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refer to our proposed system as RGB-D-CNN. At test time, the softmax layer is discarded

and features are extracted from fc8.
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Fig. 1: Overview of the RGB-D based CNN (RGB-D-CNN). Lower part processes a depth image,

while the upper part processes a colour image, features from last fully connected layer of the streams

are fused in a joint fully connected layer before classification.

Individual training Before training the RGB-D-CNN, CNN models are trained for

RGB and depth, respectively. We refer to these models as RGB-CNN and D-CNN. Both

follow similar structure as the upper/lower part of the joint CNN, with a softmax layer

replacing fc8 and fc9. The model weights are initialized using a pre-trained model of the

CaffeNet version [Ji14] of AlexNet trained on the ImageNet dataset. Following the archi-

tecture of AlexNet, the input is an image of size 227×227, randomly cropped from an

image of size 256×256, to make the network robust to changes in translation. Both colour

and depth images are therefore resized accordingly before being processed by the net-

work. In addition, the images are randomly flipped to increase the amount of training data.

In case of depth images, [Ei15] shows that applying a jet colourmap enhances the accuracy

compared to encoding the images using surface normals [BRF13] or Horizontal disparity,

Height and Angle (HHA) encoding [Gu14]. This colour transformation maps each depth

value to a colour in RGB colour space from blue(close) over green to red(far). This en-

ables us to initialize the weights using the pre-trained CaffeNet model without additional

preprocessing. We therefore perform similar step before training the depth model.

Given sets of parameters and datasets (W RGB,bRGB,XRGB,Y ) and (W D,bD,XD,Y ) for RGB

and depth, respectively, where W and b are the model weights and bias, while (XRGB,XD)
are the set of RGB and depth images with corresponding labels Y , we train the models by

minimizing a loss function, L, as given in Equation 1:

min
W,b

−
1

N

N

∑
i=1

L(W,b,xi,yi) L(W,b,xi,yi) = log(p̂i,yi) (1)
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where W,b are the weights and bias of the model currently being trained, X = {x1, ..,xN}
is the sample set and p̂i is the output probability from the softmax layer of the i’th sample

given the true label yi.

Joint training After training RGB-CNN and D-CNN, the model parameters are used

to initialize the two CNN streams in RGB-D-CNN. The softmax layers are replaced by a

randomly initialized fully connected layer (fc8) and new softmax layer (fc9). By fusing

outputs from both fc7RGB and fc7D in fc8, the parameters of the depth stream are updated

depending on the input to the RGB stream and vice versa, while the weights and bias

of fc8 are updated based on both inputs, resulting in a fused output. [WCZ16] shows how

fusion of hand-crafted and CNN features in the late layers of the network affects parameter

update of the CNN. Similar proof applies to this context.

4 Experimental Results

Datasets For evaluation we present a novel RGB-D based dataset collected from an

overhead view. We refer to the dataset as Overhead Person Re-identification (OPR). The

dataset is collected using a calibrated ZED stereo camera from Stereolabs [St17], mainly

due to its ability to record depth from a range 0.7m-20m covering both low and high

ceilings. In addition, it captures video in resolutions up to 4416×1242 pixels which is

much higher than RGB sensors in solutions such as the Microsoft Kinect. The camera

is placed in the ceiling at a university canteen (uncontrolled environment) to capture a

populated area. From this perspective, persons are captured when approaching (walking

from top to bottom), and leaving (walking from bottom to top) the canteen a few minutes

later, enabling us to evaluate re-id performance. Data is collected on a single day during a

two hour period around midday to capture video when the number of persons in the canteen

is increasing and decreasing. As a result, cases of having a large number of persons and

only a single person are recorded, examples of captured depth images in both cases are

shown in Figure 2 (a) and (b), respectively.

(a) (b)
Fig. 2: Examples of depth images containing (a): multiple persons and (b): containing a single per-

son. Each person is captured when approaching (right side) and leaving (left side) the canteen.

Disparity maps are computed using Semi-Global Block Matching (SGBM) as it has shown

as a good compromise between accuracy and processing time [Ka11], followed by filtering



30 Aske R. Lejbølle et al.

using a Weighted Least Square (WLS) kernel to eliminate noise and make the background

more uniform, resulting in more precise depth information. Finally, we manually annotate

bounding boxes around persons and use those for our system, the annotations enables us to

further test detection, tracking and segmentation algorithms in future work. A total number

of 78742 frames with 64 different persons have been annotated for re-id.

To our knowledge, only the datasets of [HAFF16] (DPI-T) and [Li17] (TVPR) have pre-

viously been proposed for RGB-D and overhead based re-id. Both are recorded in a hall

with only a single person within view at all times. Examples of depth images from these

datasets are shown in Figure 3. In addition to evaluating on our own dataset, we apply our

system to those of [HAFF16] and [Li17] for comparison with their original results.

(a) (b)
Fig. 3: Examples of depth images from (a): DPI-T and (b): TVPR.

Evaluation protocols Depending on the dataset, different training and testing protocols

are followed.

OPR Similar to most RGB-based datasets within re-id, we perform 10 random train and

test splits, each set containing 32 persons. After training the CNN models, features from

the test set are extracted from the last fully connected layer.

TVPR The training set originally consists of 100 persons walking from left to right while

the test set consists of same persons walking from right to left. During test, features from

the test set are compared with those from the training set. Although, due to issues at test

time regarding one of the video sequences, only 94 persons were considered for training

and testing.

DPI-T 12 persons appear in five different sets of clothing in both the training and test,

while the number of recordings in each set differs. A total of 213 sequences are used for

training while the test set consists of 249 sequences which are all classified by comparing

with those of the training set.

When training RGB-CNN and D-CNN, a batch size of 128 is used while a size of 64 is

used in case of RGB-D-CNN. Network parameters are updated using Stochastic Gradient

Descent (SGD) with momentum is to avoid getting stuck in a local minimum. Hyper pa-

rameters are set accordingly to [Ei15] with a momentum of 0.9 and base learning rate of

0.01 which is reduced by multiplying with 0.97 for each epoch. At each epoch, the training

set is randomly shuffled for faster convergence [Be12]. We present our results by calcu-

lating the rank-1 to rank-k accuracies based on feature matching where rank-i indicates a
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cumulative percentage of persons having their true match within the i most similar with k

indicating the total number of persons. For OPR, the average accuracies over all train/test

splits are calculated. Matches are calculated using Euclidean distance between extracted

features following a multi-shot approach, i.e. features from all images of each person/se-

quence are extracted and either maximized or averaged, indicated by subscripts max and

avg.

Figure 4 (a) shows the resulting Cumulative Matching Characteristic (CMC) curves for

applying RGB-CNN, D-CNN and RGB-D-CNN to OPR. It is clear that fusing of RGB

and depth modalities clearly increases accuracy compared to using a single modality. The

best result is achieved by RGB-D-CNNavg, increasing accuracy by 16.00% compared to

RGB-CNNavg. Furthermore, Figure 4 (b) and (c) show the results of our system applied

to DPI-T and TVPR, respectively. In case of DPI-T, RGB-D-CNNavg still outperforms

RGB-CNN and D-CNN with an increase of 3.61% compared to RGB-CNNavg. Finally

for TVPR, RGB-CNN provide better results compared to RGB-D-CNN. A reason for this

could be the quality of depth information (see Figure 3 (b)) negatively affecting the train-

ing of RGB-D-CNN in combination with corresponding colour images. Even though, D-

CNN results are slightly worse in case of DPI-T, the level of detail in depth images are

higher (see 3 (a)) causing the modality to better complement RGB. The quality of depth

information therefore seems important when training an RGB-D CNN. Looking at results

across all datasets, averaged features mostly provides the highest accuracies, although, in

case of depth features, feature maximization seems better. This could be due to encoding

of features as colourized images combined with an overhead view from which the height

of each person, and thereby the colour gradient, is important. By averaging features, this

information more easily gets lost if the representation changes between images.
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Fig. 4: Results on (a) OPR (p=32), (b) DPI-T (p=249) and (c) TVPR (p=94) for RGB-CNN, D-CNN

and RGB-D-CNN, respectively, using maximized (max) and averaged (avg) features.

Tables 1 summarizes our results on TVPR and DPI-T, compared to their original results.

As [HAFF16] only provides a rank-1 accuracy while [Li17] only provides CMC curves,

only the rank-1 accuracy is considered. For [Li17], rank-1 is estimated from the CMC

curves. Ours refers to the best results achieved by our system (RGB-D-CNNavg in case of

DPI-T and RGB-CNNavg in case of TVPR). In both cases we outperform original results,

for DPI-T by 34.76% by also using RGB. From Figure 4 (b), it is worth noting that our

D-CNN alone achieves almost similar accuracies as [HAFF16] who also adds an LSTM

layer on top of a similar CNN.

Even though, six persons are missing for the tests on TVPR, our system shows potential to

be improved further. For RGB alone, our system outperforms that of [Li17] by ≈5.16%.
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Rank-1 accuracy [%]

Method DPI-T TVPR

4D RAM [HAFF16] 55.60 –

TVDH [Li17] – 72.50

Ours 90.36 77.66

Tab. 1: Comparison of our RGB-D-CNN to original results on DPI-T and TVPR datasets.

Processing time We evaluate processing time for stereo and feature matching on OPR

to discuss on the potential of using passive stereo for re-id applications. 20 matching iter-

ation are run using an Intel i7-6700HQ CPU @ 2.60GHz and 16GB of RAM and average

timings are provided. Stereo matching matching is performed on images of size 960×540.

While feature matching only takes 4.0e10−5s, SGBM and WLS are more processing in-

tensive taking 0.136s and 0.103s, respectively. Nonetheless, ≈4 FPS is achieved using the

CPU. For real-time applications, GPU implementations of SGBM and WLS algorithms

could be used speed up the process. No such implementations are available at the moment.

5 Conclusion

In this paper, we have presented an RGB-D based CNN applied to person re-identification.

Two CNN models are trained using colour and depth images, respectively, captured from

an overhead view and resulting trained parameters are used to initialize a joint RGB-D-

CNN model trained using both modalities. To test the system, we collected a novel RGB-D

and overhead based dataset which is annotated for evaluation on both re-id accuracy, but

also detection and tracking algorithms. By applying our system to our novel and two previ-

ously proposed datasets, we have shown that the combination of RGB and depth modalities

increase accuracy by 16.0% and 3.6% on our OPR dataset and DPI-T, respectively. In case

of TVPR, RGB modality alone achieved higher accuracy than combining modalities due to

the quality of depth information. This indicates an importance to capture detailed depth in-

formation to proper complement the RGB modality. In addition, our system shows an FPS

of 4 using a CPU, with potential of being increased if processing intensive algorithms such

as SGBM and WLS are implemented on a GPU. For future work, the system should be

evaluated on bounding boxes extracted automatically from a person detector. To increase

detection performance, depth information could also be used for this purpose. Further-

more, our proposed system could be extended with an LSTM to handle video rather than

averaging or maximizing features extracted from a sequence of images. This would allow

for temporal information to be captured as well. Finally, more recently developed neu-

ral networks could replace the AlexNet architecture to increase performance and decrease

processing time.
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Pool Adjacent Violators Based Biometric Rank Level Fusion

Nanang Susyanto1

Abstract: We propose a new method in rank level fusion for biometric identification. Our method
is based on the pool adjacent violators (PAV) algorithm after the ranks have been transformed to the
approximated scores. We then show that our method outperforms various approaches that commonly
used in biometric rank level fusion on NIST BSSR1 multimodal database.

Keywords: rank level fusion, pool adjacent violators, biometric fusion, biometric identification,

multimodal.

1 Introduction

Biometric fusion is a combination of several biometric systems or algorithms that aims to

improve the performance of the individual system or algorithm. It can be divided into six

categories [RNJ06]: multi-sensor, multi-algorithm, multi-instance, multi-sample, multi-

modal and hybrid. Several studies show the performance improvement by combining in-

formation from multiple traits or algorithms [LWJ03, RJR02, RNJ06, Ul06]. For instance,

Lu et al. [LWJ03] combine three different feature extractions (Principle Component Analy-

sis, Independent Component Analysis and Linear Discriminant Analysis) while Prabhakar

and Jain [PJ02] in the fingerprint biometric field use the left and right index fingers to

verify an individual’s identity.

Biometric fusion can be done at the sensor, feature, match score, rank and decision levels

either for verification or identification. In this paper, we will focus on the rank level for

closed identification problem in the sense that the unknown person is assumed to be one

of the people in a given enrollment set. This scenario is suitable for combining ranked

identities from commercial biometric devices that may only produce the ranked identities

of the users instead of matching scores because of a security reason. This means that ranks

from multiple biometric classifiers of every unknown person in a given enrollment set are

transformed to a new rank and this new rank is used to assign the identity of that unknown

person.

There are several methods that are commonly used in biometric rank level fusion: Borda

count, weighted Borda count, maximum rank method, Bucklin majority voting [Po14],

and some nonlinear weighted ranks [KS11]. While maximum rank takes the highest rank

amongst all the matchers, the remaining methods use weight to represent the contribution

of each classifier. The present paper uses the pool adjacent violators (PAV) algorithm to

1 Faculty of Mathematics and Natural Sciences (FMNS), Department of Mathematics, Universitas Gadjah Mada,

Sekip Utara Yogyakarta, Indonesia, nanang susyanto@ugm.ac.id
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compute the likelihood ratio (LR) of any rank after it has been transformed to its approx-

imated similarity score for every classifier and combine the classifiers by summing their

individual LRs up to get the final score. This final score will represent the combined sim-

ilarity score. The rest of this paper is organized as follows. Section 2 gives a detailed ex-

planation how the proposed method woks. Several examples using NIST BSSR1 database

are provided in Section 3. Finally, this paper will be closed by our conclusions in Section

4.

2 PAV-based Method

This section will explain how our proposed method is built. In principle, there are two

steps: (1) transforming ranks to their approximated similarity scores and (2) applying the

PAV to these transformed scores.

2.1 Transforming Ranks to Approximated Scores

Let x be an unknown subject that belongs to the enrollment set E = {x1, . . . ,xn}. Of course,

the original similarity scores of x and all elements E contain much more information than

the ranked identity of all elements E with respect to the closeness to x. While Susyanto

et al. [Su16a, Su16b] use a modified empirical distribution function to transform similar-

ity scores to their corresponding uniformly distributed scores, which are only a scale of

their ranks, to model dependence between classifiers, we will work on the other direction,

i.e, approximating the uniformly distributed similarity scores from their ranks. Suppose

that there are ntrain identities in the enrollment set in training data. Since the rank-i has

to have the i-highest probability for every i = 1, . . . ,ntrain, we set it to have probability

(ntrain +1− i)/ntrain. It means that the estimated probabilities run from 1/ntrain to 1, which

is already shown in [Su16a, Su16b] that they are uniformly distributed. Below is an exam-

ple how the approximated similarity scores of the training set with subjects s1,s2,s3,s4,
and s5 are obtained from the ranks.

enr. s1 s2 s3 s4 s5

s1 1 2 3 4 5

s2 1 4 3 5 2

s3 2 5 1 3 4

s4 5 4 3 2 1

s5 5 2 3 4 1


0→



enr. s1 s2 s3 s4 s5

s1 1 4/5 3/5 2/5 1/5

s2 1 2/5 3/5 1/5 4/5

s3 4/5 1/5 1 3/5 2/5

s4 1/5 2/5 3/5 4/5 1

s5 1/5 4/5 3/5 2/5 1


(1)

When we are working in a testing data that contains more that ntrain in its enrollment set,

then we map all ranks greater than ntrain to 0. Mathematically, whenever the training data

T with ntrain identities in its enrollment set is given and the subjects x1, . . . ,xn has rank

r1, . . . ,rn, respectively, with respect to the unknown subject x, the approximation of the

uniformly distributed scores s1, . . . ,sn will be

si = max

{
ntrain +1− i

ntrain

,0

}
(2)
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for every i = 1, . . . ,n. For example, if x1,x2,x3,x4,x5,x6, and x7 in the testing set has ranks

2,3,1,4,5,6, and 7, respectively, with respect to x3 then the approximated similarity scores

using training data (1) is

(
enr. x1 x2 x3 x4 x5 x6 x7

x3 4/5 3/5 1 2/5 1/5 0 0

)
. (3)

2.2 PAV-based Naive Bayes Fusion

Once we have had the approximated similarity scores of the training data, we can split

them into genuine and impostor scores. A genuine score is the score obtained by compar-

ing a pair of biometric samples originating from the same person while an impostor scores

obtained by comparing a pair of biometric samples stemming from different people. In our

example given by (1), the elements on the main diagonal of the second matrix are genuine

while the elements off the main diagonal are impostor. The key of our method is com-

puting the loglikelihood (LLR) of the approximated similarity scores using independence

assumption. Even though it is not realistic, some experimental results show that its per-

formance is still promising [TV13]. To do that, we need to compute the individual LLRs

of the classifiers. The most common methods are Kernel Density Estimation (KDE), Lo-

gistic Regression (Logit), Histogram Binning (HB), and Pool Adjacent Violators (PAV);

see [ASV12] for a brief explanation of these methods.

In this paper, we choose the PAV method because of its optimality [ZE02]. For every

classifier k = 1, · · · ,d, (d is the number of classifiers), PAV sorts and assigns a posterior

probability of 1 and 0 to the k-th component of genuine and impostor scores, respectively,

in a given training set. It then computes the non-monotonic adjacent group of probabilities

and replaces it with average of that group. This procedure is repeated until the whole

sequence is monotonically increasing which estimates the posterior probability P(H1|(·))
of the k-th component of genuine and impostor scores where H1 correspond to a genuine

score. By assuming

P(H1) =
ngen

ngen +nimp

,

the corresponding LRks of genuine and impostor scores can be computed according to the

Bayesian formula by

L̂Rk(·) =
P(H1|(·))

1−P(H1|(·))
×

nimp

ngen
(4)

where ngen and nimp are the number of genuine and impostor scores, respectively. This

gives a numerical function that maps score to its L̂Rk so that for every score from the k-th

classifier, its corresponding L̂Rk value can be computed by interpolation. Finally, the final

approximated similarity score is just the sum of all L̂Rks for k = 1, . . . ,d.
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3 Experimental Results

This section gives the comparison between the proposed method and the existing methods

in rank level fusion (Borda count, weighted Borda count, maximum rank method, Bucklin

majority voting [Po14], and some nonlinear weighted ranks [KS11]) on NIST BSSR1

database [Na04]. The NIST-BSSR1 database has three different set:

• NIST-Multimodal: Two fingerprints and Two face matchers applied to 517 subjects,

• NIST-Face: Two face matchers applied to 3000 subjects,

• NIST-Finger: Two fingerprints applied to 6000 subjects.

We will use the same protocol as used in [KS11] (Protocol 1 and 2) and an additional

protocol (Protocol 3). The exp(1) and exp(2) are the methods proposed in [KS11]. Note

that the maximum rank, the Borda count, and the Bucklin majority voting methods do not

need training data while our proposed method needs training data as the weighted Borda

count and nonlinear weighted ranks [KS11]) do.

3.1 Multi-instance Test: Protocol 1

In this experiment, we use the NIST-Finger database containing 6000 subject where the

first 1000 subject were used for training our proposed method and the rest were used for

testing. The comparison of our method with the other methods is presented in Table 1.

We can see that the rank-1 of our method jumps from the best existing methods (exp(2):

89.56%) to 94.44%.

Tab. 1: Performance (in %) From NIST-Finger Database (6000 Subjects). The bold face in every row

is the best one.

Highest Rank Borda Weighted Borda Bucklin exp(1) exp(2) Proposed

rank-1 82.57 85.65 87.74 74.58 89.34 89.56 94.44

rank-2 94.43 86.68 89.04 88.23 93.98 94.42 95.00

rank-3 94.48 87.33 89.74 93.65 95.22 95.20 95.34

3.2 Multi-modal and Multi-algorithm Test: Protocol 2

Using the same protocol as in [KS11], we put the first 100 subject of the NIST-Multimodal

database for training and the rest (417) for testing. We can see from Table 2 that our

proposed method outperforms the other methods even it attains 100% recognition rate at

rank-1.
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Tab. 2: Performance (in %) From NIST-Multimodal Database (517 Subjects). The bold face in every

row is the best one.

Highest Rank Borda Weighted Borda Bucklin exp(1) exp(2) Proposed

rank-1 80.66 91.68 94.39 88.78 98.84 99.28 100.00

rank-2 96.32 93.81 95.55 98.84 99.42 99.76 100.00

rank-3 100.00 94.97 96.32 99.81 100.00 100.00 100.00

3.3 Multi-modal and Multi-algorithm Test: Protocol 3

In order to make a larger database for testing, we make a virtual database by taking the

first image of every person in NIST-Face database and the fist 3000 subjects in NIST-

Finger. As the results, our virtual database contains 3000 subjects in which every subject

has 2 scores from face comparisons, 1 score from left-index finger comparison, and 1

score from right-index finger comparison. By using the same training data as in Protocol

2, we can see from Table 2 that the highest rank, Borda count, weighted Borda count, and

Bucklin methods do not perform better than the exp(1) and exp(2) methods. Therefore,

we will only compare our method with the exp(1) and exp(2) methods. The cumulative

match curve is provided by Figure 1 thats shows clearly that the proposed method does

outperform the exp(1) and exp(2). The recognition rate at rank-1 of the exp(1), exp(2), our

proposed method are 95.73%, 91.97%, and 98.87%, respectively.
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Fig. 1: CMC of the exp(1), exp(2), and the Proposed Method

4 Conclusion

We have proposed a new method in biometric rank level fusion via pool adjacent violators

(PAV). The method can be done by two main steps: (1) transforming ranks to their approxi-
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mation of the uniformly distributed similarity scores and (2) applying the PAV of the trans-

formed scores for every classifier and simply taking the naive Bayes fusion. It has been

demonstrated that our proposed method outperforms the Borda count, weighted Borda

count, maximum rank method, Bucklin majority voting, and some nonlinear weighted

ranks in every scenario using the NIST BSSR1 database.
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Improvement of Iris Recognition based on Iris-Code

Bit-Error Pattern Analysis

Christian Rathgeb , Christoph Busch1 1

Abstract: In this paper an advanced iris-biometric comparator is presented. In the proposed scheme
an analysis of bit-error patterns produced by Hamming distance-based iris-code comparisons is per-
formed. The lengths of sequences of horizontal consecutive mis-matching bits are measured and a
frequency distribution is estimated. The difference of the extracted frequency distribution to that of
an average genuine one obtained from a training set is used as a second comparison score. This
score is then used together with the fractional Hamming distance in order to improve the recognition
accuracy of an iris recognition system. In experimental evaluations relative improvements of approx-
imately 45% and 10% in terms of false non-match rate at a false match rate of 0.01% are achieved
on the CASIAv4-Interval and the BioSecure iris databases, respectively.

Keywords: Biometrics, iris recognition, iris-code, bit-error analysis, improved comparator.

1 Introduction

Generic iris recognition systems comprise four major components: (1) image acquisition,

(2) segmentation, (3) feature extraction and (4) comparison. Based on Daugman’s appro-

ach [Da04], the first three processing steps are performed on a reference iris image during

enrolment to create a two-dimensional binary feature vector, i.e. iris-code. At the time

of authentication an iris-code is extracted from a probe iris image and compared against

a database of enrolled reference iris-codes. In the comparison stage Hamming distance

(HD) scores between pairs of iris-codes and corresponding noise masks are estimated.

Hence, the binary data representation of iris-codes enables a rapid comparison (and com-

pact storage) achieving millions of comparisons per second per CPU core [Da04]. Circular

bit shifts are applied to iris-codes and HD scores are estimated at different shifting positi-

ons, i.e. relative tilt angles caused by uncontrolled head poses. The minimal obtained HD,

which corresponds to an optimal alignment, represents the final score.

Besides the Daugman de-facto standard for comparing iris-codes, different alternative

comparators have been suggested in past years, see Sect. 2. The majority of proposed

schemes aims at replacing the aforementioned HD-based algorithm by a modified compa-

rator in order to improve the recognition performance. In most schemes findings obtained

from a deeper analyses of the nature of the iris-code bits are utilized by those comparators.

A prominent example for such an improvement is the assignment of weights to each bit

position in an iris-code according to their expected reliability, e.g. in [ZD08, DST11].

1 da/sec – Biometrics and Internet Security Research Group,

Hochschule Darmstadt, Germany, {christian.rathgeb,christoph.busch}@h-da.de
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In this work we analyse entire bit-error patterns produced by HD-based iris-code compari-

sons, going beyond a local estimation of bit-errors. The presented approach measures the

plausibility of an obtained bit-error pattern by comparing it to a pre-estimated model of

genuine bit-error patterns. In particular, the frequency distribution of sequences of hori-

zontal, i.e. circumferential, consecutive mis-matching bits is measured and its difference

from the genuine model is used as secondary feature. This score can be interpreted as ad-

ditional score, which can be estimated to achieve a more reliable decision for a distinct

range of HD scores, e.g. [0.35,0.45]. Hence, in contrast to most proposed comparators,

our approach is designed to have negligible impact on comparison speed. For different

iris databases it is shown that a weighted score-level fusion of the proposed score and the

HD score improves the recognition accuracy of an iris recognition system, in particular at

practical low false match rates.

The remainder of this paper is organized as follows: Sect. 2 briefly summarizes related

works with respect to iris-biometric comparators. In Sect. 3 the proposed system is des-

cribed in detail and evaluated. Finally, conclusions are drawn and potential future research

directions are pointed out in Sect. 4.

2 Related Works

In the recent past numerous improved iris-biometric comparators have been proposed.

Some of these require the processing of multiple reference samples during enrolment.

In [ZD08] a weight map, which indicates the stability of iris-code bits, is obtained from

several iris-codes by performing a weighted majority voting. Similar approaches based

on personalized weight maps have been presented in [DST11, HSH17]. In these schemes

comparison scores are estimated as a weighted sum of mis-matching bits. Note that for

these modified comparators one can not expect that the comparison speed of a Hamming

distance-based comparator is maintained. In [HBF09] so-called fragile bits, i.e. bits which

exhibit a higher probability than others to flip their value during a genuine comparison,

are detected by comparing several iris-codes obtained from a single eye instance. Since

filters employed in the feature extraction stage set iris-code bits by the sign of obtained

filter responses, these bits correspond to coefficients close to zero. That is, such bits can

also be detected in a single iris-code [Da16]. It was shown that the recognition accuracy

is improved, if detected fragile bits are incorporated into noise masks extracted in the iris

segmentation stage. Moreover, masks encoding fragile bits can be employed as additional

comparison sore to improve the performance of an iris recognition system [HBF11].

Further works utilize training sets to obtain statistics about iris-codes which are utilized

by the comparator. In [RUW10] a static weight map indicating the reliability of each iris-

code bit position, which is defined as the mean of discriminativity and stability, is esti-

mated from a training set. During authentication most reliable bits are compared first to

achieve a fast rejection of non-matching iris-codes in an identification scenario. A similar

approach based on static masks has been presented in [Pr15]. Reported results suggest that

static weight maps might vary depending on the used sensor or environmental conditions.

In [RUW12] the progression of genuine comparison scores across all considered shifting
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(a) CASIAv4-Interval (b) BioSecure

Fig. 1: Sample pairs of iris images of both datasets used in experimental evaluations.

Tab. 1: Overview of training and testing sets of employed datasets.

Database
Training set (left eye images) Testing set (right eye images)

No. eyes Gen. comp. Imp. comp. No. eyes Gen. comp. Imp. comp.

CASIAv4-Interval 198 4,454 19,503 197 4,343 19,306

BioSecure 210 1,260 21,945 210 1,260 21,945

positions are modelled by an inverse Gaussian of which the parameters are estimated from

a training set. At authentication the deviation of comparison scores from the trained Gaus-

sian is combined with the minimum HD score.

Given a single pair of iris-codes, in [RUW11] it is suggested to combine the minimum and

the maximum HD score across shifting positions. Since genuine pairs of iris-codes can

get out of phase in case of drastic mis-alignment exceptionally large HD scores become an

indicator for a genuine comparison. More recently, a binary search technique which aims at

accelerating the alignment process during iris-code comparisons was presented in [Ra16].

It is shown that, if the amount of considered shifting positions can be reduced, recognition

accuracy is generally improved since HD scores of impostor comparisons remain higher.

3 Proposed System

3.1 Baseline System and Experimental Setup

In the employed iris recognition system, the iris of a given sample image is detected and

transformed to a normalized rectangular texture of 512×64 pixels. The normalized iris tex-

ture is divided into texture stripes to obtain 10 one-dimensional signals, each one averaged

from adjacent texture rows. A row-wise convolution with a Log-Gabor wavelet is per-

formed on each signal and the real part of phase information is encoded to generate an

iris-code consisting of 512×10 bits. Examples of generated iris-codes are depicted in Fig.

2. Implementations of the employed segmentation and feature extraction are available in

[US17] and described in detail in [RUW13].

The fractional Hamming distance (HD) between a pair of iris-codes, codeA, codeB, and

their according noise masks, maskA, maskB is defined as [Da04],
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Fig. 2: Examples of iris-codes produced by four different iris images of used datasets.

(a) HD = 0.16836 (b) HD = 0.17031

(c) HD = 0.20957 (d) HD = 0.24316

Fig. 3: Examples of bit-error patterns produced by four genuine iris-code comparisons.

(a) HD = 0.45117 (b) HD = 0.46152

(c) HD = 0.47461 (d) HD = 0.49004

Fig. 4: Examples of bit-error patterns produced by four impostor iris-code comparisons.

HD =
‖(codeA⊕ codeB)∩maskA∩maskB‖

‖maskA∩maskB‖
. (1)

Experiments are conducted on the CASIAv4-Interval [CA17] and the BioSecure [Or10]

iris database. Example images of both datasets are depicted in Fig. 1. An overview of

the used training sets (left eye images) and testing sets (right eye images) is shown in

Table 1. In experiments training and testing will be performed within and across both used

databases.

3.2 Iris-Code Bit-Error Pattern Analysis

It is well known that bits in iris-codes are not mutually independent [Da04]. This is due

to the internal spatial correlations within iris textures and the nature of employed filters

[Da16]. Mis-matching bits between genuine iris-codes have been found to occur at boun-

daries of consecutive 0-bit or 1-bit sequences [HBF09, Da16]. That is, even for large HD

scores lengths of sequences of consecutive mis-matching non-masked bits are expected to
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Fig. 5: Bit-error sequence lengths of bit-error patterns obtained from training sets.

be low. In contrast, for impostor comparisons these lengths tend to be higher. This is due

to the facts that iris-codes of different eyes are uncorrelated and adjacent bits in iris-codes

exhibit high correlation. Hence, the neighbouring bits of each non-matching bit have a

high probability of being non-matching, too.

In our experiments left eye images of each database are processed in the training stage.

Based on the training sets we perform all possible genuine comparisons and impostor

comparisons based on the first image of each eye. Examples of bit-error patterns obtai-

ned by genuine and impostor comparisons are depicted in Fig. 3 and Fig. 4 (green pixels

indicate matching bits; red pixels indicate non-matching bits). The lengths of horizontal

sequences of consecutive mis-matching non-masked bits of genuine and impostor com-

parisons are counted and stored in separate histograms. For the training sets of the used

datasets the obtained histograms are shown in Fig. 5. We observe that the frequency dis-

tributions for genuine and impostor comparisons are similar for both databases. Focusing

on impostor distributions, in Fig. 5 it can be seen that, sequences of up to five consecutive

mis-matching bits are almost equiprobable (also see Fig. 4). The similarity of distributions

across both databases suggests that these mainly depend on the employed feature extractor

(as will be shown in experimental evaluations).

3.3 Improved Comparator

Given a pair of iris-codes, codeA and codeB, the HD score between them is estimated

and the frequency distribution of sequences of consecutive mis-matching non-masked bits

is stored in a histogram, histAB. This histogram is then compared against the average

genuine model obtained during the training stage, histGen, by estimating the Chi square

(χ2) distance between both histograms,
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Fig. 6: Scores obtained from testing sets with training performed on CASIAv4-Interval.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
h

i
s
q

u
a

re
d

is
ta

n
d

e

Hamming distance

Impostor

Genuine

(a) CASIAv4-Interval

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
h

i
s
q

u
a

re
d

is
ta

n
d

e

Hamming distance

Impostor

Genuine

(b) BioSecure

Fig. 7: Scores obtained from testing sets with training performed on BioSecure.

χ2(histAB,histGen) = 1/2k
k

∑
i=1

(histABi −histGeni)
2/(histABi +histGeni). (2)

It has been found that the χ2 distance is a suitable method for the proposed comparator.

Alternatively, other similar methods could be employed to compare pairs of histograms,

e.g. [PW10]. Note that only bit-error patterns obtained from genuine comparisons are used.

No significant improvements were obtained for applying the proposed procedure to bit-

error patterns produced by impostor comparisons.

Fig. 6 and Fig. 7 show scatter plots of HD scores and corresponding χ2 distances for

using different training sets. It can be observed that some large genuine HD scores still

yield small χ2 distances. Also, rather low genuine HD scores result in large χ2 distance

due to the small amount of bit-errors. However, as mentioned earlier, it is suggested to
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Tab. 2: Performance rates (in %) obtained from the testing sets.

Comparator Training
CASIAv4-Interval BioSecure

FNMR0.01 FNMR0.001 FNMR0 FNMR0.01 FNMR0.001 FNMR0

HD – 3.48 3.83 3.85 7.38 8.26 8.34

HD+χ2 CASIAv4- 1.98 2.69 2.79 6.89 7.54 7.62

0.55HD+0.45χ2 Interval 1.96 2.65 2.72 6.75 7.39 7.62

HD+χ2

BioSecure
1.94 2.69 2.70 6.59 7.16 7.17

0.55HD+0.45χ2 1.92 2.63 2.65 6.56 6.99 7.14
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Fig. 8: Detection error trade-off curves obtained from the testing sets.

estimate the χ2 distance only for a distinct range of obtained HD scores, e.g. [0.35,0.45].
As can be seen in Fig. 6 and Fig. 7, in such a range a diagonal line would achieve the

best separation of genuine and impostor scores. That is, for a pre-defined interval the χ2

distance is estimated as an assisting score and combined with the HD scores employing

a weighted score-level fusion using the sum-rule. Further, we observe χ2 distances of

impostors are generally larger if the model obtained from the BioSecure training set is

employed. This is because in the histogram of the BioSecure training set sequences of

small lengths are weighted higher compared to the histogram of the CASIAv4-Interval

database (see Fig. 5). Also, it can be seen that χ2 distances of genuine as well as impostors

are slightly larger on the BioSecure testing set. This might suggest that this database is

more noisy than the CASIAv4-Interval database, which is also reflected by the obtained

performance rates.

In accordance to the ISO/IEC IS 19795-1 [Int11] biometric performance is estimated in

terms of false non-match rate (FNMR) at a targeted false match rate (FMR), denoted by

FNMRFMR. Obtained FNMRs at FMRs of 0.01%, 0.001% and 0% are listed in Table 2. The

resulting detection error trade-off (DET) curves are shown in Fig. 8. Across considered

FMRs the recognition accuracy is generally enhanced by the fusion of HD scores and

χ2 distances, which is performed within the HD score interval of [0.35,0.45]. Due to the
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fact that the histograms of bit-error sequences are similar for both databases, no significant

performance drops are observed if the training is be performed on a different dataset. When

using a weighted fusion only small improvements can be achieved. As an alternative to the

simple (weighted) sum-rule fusion support vector machines (SVMs) could be trained to

separate genuine from impostor scores.

4 Conclusions and Future Work

In this work we presented an advanced iris-biometric comparator to improve the biome-

tric performance in an iris recognition system. In contrast to many published works, we

propose an analysis of bit-error patterns produced by iris-code comparisons. In particu-

lar, we construct a model for the expected frequency distribution resulting from a genuine

comparison based on a training set of iris-codes. The difference of an obtained bit-error

pattern to that of the pre-trained one can be used as a second comparison score in combi-

nation with the fractional Hamming distance. At practical false match rates the recognition

accuracy has be significantly improved on different databases. Reported preliminary im-

provements motivate further investigations of bit-error patterns of iris-code comparisons.

Models of bit-errors could be, (1) constructed for different intervals of HD scores to im-

prove the robustness of the proposed comparator, (2) extended to also analyse vertical, i.e.

radial, correlations of bit-errors, (3) constructed for different regions of iris textures, since

entropy has been found to vary significantly across iris texture regions.

Building a model for genuine bit-error patterns might be of interest for other research

fields. In particular, models of bit-error patterns produced by iris-code pairs could be em-

ployed in presentation attack detection techniques [GGB16]. Moreover, machine learning

techniques, e.g. convolutional neuronal networks, could be used to reliably identify error

patterns produced by genuine iris-code comparisons.
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Domain Adaptation for CNN Based Iris Segmentation

Ehsaneddin Jalilian , Andreas Uhl , Roland Kwitt1 2 3

Abstract: Convolutional Neural Networks (CNNs) have shown great success in solving key arti-
ficial vision challenges such as image segmentation. Training these networks, however, normally
requires plenty of labeled data, while data labeling is an expensive and time-consuming task, due to
the significant human effort involved. In this paper we propose two pixel-level domain adaptation
methods, introducing a training model for CNN based iris segmentation. Based on our experiments,
the proposed methods can effectively transfer the domains of source databases to those of the targets,
producing new adapted databases. The adapted databases then are used to train CNNs for segmen-
tation of iris texture in the target databases, eliminating the need for the target labeled data. We also
indicate that training a specific CNN for a new iris segmentation task, maintaining optimal segmen-
tation scores, is possible using a very low number of training samples.

Keywords: Domain adaptation, CNN based iris segmentation, Iris segmentation

1 Introduction

In recent years, considerable effort has been made towards developing accurate automatic

segmentation systems for variety of applications, using supervised machine learning al-

gorithms. Accurate segmentation of iris texture in eye images is a key challenge in iris

recognition, and plays vital role in accuracy of subsequent feature extraction and recog-

nition algorithms. Application of convolutional neural networks for iris segmentation has

recently received some research attention, and a few CNN based models got proposed

[JU17] [Li16]. Nonetheless, as any other supervised learning model, performance of these

models are highly dependent on availability of sufficient amount of labeled data. Data

labeling, however, is extremely expensive and time-consuming process, especially when

segmenting iris data, due to the considerable human effort involved. As a result, manu-

ally annotating large number of data for each new segmentation task (i.e. new datasets or

sensors, respectively) is not a feasible choice.

In this work, we propose two domain adaptation methods to transfer the domains of source

iris databases (for which segmentation labels are available) to those of the targets, generat-

ing adapted iris databases, which in turn, enable training of a Fully Convolutional Neural

Network (FCN) for segmentation of iris in the target databases. Doing so, we can train a

FCN for a new iris segmentation task, using adapted source iris images and their corre-

sponding ground-truth masks, eliminating the need for the target iris ground-truth masks,

1 Department of Computer Science, University of Salzburg, Jakob-Haringer-Str.2, Salzburg, Austria, ehsaned-

din.jalilian@sbg.ac.at
2 Department of Computer Science, University of Salzburg, Jakob-Haringer-Str.2, Salzburg, Austria, an-
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3 Department of Computer Science, University of Salzburg, Jakob-Haringer-Str.2, Salzburg, Austria,
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which are extremely expensive to generate. To address this objective, we selected three

publicly available iris databases, and explored their tonal distribution in terms of the in-

tensity values at pixel-level. Subsequently, we developed a linear and also a non-linear

domain adaptation hypotheses to adapt the intensity information of source databases to

those of the targets, generating a set of adapted databases. Eventually, we trained a FCN

with the adapted databases, and then tested it on the target databases. At the end, we eval-

uated the expediency of our model by comparing the segmentation results obtained by the

adaptation models against those of the cross- and within-databases.

2 Related Work

Domain adaptation in computer vision is significantly focused on visual classification, with

much research dedicated to generalizing across the domain transformation between images

of objects and the same objects’ photos in the real world [Sa10][KSD11]. In this context,

many of the researches concentrated on exploring feature representations which permute

the greatest distractions between two domains [Tz15][Ga16][Lo15]. Some other works

tried to readjust such features by minimizing the distinction between their distributions

[Lo15][Lo16]. Liu et al. proposed a coupled generative adversarial network, to learn the

joint distribution of images from both the source and the target databases [LT16].

Very limited research has been conducted on domain adaptation in other key computer vi-

sion fields such as detection and segmentation. To be more precise, in detection, Hoffman

et al. introduced a domain adaptation model by explicitly modeling the representation shift

between classification and detection models [Ho14]. Also, in a follow-up work, they in-

corporated per-category adaptation using multiple instance learning [Ho15]. The detection

models were later converted into FCNs for evaluating semantic segmentation performance

[Ho16a]. But this work did not propose any segmentation-specific adaptation approach.

The only work with focus on CNN based segmentation is proposed by Hoffman et al.

[Ho16b]. They used both source and target data in a fully-convolutional domain adversar-

ial training, minimizing the global distance of feature space between two domains. Then

category updates were performed on the target images, using a constrained pixel-wise mul-

tiple instance learning objective. They used their model for semantic segmentation in city

images obtained under different scenarios. The main drawback of their method is using

adversarial training and shared weights. While applying this method lets the target net-

work to adapt to the weights well, yet it degrades this process in the source network. As

their experiments also show, while in most classes, they slightly improved the segmenta-

tion results, in some other classes such as ”pole” and ”truck” segmentation results show

degradation.

3 Domain Adaptation for CNN Training

In this section, we describe our domain adaptation model for CNN based iris segmenta-

tion. Although without loss of generality, our approach is applicable to other segmentation

models also. Given the source iris database Xs, and its corresponding ground-truths Ys,
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P(Xs) refers to the distribution of intensities in the source iris images. Likewise, we have

the target iris images Xt , and their corresponding ground-truths Yt , while P(Xt) specifies the

distribution of intensities in the target iris images. Under the domain difference scenario,

we assume that the conditional distributions of Ys and Yt are the same, but the marginal

distributions of Xs and Xt differ in the two domains. The resulting distinction between the

distributions in two domains is refereed to as sample bias φ where

Pt = Ps(φ(Xs),Ys). (1)

Using empirical risk minimization framework for supervised learning, we want to select

an optimal parameter ψ
′
, to minimize the following objective function

ψ
′

t = argmin
ψ∈Ψ

∑
(x,y)∈X×Y

P̃s(φ(Xs),Ys)g(x,y,ψ) = argmin
ψ∈Ψ

N

∑
i=1

g(φ(xs),ys,ψ) , (2)

where g(x,y,ψ) is the loss function, and P̃s(X ,Y ) is the empirical distribution of Ps(X ,Y ).
As it can be interpreted from (2), weighting the images’ intensities of source data by φ
provides the solution to the minimization function. The straight forward solution to weight

the intensity values of source data is using a linear normalization model as follows:

b = (max(B)−min(B))
a−min(A)

max(A)−min(A)
+(min(B)) , (3)

where a and b are the input and output respectively, and B = {b1,b2, ..bn}, and A =
{a1,a2, ..an}. Our first (linear) domain adaptation method is based on the same model.

In this way, we extracted the average range (maximum and minimum) of intensities in

the iris, non-iris, and pupil regions of eye images in the target databases. Then using the

above model (3), we weighted the intensity information of source databases to those of the

targets, to generate new adapted databases as we already mentioned.

As it can be seen, this model provides a linear solution to our domain adaptation problem.

In practice, in this method for each region, all the source intensity ranges get normalized

to ”a single average intensity range of that region in the target database.” Yet it is a fact

that, the intensity ranges of the target regions follow a non-linear distribution in the target

databases. To address this non-linearity, we propose our second (non-linear) domain adap-

tation method. For this purpose, after extracting the maximums and minimums of each

region in the target databases, we developed a probability distribution function (PDF) for

each. To transfer the intensities in the source regions to those of the targets, initially we

drew a random value from the corresponding PDFs, following a normal distribution.

However, this strategy seemed not to be so promising, as it neglected the complimen-

tary relation between maximums and minimums in each region. Further analysis of the

extracted intensities also revealed that there exists an obvious mutual relation between

maximum and minimum intensity values in each region. So that, as the maximums in-

crease, minimums also increase, and vise versa. To address this relation, after extracting

the intensity ranges, for each unique maximum value, we calculated the mean of corre-

sponding minimum values. Then we developed a cross-value matrix for each region, using
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these two variables. Next, we applied kernel smoothing regression to this data to generate

a polynomial function f (X) as follows:

f (x) = p1xn + p2xn−1 + ....+ pnx+ pn+1 , (4)

where x represents the input (minimum) to the model, and n is the degree of polynomial

function. Now, to adapt the domain of each source image to that of the targets, we randomly

selected a minimum for each region, and then estimated its corresponding maximum using

the polynomial model we proposed, as demonstrated in figure 1. As a result, unlike in the

linear adaptation method, where all images were mapped to the same range, here each

adapted image has a potentially different range.

Fig. 1: Sample non-linear data adaptation steps

4 Experimental Framework

To assess the expediency of our domain adaptation methods we carried out a set of seg-

mentation experiments on the databases. The details of these experiments are explained

in the next section respectively. Yet, in the following we explain the framework for these

experiments.

4.1 Databases

For our segmentation experiments we used three publicly available iris databases. The

Casia-iris-interval-v4 (Casia4i) database 4, which contains 2640 iris images belonging

to 249 subjects. The iris images in this database were acquired under near-infrared illu-

mination. The IITD database (Iitd) 5, which consists 2240 iris images corresponding to

224 subjects. All these images are acquired in indoor environment, in near-infrared illu-

mination. The Casia-iris-aging-v5 database, which is a subset of the upcoming Casia-v5

(Casia5a) iris database 6, contains 120 images per eye and user from video sequences cap-

tured in 2009, and 20 images per eye and user from video sequences captured in 2013. The

segmentation ground-truth masks for these databases were provided by the University of

Salzburg 7.

4 Chinese Academy of Sciences, Institute of Automation, Center for biometrics and security research,

http://biometrics.idealtest.org
5 Indian Institute of Technology Delhi, IIT Delhi Iris Database, http://www4.comp.polyu.edu.hk/ csajaykr/-

database.php
6 see http://www.biometrics.idealtest.org
7 http://www.wavelab.at/sources/Hofbauer14b
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4.2 FCN Netwrok

The architecture of the network we used in this work is similar to the basic fully con-

volutional encoder-decoder network proposed by Kendall et al. [BKC15]. However, we

redesigned the softmax layer to segment the iris and non-iris areas only. The network’s

encoder architecture is organized in four stocks, containing a set of blocks. Each block

comprises a convolutional layer, a batch normalization layer, and a rectified-linear non-

linearity layer. The corresponding decoder architecture, likewise, is organized in four

stocks of blocks, whose layers are similar to those of the encoder blocks, except that here

each block includes an up-sampling layer also. The decoder network ends up to a softmax

layer which generates the final segmentation map. More details about the technical speci-

fication of the network and layers can be found in the relevant reference. The network was

implemented in the ”Caffe” deep learning framework.

4.3 Metrics and Measurements

We estimated iris segmentation accuracies using two segmentation error scores of nice1

(n1) and nice2 (n2), which are based on the NICE.I protocol 8. The error score nice1

calculates the proportion of corresponding disagreeing pixels (by the logical exclusive-or

operator) over all the image as follows:

nice1 =
1

c× r
∑
c
′
∑
r
′

O(c
′
,r

′
)⊗C(c

′
,r

′
) , (5)

where c and r are the columns and rows of the segmentation masks, and O(c′,r′) and

C(c′,r′) are, respectively, pixels of the output and the ground-truth mask. The error score

nice2 intends to compensate the disproportion between the priori probabilities of iris and

non-iris pixels in the images - it averages type-I and type-II errors, i.e. between the f p

(false positives) and f n (false negatives) rates as follows:

nice2 =
1

2
( f p+ f n) . (6)

Additionally, we considered the F score ( f 1) to estimate iris segmentation accuracies also.

The F score is the harmonic mean of precision (P) (the fraction of relevant instances

among the retrieved instances) and recall (R) (the fraction of relevant instances that have

been retrieved over total relevant instances) as follows:

f 1 = 2
RP

R+P
. (7)

8 http://nice1.di.ubi.pt/dates.htm
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The values of nice1 and nice2 are bounded in [0, 1] interval, and ”1” and ”0” are respec-

tively the worst and the best scores. The F score values are bounded in [1, 0] interval, and

”0” and ”1” are the worst, and the best scores respectively.

Fig. 2: Average intensity ranges of iris, non-iris, and pupil regions in databases

5 Experiments and Discussions

We evaluated the eminence of our domain adaptation model by a set of experiments. In

this way, initially we developed six sets of unique database pairs (source-target), using

three available databases. Next, we explored the distributions of domains in the target

databases, extracting the intensity ranges of iris, non-iris, and pupil regions of eye images

in these databases (figure 2 reflects these information). Then, using our domain adaptation

methods, we transfered the intensity values of the specified regions in source databases

to those of the targets, to produce an adapted database for each pair. Next, we trained

our network with each adapted database, and then tested it on the corresponding target

databases (adapted-target). Figure 3 and figure 4 show sample adapted images and their

corresponding segmentations results for three database pairs, applying linear and non-

linear adaptation methods respectively.

Source images | Adapted images | Target images | Ground truths | Result masks

Fig. 3: Sample adapted images and their corresponding segmentation results for Casia4i-Iitd (first

row), Iitd-Casia5a (second row), and Casia5a-Casia4i (third row) database pairs (source-target) using

the linear domain adaptation method
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The segmentation results then were compared against the baseline results (results of ap-

plying network trained with the source databases directly to the target databases without

adaptation). Table 1 shows the segmentation scores for our linear-based (LB), and non-

linear-based (NB) adaptation methods against the baseline (source-target) results.

Source images | Adapted images | Target images | Ground truths | Result masks

Fig. 4: Sample adapted images and their corresponding segmentation results for Casia4i-Iitd (first

row), Iitd-Casia5a (second row), and Casia5a-Casia4i (third row) database pairs (source-target) using

the non-linear domain adaptation method

In addition, figure 5 provides further information including: min, max, median, quantiles,

and outliers for the liner-based adaptation experiments in form of box-plots

Method Adapted-target (LB) Adapted-target (NB) Baseline(Source-target)

Scores nice1 nice2 f1 nice1 nice2 f1 nice1 nice2 f1

Casia5a-casia4i 0.186 0.220 0.610 0.274 0.353 0.098 0.292 0.640 0.003

Casia5a-iitd 0.148 0.172 0.781 0.266 0.305 0.498 0.229 0.221 0.473

Casia4i-casia5a 0.066 0.194 0.730 0.027 0.074 0.859 0.274 0.406 0.341

Casia4i-iitd 0.121 0.141 0.808 0.102 0.095 0.812 0.218 0.219 0.724

Iitd-casia5a 0.062 0.185 0.739 0.034 0.088 0.813 0.049 0.117 0.830

Iitd-casia4i 0.299 0.319 0.569 0.208 0.174 0.374 0.315 0.584 0.045

Tab. 1: Segmentation scores for the linear-based (LB), and non-linear-based (NB) domain adaptation

methods against the baseline (source-target) results

As the experiment results in Table 1 show, almost all linear domain adaptations result in

significant improvement of iris segmentations compared to the baseline results. Slightly

lower, yet stable improvements can also be seen in the segmentation results of non-linear

domain adaptations. It should be noted that feature representations affecting the weights

during training process are not limited to tonal distributions, and further features such as

geometric properties of iris, non-iris, and pupil regions are definitely affecting this process.

Here we just considered the tonal distributions, so the results are not comparable with

the optimal solution when directly training with the target dataset. All in all, the overall

results confirm the key conclusion that tonal distribution (intensity ranges of iris, non-

iris, and pupil) plays a key role in generalization of FCNs on new iris data that differs

from the training data. It is also interesting to note that, while the segmentation results for
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Fig. 5: Segmentation results for the linear domain adaptations (left side of graphs), against the

baseline results (right side of graphs)

linearly adapted Iitd-casia5a databases show slightly lower scores than the baseline, yet

the segmentation results for non-linear adaptation of the same databases score much better

compared to those of the baseline. Similar affinity can be found in the segmentation results

of Casia5a-iitd databases, but in reverse manner.

Method Target-Target

Scores nice1 nice2 f1

Casia5a-casia5a 0.019 0.038 0.925

Casia4i-casia4i 0.033 0.038 0.937

Iiitd-iitd 0.027 0.032 0.951

Tab. 2: Optimal (target-target) segmentation results

While the proposed domain adaptation methods proved to effectively transfer the domains

between the iris databases, yet the segmentation results obtained are far from the optimal

iris segmentation scores as demonstrated in Table 2. To this extent, with the aim of min-

imizing the number of labeled data required to train the CNNs for new iris segmentation

tasks, and maintaining optimal segmentation scores, we conducted a series of additional

experiments. In this way, we decreased the number of labeled samples required to train a

CNN for a new iris segmentation task stepwise, obeying the framework we used for our

optimal (target-target) experiments. Table 3 demonstrates the results for these experiments.
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Considering the optimal segmentation results in Table 2, we can see that for most databases

optimal segmentation scores can be achieved using maximum number of 100 training sam-

ples. However, in most cases slightly lower, but very close scores can be achieved with 50

or even 25 samples.

Database Casia5a Casia4i Iiitd

Score nice1 nice2 f1 nice1 nice2 f1 nice1 nice2 f1

15 pcs 0.075 0.082 0.875 0.205 0.263 0.502 0.089 0.097 0.856

25 pcs 0.064 0.077 0.896 0.099 0.115 0.814 0.077 0.083 0.879

50 pcs 0.050 0.070 0.909 0.078 0.068 0.841 0.063 0.070 0.889

100 pcs 0.021 0.040 0.921 0.038 0.039 0.926 0.035 0.037 0.941

Tab. 3: Segmentation results for decreased number of training samples

6 Conclusion

Application of convolutional neural networks for iris segmentation has recently received

first research attention, and some CNN based models got introduced for this purpose by

researchers. Nonetheless, as any other supervised learning model, training these models

require adequate amount of labeled iris data. Due to the significant human effort involved,

preparing labeled data to train these networks for new segmentation tasks is very expen-

sive and time consuming. In this work, we proposed two adaptation methods to transfer

the domains of source iris databases to those of the targets, producing adapted databases.

The adapted iris images along with their corresponding ground-truth masks then enabled

training of a FCN network for segmentation in target iris databases, eliminating the need

for the target ground-truth masks.

While experimental results proved expediency of these two methods, yet in some cases,

their segmentation scores were far from the optimals. With the aim of minimizing the

number of labeled iris images required to train the network for new iris segmentation

tasks, and also maintaining optimal segmentation scores, we decreased the number of

training samples stepwise as an alternative approach to domain adaptation. The experi-

ments demonstrated that for most databases, optimal segmentation scores can be achieved

using maximum of 100 training data samples. In our future work, we will investigate the

relations between the two proposed adaptation methods and the reasons for the different

results. Beside this, we will explore more feature representations which encourage maxi-

mal distinction between two domains, hoping to be able to develop a more comprehensive

domain adaptation method.
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SIC-Gen: A Synthetic Iris-Code Generator

Pawel Drozdowski , Christian Rathgeb , Christoph Busch1,2 2 2

Abstract: Nowadays large-scale identity management systems enrol more than one billion data
subjects. In order to limit transaction times, biometric indexing is a suitable method to reduce the
search space in biometric identifications. Effective testing of such biometric identification systems
and biometric indexing approaches requires large datasets of biometric data. Currently, the size of the
publicly available iris datasets is insufficient, especially for system scalability assessments. Synthetic
data generation offers a potential solution to this issue; however, it is challenging to generate data
that is both statistically sound and visually realistic - for the iris, the currently available approaches
prove unsatisfactory.

In this paper, we present a method for generation of synthetic binary iris-based templates, i.e. Iris-
Codes, which are the de facto standard used throughout major biometric deployments around the
world. We validate the statistical properties of the synthetic templates and show that they closely
resemble ones produced from real ocular images. With the proposed approach, large databases of
synthetic Iris-Codes with flexibly adjustable properties can be generated.

Keywords: Biometrics, Iris Recognition, Iris-Code, Synthetisation

1 Introduction

The iris is one of the most widely applied biometric modalities. In recent years, several

large-scale deployments have been created, most notably the Indian National ID pro-

gram [Un10], which has, at the time of this writing, enrolled over one billion subjects with

biometric data including the irides. Despite using efficient comparators (e.g. Hamming

distance for the iris) and parallelism, the computational load faced by such deployments

in the identification scenario is extremely high. With biometric workload reduction as a

motivation, many approaches for indexing of iris data have been developed [PN17]. How-

ever, evaluation of such approaches and their scalability is often questionable due to lack of

large test datasets. While various publicly available iris databases with near-infrared (NIR)

data exist, they are relatively small. At the time of this writing, some of the largest pub-

licly available datasets, CASIA-IrisV4-Thousand and ND-CrossSensor-Iris-2013, contain

merely 20.000 images from 1000 subjects and 146.550 images from 676 subjects, respec-

tively. This is several orders of magnitude smaller than some of the large-scale deploy-

ments nowadays.

Synthetic data generation is one possible way of dealing with the issue of testing efficient

indexing methods. Most of the existing approaches for synthetic iris generation attempt

to synthesise an entire iris image or texture [Le03, Cu04, MR05, WSG05, ZS05, SR06,

1 Norwegian Biometrics Laboratory, NTNU, Gjøvik, Norway
2 da/sec – Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany

{pawel.drozdowski,christian.rathgeb,christoph.busch}@h-da.de
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ZSC07, WTS08, PN13]. The main issues with such approaches include the computational

costs and the difficulty in guaranteeing the statistical properties of the real data. The vast

majority of operational iris biometric systems are based on the Iris-Code [Da04], making it

a de facto standard. Generating Iris-Codes (feature vectors) directly is therefore also viable

and may offer better control over the statistical properties of the synthetic data. Recently,

two such approaches have been proposed. Proença and Neves [PN13] provide a method

of Iris-Code synthesis based on bit correlations; the method is shown to attain some of the

desired statistical properties (the shapes of the genuine and impostor distributions). It is

also somewhat flexible with adjustable parameters; however, it does not allow to generate

a set of templates following a desired score distribution. Furthermore, the filter response

resulting from the typical feature extraction process is not modelled (in other words, the

produced synthetic Iris-Codes scantily resemble the ones produced from real iris images

through the commonly used iris processing pipeline). Lastly, typical error patterns between

two mated templates are not modelled. Daugman [Da16] proposed to use a simple hidden

Markov model to generate a stream of bits and showed that it can be adjusted, so that

the produced templates mimic the impostor distribution of real iris templates. However,

the produced streams are 1-dimensional (i.e. do not model the correlation between the

Iris-Code rows); furthermore, the method does not offer a way to generate more than one

template per subject (i.e. it is not possible to use it for simulating genuine comparisons).

As such, it might only be useful for stress-testing of iris identification systems.

In this paper, we present a synthetic Iris-Code generator, which both reflects the statistical

properties of the real Iris-Codes and resembles the real templates visually. An important

feature of the proposed approach is its flexibility, in that it allows to generate Iris-Codes

with an arbitrary resolution and an arbitrary score distribution of mated templates, unlike

any of the approaches currently in the literature. To facilitate reproducible research, the

software written in Python3 programming language, is released to the scientific commu-

nity under a permissive license.

The remainder of this paper is organised as follows: section 2 describes the proposed

method of synthetic Iris-Code generation. In section 3 the properties of the generated tem-

plates are validated, while section 4 contains concluding remarks.

2 Proposed Method

When generating synthetic Iris-Codes, several matters have to be taken into account:

• Dataset

Score distributions The distributions of Hamming distance scores must closely

resemble the ones produced by real data.

Degrees of freedom Based on a large number of comparison scores from non-

mated templates, the effective number of independent bits (degrees of free-

dom) can be calculated. Degrees of freedom can be seen as discrimination

entropy as a measure of information content in iris images and has to be close

to that of the real data.
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• Individual templates

Bit correlation The bits in an Iris-Code are far from independent. There exist

correlations between both rows and columns, which result in long sequences

of identical consecutive bits. The reason for this is partially the anatomy of iris

patterns, as well as the nature of the commonly used feature extractors [Da16].

Those correlations have to be reflected in the synthetic data.

Error patterns The majority of bit mismatches between two mated Iris-Codes

occurs for bits resulting from wavelet response close to 0 (i.e. where the re-

sponse phase changes). Those occur mostly on the edges of the bit sequences,

and are called the ”fragile” bits [HBF09]. They have to be present in the syn-

thetic data. Additional noise sources, such as the occlusions resulting from

the eyelids, have to be modelled as well.

Rotation In the real data, rotations of the eye, which are mainly caused by head

tilts (i.e. roll pose), potentially result in misalignment between two mated

samples. In Iris-Codes, this is represented by circular horizontal shifts of the

matrix columns, which have to be modelled in the synthetic data.

The proposed generator synthesises Iris-Codes as pairs of mated templates, referred to as

Iris-Codes IC1 and IC2 in the algorithm description and figure 1 below. The bold-filled

arrows denote the changes to the template throughout the process, while the thin arrows

denote the system parameters.

Target genuine
distribution

Parameter
Estimation

Preparation

25%

50%

75%

...

...

Iterative random bit flipping

Initial bar-code template

100%

...

Post-processing

HDintra

HDtemp

IC1 IC2Final templates without noise

Final shifted templates with noise

HDtarget

Fig. 1: The process of generating an Iris-Code pair with SIC-Gen
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1. Preparation, during which a base Iris-Code matrix is created as follows:

• The first row is created by generating alternating sequences of 0’s and 1’s with

lengths drawn from a normal distribution. The distribution parameters can be

estimated empirically, by measuring the sequence lengths in real Iris-Codes.

• By duplicating that row, a simple bar-code pattern is generated.

2. Parameter Estimation, during which system configuration variables are calculated

based on the user input.

• A target Hamming distance (HDtarget) between IC1 and IC2 is drawn from a

random distribution.

• HDtemp and HDintra (see figure 1 and next step of the process description),

are estimated based on HDtarget. Following relations are satisfied: HDtemp +
HDintra = C and HDtarget = 2HDintra −O, where O is the expected overlap

of bit mismatches introduced by the process described in the next step; C

remains constant for a batch of generated templates, and affects the effective

number of independent bits (degrees of freedom) in the synthetic data.

3. Iterative bit flipping, during which a pair of mated Iris-Code templates is created

from the base Iris-Code.

• The bits at the edges of consecutive bit sequences (i.e. where sequences of

1’s turn to 0’s and vice versa) are randomly flipped. After HDtemp from the

original bar-code template is reached, the template is split into IC1 and IC2.

Subsequently, bit flipping occurs until HDintra between them is reached.

• Additionally, majority voting and median filtering are applied to make the

patterns visually smoother. Furthermore, the chances of bit flips are adjusted

on per-row basis to simulate the collarette and furrow structures in real irides.

• This step can be accelerated by applying an initial shifting pattern to the bar-

code template produced in step 1.

4. Post-processing, during which additional noise factors are accounted for. Those

include:

• Adding the characteristic pattern resulting from an eyelid, as well as the noise

beneath it.

• Adding additional noise in the row near the pupil and simulating occlusions.

• Storing the noise masks.

• Applying circular shifts to the Iris-Code to simulate sample roll pose.

The process generates Iris-Codes of a default size; smaller sizes, if desired, are sampled

from this size. The default dimension is motivated by the ISO/IEC international standard

on Biometric sample quality [IS15]. There, the minimum iris radius is recommended to

be at least 80 pixels (for the smallest reported human iris), which corresponds to a texture

width of 80∗2π ≈ 502 pixels when unrolled. The recommended optimal iris-pupil ratio is
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0.2, which corresponds to a pupil of 80∗0.2= 16 pixels, and thus an iris texture of 64 rows.

Thus, the default size of the generated Iris-Codes is 512×64 bits. There are numerous

adjustable parameters, which allow to mimic different properties of the Iris-Code (e.g. the

correlations between rows and columns, noise). Notably, it is also possible to guarantee an

arbitrary distribution of genuine scores and thereby simulate sample quality. For the data

generated in this paper, the HDs are drawn from a Weibull distribution, due to its close

resemblance to real data; another candidate could be the Gamma distribution. Yet another

approach could be to empirically estimate a distribution from real data and use it instead.

3 Validation

In this section, the properties of the synthetically generated data are validated with respect

to the requirements outlined in section 2. The visual comparison between real and syn-

thetic Iris-Codes can be seen in figure 2. The real Iris-Codes were produced by using the

OSIRIS toolkit [ODGS16] to process the near-infrared images from the iris subset of the

BioSecure [Or10] database. The toolkit provides the commonly used 2D-Gabor feature

extraction algorithm to produce the Iris-Codes. The synthetic Iris-Codes bear an excellent

resemblance to the real ones.

(a) Real

(b) Synthetic

Fig. 2: Example Iris-Codes produced from real eye images and generated by the proposed method

After confirming the visual appearance of the synthetic Iris-Codes to closely resemble that

of the real data, their statistical properties are validated. Figure 3(d) shows the distribution

of scores for non-mated templates for a large number of comparisons (N). The resulting

distribution and its statistical properties (the yellow box in the image), including degrees of
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freedom (ν), are identical to that exhibited by the real data, shown by Daugman in [Da04].

In figures 3(a), 3(b) and 3(c), example distributions of comparison scores for mated tem-

plates are shown, representing simulating of optimal, good and non-optimal quality data,

respectively. As mentioned earlier, the mated distributions can be specified arbitrarily due

to the nature of the template generation process (see section 2). The score distributions in

figure 3 were produced using Iris-Codes of size 256×8 bits (same as used by Daugman in

the paper cited above), sampled from the default size Iris-Codes generated by the process

described in the previous section.
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(d) Non-mated

Fig. 3: Distributions of Hamming distances for a large number of comparisons between synthetic

templates

Due to correlations between bits in an Iris-Code, its rows comprise of sequences of consec-

utive identical bits. It is of interest to verify, that the synthetic data follows that property. As

real data reference, sequence lengths for all templates from the iris subset of the BioSecure

database were computed. In figure 4, those distributions are shown, along with sequence

lengths produced by Daugman’s HMM from [Da16]. The distribution for the synthetic

data generated by SIC-Gen closely follows the one exhibited by the real data.
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Fig. 4: Visualisation of lengths of sequences of consecutive bits in real data from BioSecure database,

SIC-Gen synthetic templates and synthetic templates generated with Daugmann’s HMM

Figure 5 shows example error patterns for comparisons between mated and non-mated

templates. For the mated template pairs, the bit mismatches occur at the edges of sequences

of consecutive identical bits, resulting in the pattern akin to that shown in real data by

Hollingsworth et al. [HBF09].

(a) Real, mated (b) Synthetic, mated

(c) Real, non-mated (d) Synthetic, non-mated

Fig. 5: Example error patterns for comparisons between the real Iris-Codes from the BioSecure

dataset and between the synthetic Iris-Codes

4 Conclusion and Future Work

In this paper, a method for generating synthetic Iris-Codes has been presented. The pro-

posed method allows for a flexible specification of the score distribution between mated

templates, to allow simulating different sample quality, acquisition environments etc.; the

bit mismatches between two mated templates follow the so-called ”fragile bits” patterns
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observed in real data. Simultaneously, the important statistical properties (e.g. degrees of

freedom) of the distribution of non-mated comparison scores are maintained. Addition-

ally, the synthetic Iris-Codes resemble the real ones visually. They reflect the correlations

between Iris-Code bits resulting in long sequences of consecutive identical bits, as well

as the typical noise sources, such as the eyelid pattern, circular shifts, wavelet noise and

additional noise near the pupil. By accounting for all the aforementioned statistical and vi-

sual properties of real iris data, the proposed method represents a significant improvement

over the current state-of-the-art and can be used in research cases where large iris datasets

are needed, but unavailable. In future work, the authors intend to employ the synthetic

Iris-Codes in large-scale testing of biometric indexing approaches, as well as to attempt to

generate iris textures and/or images from the synthetic data using learning-based methods,

e.g. Galbally et al. [Ga13].
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xTARP: Improving the Tented Arch Reference Point

Detection Algorithm

Johannes Merkle , Benjamin Tams , Benjamin Dieckmann , Ulrike Korte1 2 3 4

Abstract: In 2013, Tams et al. proposed a method to determine directed reference points in finger-
prints based on a mathematical model of typical orientation fields of tented arch type fingerprints.
Although this Tented Arch Reference Point (TARP) method has been used successfully for pre-
alignment in biometric cryptosystems, its accuracy does not yet ensure satisfactory error rates for
single finger systems.

In this paper, we improve the TARP algorithm by deploying an improved orientation field compu-
tation and by integrating an additional mathematical model for arch type fingerprints. The resulting
Extended Tented Arch Reference Point (xTARP) method combines the arch model with the tented
arch model and achieves a significantly better accuracy than the original TARP algorithm. When
deploying the xTARP method in the Fuzzy Vault construction of Butt et al., the false non-match rate
(FNMR) at a security level of 20 bits is reduced from 7.4% to 1.7%.

Keywords: Fingerprint Registration, Reference Point Detection, Biometric Template Protection.

1 Introduction

Reliable reference point detection is an important building block for identification systems

and biometric cryptosystems based on fingerprint minutiae. With the help of a reference

point, an absolute pre-alignment can be applied for fingerprint registration, thereby com-

pensating variations in the placement (translation) and, if constituted with a direction,

rotation of different imprints from the same finger.

The most prominent reference points are the singular points of the orientation field, i.e.

core and delta points. Many algorithms for singular point detection have been propo-

sed, e.g. [ZHY01, BG02, NB03]. However, fingerprints of type arch do not have any

singular points and, therefore, singular point detection alone is not a universal appro-

ach. Many publications proposed algorithms for the estimation of generalized singular

points, e.g., highest curvature points, that are also present in arch-type fingerprints, e.g.

[Ja00, RA00, LJK05, Ig06, GZY16]. An alternative approach is the estimation of a so-

called focal point [ASJ06, AB08, BA09]. However, most of these universal methods (ex-

ceptions being [LJK05] and [BA09]) do not output a direction which could be used to

compensate different rotations of the fingerprints.

1 secunet Security Networks, Mergenthaler Allee 77, Eschborn, Germany, johannes.merkle@secunet.com
2 secunet Security Networks, Konrad-Zuse-Platz 2, München, Germany, benjamin.tams@secunet.com
3 secunet Security Networks, Mergenthaler Allee 77, Eschborn, Germany, benjamin.dieckmann@secunet.com
4 Bundesamt für Sicherheit in der Informationstechnik, Bonn, Germany, ulrike.korte@bsi.bund.de
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A promising approach to determine directed reference points was published in [Ta13] and

[TMM15]. There, the actual fingerprint’s orientation field is aligned with a mathemati-

cal orientation field model for fingerprints of type tented arch.5 The alignment between

the orientation field of the fingerprint and the orientation field of the mathematical mo-

del results from a minimization of a cost function measuring the deviation between these

fields in a region around the model’s core point. In [Ta13, TMM15, Bu16, Ta16, Ta15],

this Tented Arch Reference Point (TARP) algorithm was successfully applied in biometric

cryptosystems based on the fuzzy vault scheme. However, the achieved error rates were

still too high for practical applications, which indicates that the TARP algorithm is not yet

sufficiently accurate.

We improve the TARP algorithm by several means. Firstly, we integrate an improved orien-

tation field computation. Furthermore, we implement an additional mathematical model

for arch-type fingerprints and develop a fusion method to make use of both models. As a

result, we obtain an Extended Tented Arch Reference Point (xTARP) algorithm which exhi-

bits a considerably higher accuracy than the TARP and other reference point estimation

methods. We show the utility of our xTARP algorithm by deploying it for pre-alignment

in the Fuzzy Vault construction of [Bu16] (instead of the TARP algorithm).

The structure of this paper is as follows. We give a brief introduction into the TARP method

in Section 2 and analyze its potential for improvement in Section 3. In Section 4, we

describe our improvements. The resulting xTARP algorithm is evaluated and compared

with other methods for singular point detection in Section 5. Finally, we draw conclusions

in Section 6.

2 The Tented Arch Reference Point Algorithm

The Tented Arch Reference Point (TARP) algorithm for estimating directed reference

points was proposed in [Ta13] and (with slightly improved parameters) in [TMM15] and

its implementation in C++ was published under LGPLv3 license.6

Fig. 1: For most fingerprints, the ridge flow around the center resembles that of a fingerprint of type

tented arch.

5 Note, that this tented arch model is applied to fingerprints of all types
6 http://www.stochastik.math.uni-goettingen.de/biometrics/thimble
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The basic idea of the TARP algorithm is that, for most fingerprints, the ridge flow in a

ring-shaped area around the center resembles that of a fingerprint of type tented arch, as

illustrated in Figure 1. Therefore, the TARP algorithm attempts to align the orientation

field of the fingerprint to a fixed directional field resembling the orientation field of fin-

gerprints of type tented arch. The directional field is derived from a modification of the

the quadratic differential (QD) model [HHM08], which represents fingerprint orientation

fields of arch-type fingerprints by the complex function

ψ(z) = λ 2(z2 −R2), (1)

with Im(z)> 0 and real-valued parameters λ ,R. The orientation at location (a,b) is defined

by φ = 0.5Arg(ψ(a+ i ·b)). For fingerprints of type tented arch, the model is extended to

τ(z) = ψ(z) z2+d2
core

z2+d2
delta

, where (0,dcore) and (0,ddelta) with dcore ≥ ddelta ≥ 0 are the positions

of the core and delta point, respectively, in the model. We refer to [HHM08] for further

details and explanations.

By setting τα,β (z) = α−2τ(αz+β ), the TARP algorithm applies translations β and rota-

tions α (with α,β ∈ C and |α|= 1)7 to the tented arch model τ(z) to find the best fit with

the fingerprint orientation field in a region around the model’s core point. In this translated

and rotated model, the core point’s position is γα,β = α−1(i ·dcore −β ). If the fingerprint’s

orientation field is given by {(z j,v j)}, where the z j are quantized positions and v j the

orientation at position z j, its fit with the model τα,β (z) is evaluated using the cost function

κ(α,β ) = ∑
j

wα,β (z j)

∣∣∣∣ τα,β (z j)

|τα,β (z j)|
− v j

∣∣∣∣ ; (2)

here, wα,β (z) = exp

(
−

(|z−γα,β−ρ|)2

2σ2

)
is a weight function resulting from a Gaussian fun-

ction with deviation σ rotated at distance ρ around the core γα,β . 8 The reference point is

defined as the core point γα,β for those α,β that minimize the cost function; its direction

is given by the model’s rotation Arg(α).

In order to minimize the cost function (2) over α and β , a two-step approach is performed.

In an initial search step, for all positions in a rectangular grid of width g and for α = 0,

the corresponding translation β is computed and the cost function κ(α,β ) is evaluated.

Starting with the value (α,β ) from the initial search resulting in the smallest κ(α,β ), a

steepest descent algorithm is performed in which the cost function is further minimized. In

the steepest descent, the rotation α and the translation β are refined alternatively, until the

value of κ(α,β ) converges to a (local) minimum. If the steepest descent does not result

in a reference point inside the fingerprint’s foreground, it is repeated starting with the next

best candidate from the initial search. The iteration continues until a reference point on the

fingerprint’s foreground is found or the steepest descent has failed nmax times.

7 Recall that when representing numbers in the complex plane, addition translates to vector addition and multi-

plication results in addition of the arguments (angles) and multiplication of the absolute values (lengths).
8 The distance ρ of the Gaussian function’s center from the core point results in a ring-like shape (with smooth

borders) of the weight function so that the region directly at the core point, where the orientation field compu-

tation is often unreliable, is less weighted.
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A visualization of the TARP model and its parameters can be found in [TMM15]. In

[TMM15], the parameters λ = 1.81,dcore = 160,ddelta = 22,R= 175,ρ = 45,σ = 12,g= 7

and nmax = 20 were chosen based on a training on the FVC2000 DB2b database compri-

sing 80 fingerprints.

3 Analysis of the Improvement Potential

We identified the following potential sources of inaccuracies of the TARP algorithm.

• Segmentation. The TARP algorithm performs segmentation by a combination of

Otsu thresholding [LO79] and Graham scan [Gr72]. This relatively simple approach

sometimes fails, e.g., when the imprints of the first and the second finger pad are not

clearly separated.

• Orientation field. The TARP algorithm computes orientation fields by local inten-

sity gradients without any post-processing. Therefore, errors in the orientation fields

may contribute considerably to the inaccuracies of the reference point detection.

• Model. As visible in Figure 1, the tented arch model fits well for most types of

fingerprints but not that good for arch-type fingerprints.

• Minimization. The steepest descent (gradient) method may yield merely a local

(but not global) minimum of the cost function.

In order to focus our effort to improve the TARP algorithm on those aspects that promise

the highest gain in accuracy, we analyzed the impact of each of these factors to the accu-

racy of the reference points. For that purpose, we manually marked ground truth data for

the segmentation and orientation fields of 273 optical sensor fingerprints of right index

fingers from the MCYT database [Or03] for which the TARP algorithm showed relatively

poor performance. Furthermore, we modified the TARP algorithm so that it can be fed with

externally generated segmentation maps and orientation fields. Then, we computed the re-

ference points for these fingerprints with and without the ground truth segmentation maps

and/or orientation fields and evaluated the accuracy of the alignments resulting from these

reference points, using the metric described in Section 5. In order to investigate the third

factor, we manually determined the type of all imprints of right index fingers of the MCYT

database and, for each type, evaluated the accuracy of the alignments resulting from the

reference points computed with the TARP algorithm. Furthermore, we modified the TARP

implementation so that the minimum of the cost function is determined by exhaustive se-

arch, and evaluated the accuracy in comparison to the original method (steepest descent).

The results in Figure 2 clearly show that the errors in the computation of orientation fields

has much more impact on the accuracy than incorrect segmentation, and that the TARP

algorithm performs much worse on arch-type fingerprints than on other types of finger-

prints. Compared to these factors, the minimization of the cost function showed slightly

less potential for improvement. Therefore, we decided to improve the TARP algorithm by

deploying a better orientation field computation method and by extending the tented arch

model to arch type fingerprints.



xTARP: Improving the Tented Arch Reference Point Detection Algorithm 75

Fig. 2: Evaluation of the dependence of the accuracy of the TARP algorithm on errors in segmenta-

tion and/or orientation field computation (left hand side) and on the type of fingerprint. The diagrams

show the ECDF of distance errors on two different sets of fingerprints from the MCYT database.

4 Improvements

4.1 Improved Orientation Field Computation

In order to improve the orientation field computation, we deployed the algorithm descri-

bed in [LP08], which applies a Markov Random Field to improve the initial orientation

field obtained by a gradient approach. The Markov Random Field is constructed from two

components: a component based on a global mixture model obtained from training on real

fingerprints and a component enforcing pairwise consistency of neighboring image blocks.

We used an implementation of this algorithm contained in the FingerJetFX open source

minutiae extractor9.

In [TMM15], the parameters of the TARP method were chosen based on a training on

the FVC2000 DB2b database comprising 80 fingerprints. Since this training set was quite

small and the improved orientation field computation may favor different parameters, we

conducted a new training on a large training set comprising 2736 fingerprints of 228 right

index fingers from the MCYT database [Or03]. Precisely, we deployed the TARP algo-

rithm in the Fuzzy Vault implementation of [Bu16] and evaluated the FNMR for a degree

k = 6 of the secret polynomials (which gives approximately 20 bits of security). We found

the highest accuracy for λ = 1.3,dcore = 340,ddelta = 32,R = 185,ρ = 28,σ = 6. The best

trade-off between accuracy and processing time was found for g = 7 and nmax = 5. Note

that the parameters dcore,ddelta,R,ρ,σ ,g apply for 500 dpi images and need to be linearly

scaled for other resolutions.

9 https://github.com/FingerJetFXOSE/FingerJetFXOSE
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4.2 Developing a Modified Algorithm for Arches (ARP)

Furthermore, we designed and implemented an Arch Reference Point (ARP) detection

algorithm based on the quadratic differential model ψ(z) for arch-type fingerprints speci-

fied in (1). Analogously to the TARP algorithm, it tries to find a translation β ∈ C and a

rotation α ∈ C (with |α| = 1) so that the correspondingly transformed model ψα,β (z) =

α−2ψ(αz+β ), fits best with the fingerprint’s actual orientation field in the area around a

reference point. In the original model ψ(z), this reference point is set to (0,d), and after

transformation by α,β its position is γα,β = α−1(i · d − β ). The fit of the fingerprint’s

orientation field {(z j,v j)} with the model ψα,β (z) is evaluated using a cost function

κ(α,β ) = ∑
j

wα,β (z j)

∣∣∣∣ ψα,β (z j)

|ψα,β (z j)|
− v j

∣∣∣∣ , (3)

where wα,β (z)= exp

(
−

(|z−γα,β |)
2

2σ2

)
is a weight function resulting from a two-dimensional

Gaussian function with deviation σ and center γα,β . 10 A visualization of both the ARP

model and the weight function is shown in Figure 3.

(a) (b)

Fig. 3: Visualization of the ARP model (a) and the weight function (b) and the corresponding para-

meters. The parameter λ is not visualized; it controls how stretched the ARP model is.

For the minimization of the cost function (3) over α and β , the same two-step method as

in the TARP algorithm, i.e. an initial search over a rectangular grid of width g followed by

a steepest descent (see Section 2), is applied, using the parameters m,r,αmax (width of the

grid, number of rotations and maximum rotation angle used in the initial search) and nmax

(maximum number of attempts for the steepest descent). After minimizing κ(α,β ) over

α,β , the algorithm outputs the reference point γα,β with orientation Arg(α).

Analogously to the training of the improved TARP method, we optimized the parameters

of the ARP algorithm by deploying it in the Fuzzy Vault implementation of [Bu16] and

10 The weight function wα,β has its maximum at the reference point, in contrast to the weight function wα,β used

in the TARP model, which has its maximum on a circle with radius ρ around the core point. (see Footnote 8)
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evaluating the false reject rate (FRR) at k = 6 for a training set of 393 arch-type finger-

prints (captured with an optical sensor) of 33 left and right index fingers from the MCYT

database [Or03]. The best recognition accuracy was achieved for λ = 1.5,d = 80,R =
20,σ = 27,g = 5,nmax = 5. Analogously to the parameters of the TARP method, the va-

lues of the parameters d,R,σ ,g apply for 500 dpi images and need to be linearly scaled

for other resolutions.

4.3 Implementing xTARP by Fusion of TARP and ARP

In order to combine TARP and ARP in an Extended Tented Arch Reference Point (xTARP)

method, we needed a rule to decide which of the two points to choose. We could have tried

to use a classifier to detect arch-type fingerprints, but as it turned out in our evaluation, the

ARP method works well not only on this fingerprint class. Since the minimized values κ
and κ of the cost functions (2) and (3) of the TARP and the ARP algorithm, respectively,

indicate how good the fingerprint’s orientation field fits with the respective QD model, we

decided to implement a classifier using the values κ and κ as input. For a training set of

4920 fingerprints of 410 left and right index fingers from the MCYT database [Or03], we

computed reference points with both algorithms and used these for pre-alignment in the

Fuzzy Vault implementation of [Bu16]. Then, we selected as training classes two subsets

of fingerprints, for which one of the two methods (TARP or ARP, respectively) yields less

than 8 genuine points in the unlocking set but the other method results in at least 8 genuine

points.

Since a genuine comparison will already yield a poor result if one of the two reference

points is inaccurate, the larger one of the cost function values of the reference and the

query fingerprint should be more indicative for the genuine score than the lower one.

Therefore, as input data for the training we computed, for each genuine pair, the maxi-

mum κmax = max(κref,κque) of the TARP cost values of reference and query fingerprint

and, analogously, the maximum κmax = max(κ ref,κque) of both cost values of the ARP

algorithm. For the two classes and the input vector (κ
[i]
max,κ

[i]
max) we optimized a linear

discriminant function, starting with logistic regression and optimizing the coefficients by

evaluating the resulting FRR of the Fuzzy Vault with k = 6 for the complete training set.

We obtained the best results for the linear discriminant function y = 0.6 ·κ −κ +10, i.e.,

when selecting the ARP point if and only if κ > 0.6 ·κ + 10. This classification rule was

implemented into our xTARP algorithm. We also investigated classifiers based on support

vector machines with various kernels but did not obtain significantly better results.

5 Experiments

We performed experiments to evaluate the accuracy of the xTARP algorithm and to com-

pare it with the original TARP algorithm from [TMM15] and other methods for reference

point detection.
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Since the ARP and TARP reference points cannot be visually identified by humans, like

core or delta points, we cannot measure the accuracy of the reference points with respect

to ground-truth data. In order to overcome this problem and to allow a fair comparison

with other publications, we compute, for each finger, an approximation of the “true refe-

rence point” by means of the median of the computed reference points. Precisely, for each

fingerprint, we manually determined the affine transformations (rotation and translation)

by which it is aligned with the other fingerprints of the same finger.11 Using these trans-

formations, we projected the reference points of the other fingerprints into this fingerprint.

From all projected reference points (with accordingly rotated orientations) and the refe-

rence point of this finger, we computed the median of the positions and orientations as

approximated “true reference point”.

For a reference point (x,y,θ), we measured the distance error DE as the Euclidean dis-

tance to the approximated “true reference point” (x̄, ȳ, θ̄) of the fingerprint, i.e. as DE =√
(x− x̄)2 +(y− ȳ)2, and the rotation error RE as the absolute value of the smaller an-

gle (in degrees) between their directions, i.e. as RE = min(δθ ,360−δθ ), where δθ is the

representative of (θ − θ̄) mod 360 in the interval [0,360).

5.1 Evaluation of Optimizations

First, we evaluated the effectiveness of our improvements by comparing the accuracy of

our xTARP algorithm and the original TARP method from [TMM15]. For this evaluation,

we used as a test set the optical sensor fingerprints of right index fingers of the first 100

subjects in the MCYT database [Or03]. This test set is disjoint to the training sets used for

optimization of parameters and fusion (Section 4), and it comprises 1200 fingerprints (12

per finger) of relatively high quality taken with the sensor UareU from Digital Persona at

500 dpi and stored in uncompressed image files of 256×400 pixels. The results show that

both distance errors and rotation errors are considerably reduced (Figure 4).

(a) (b)

Fig. 4: ECDF of distance errors (a) and rotation errors (b) of the original TARP method (black) and

our xTARP algorithm (red).

11 In cases where non-linear distortions did not allow an accurate global alignment, we chose a transformation

that aligns the central region of the finger pad where the reference points are expected to be located.
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Whereas the original TARP algorithm fails (i.e., does not find a reference point) for 0.5%

of the images, the xTARP algorithm processes all of them successfully. The optimized

TARP algorithm (as described in Section 2) already achieves error rates close to that of the

xTARP method, but it fails for 0.67% of the images.

5.2 Comparison with Other Approaches

In order to compare our xTARP algorithm with other methods for reference point de-

tection, we evaluated it on FVC2000 DB2a as well. This data base comprises 800 finger-

prints from right index fingers of 100 subjects (8 per finger), acquired by a low cost capa-

citive sensor at 500 dpi and stored in image files with loss-less compression and 256×364

pixels.

Table 1 compares the accuracy of the xTARP method12 with other state-of-the-art methods

for reference point detection. Note, that the methods of [LJK05, Ig06, AB08, GZY16] do

not determine any orientation of the reference point (indicated by “n.a.”).

Method DE < 5 DE < 10 DE < 20 RE < 5 RE < 11.25 RE < 22.5 Fail

xTARP 612 734 763 610 752 790 5

[GZY16] 569 719 784 n.a. n.a. n.a. 0

[BA09] n.a. 668 769 n.a. 521 657 0

[AB08] 285 640 763 n.a. n.a. n.a. 1

[Ig06] n.a. 712 753 n.a. n.a. n.a. 0

[LZH06] n.a. 654 745 n.a. 690 737 9

[LJK05] n.a. 659 749 n.a. n.a. n.a. 13

Tab. 1: Cumulative statistics of the distance errors (DE), rotation errors (RE), and number of failures

(no reference point is output) of our xTARP method and other reference point detection methods.

An entry “n.a.” means that the corresponding value is not provided in the referenced publications or

(in the case of RE) that the method does not compute any orientation of the reference point.

As shown in Table 1, the xTARP method outperforms all other methods with respect to

distance errors for up to 10 pixels. Furthermore, xTARP is by far the most accurate method

with respect to rotation errors.

On the other hand, our improvements of the TARP algorithm are much less effective for

the FVC2000 DB2a database as they are for the MCYT database, i.e., the original TARP

method already exhibits a similar accuracy as the xTARP method. The reasons of this

finding are yet to be analyzed.

5.3 Application in a Fuzzy Vault for Fingerprints

In order to prove the utility of the xTARP method, we applied it for the pre-alignment

of the fingerprints in the Fuzzy Vault construction of [Bu16]. Precisely, we deployed the

12 Based on a training on the FVC 2000 DB2a, we slightly adapted the linear discriminant function for the fusion

(see Section 4.3).
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variant which uses minutiae’s positions and orientations but not their type and applied the

same parameters as in [Bu16] for the degree k of the (monic) secret polynomial from 5

to 8. Our evaluation shows that the false match rate (FMR) does not depend on the pre-

alignment method, which is quite plausible because the concept of an exact alignment

does not make sense for impostor verifications. Therefore, the estimates from [Bu16] for

the security level and FMR also apply for an alignment with our improved methods.

Due to the fusion of two different models (ARP and TARP) by the xTARP method, it

can happen that a different model is used for the reference fingerprint as for the query

fingerprint. Such an inconsistent application of the models almost always results in a non-

match, because the location of TARP and ARP points are typically different. To overcome

this problem, we store a status bit with the reference template, indicating which of the two

methods were used during enrolment, and use the same method for verification. By this ap-

proach, we operate the xTARP method in a stateful mode, in contrast to the stateless mode,

where the decision between ARP and TARP is taken for each fingerprint independently.

Another advantage of the stateful mode is that only one reference point is computed for the

query fingerprint and, thus, the processing time of the verification is reduced. For the sta-

teful mode, we found a slightly different linear discriminant function y = 0.8 ·κ −κ −28

to be optimal for fusion (see Section 4.3).

For the various stages of development of the xTARP method, we evaluated the FNMR
13 on

the same test set as in [Bu16] (right index fingers of the first 100 subjects of the MCYT data

base). The results in Table 2 show that the FNMR is already greatly reduced for the TARP

method with the improved orientation field estimation, and even further by the xTARP

method. For the xTARP method, the storage of a status bit along the template indicating

whether a TARP or an ARP reference point has been used for enrolment (stateful mode)

further improves the error rates.

Method k = 5 k = 6 k = 7 k = 8

Original TARP 6.0% 7.4% 9.6% 13.1%

Improved TARP 1.6% 2.8% 4.8% 7.6%

FNMR ARP 2.0% 3.5% 5.9% 9.6%

xTARP (stateless) 0.5% 1.7% 3.8% 6.6%

xTARP (stateful) 0.5% 1.5% 3.4% 6.3%

FMR all 1.9% 0.3% 0.04% 0%

Security (bits) all 16.5 20 24 27

Tab. 2: Error rates of the Fuzzy Vault construction of [Bu16] when using different variants of the

xTARP and TARP method for pre-alignment.

The FNMR can be even further reduced to 0.2%, 0.8%, 2.2% and 4.6%, respectively, if

during verification, in case of a non-match, a second attempt is conducted with a reference

point computed with the orientation field estimation from the original TARP algorithm.

13 In this Fuzzy Vault construction, failures of the reference point detection also contribute to the FNMR.
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6 Conclusions

We have greatly improved the accuracy of the TARP reference point detection method by

deploying a better algorithm for orientation field estimation and by complementing the

tented arch model with a model for plain arches. When using the resulting xTARP method

in a biometric cryptosystem, the FNMR for a security level of 20 bits drops from 7% to

1.7%.

Nevertheless, we still see significant potential for further improvements: the xTARP algo-

rithm tends to be inaccurate for fingerprints where the true reference point is close to the

edge of the foreground, which is often the case for the FVC2000 DB2a data base. In these

regions, the cost function is partially evaluated on the background, where the orientations

are constant or randomly chosen (we tried both options without obtaining significantly dif-

ferent results), which increases the cost value and may imply that the minimum is found

in a different region. Therefore, we suspect that a better performance can be achieved by

limiting the cost function to the foreground. However, for the deepest descent method to

work, the cost function has to be smooth.

Furthermore, due to the combination of two different fingerprint models, the computational

effort is quite large and should be improved. Currently, the xTARP algorithm takes more

than 1.5 seconds in stateless mode and 0.7 seconds in stateful mode. Since the algorithm

has not been optimized yet with respect to computational complexity, we believe that there

is great potential to tab. For instance, the computation of the cost function is based on

convolution and, thus, could be considerably sped up using Fast Fourier Transformation.
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Fingerprint Template Ageing vs. Template Changes

Revisited

Simon Kirchgasser , Andreas Uhl1 2

Abstract: This study investigates the impact of “ghost” fingerprint and minutiae information in 4
year time-span separated fingerprint datasets. A high amount of ghost fingerprints within the data,
eventually a source for differences in acquisition conditions, might be responsible for recently re-
ported template ageing effects. According to that, various experiments have been performed to get
rid of this problematic image content and to compare the corresponding matching results to the
performance figures using the non altered imprints. The analysis with respect to detected increased
error rates exhibits very similar effects for all considered methods no matter if ghost fingerprint
information is removed or not. Thus, ghost fingerprints are not responsible for the observed effects.

Keywords: Fingerprint Recognition, Template Ageing, Quality, Ghost Fingerprints.

1 Introduction

The ISO/IEC biometric testing standard ISO/IEC 19795-1 reports that “Longer time inter-

vals generally make it more difficult to match samples to templates due to the phenomenon

known as template ageing” [Ma05]. The standard then defines “template-ageing” as an

“increase in error rates caused by time-related changes in the biometric pattern, its presen-

tation, and the sensor”. Apart from time-related changes various other reasons can cause

performance degradations in fingerprint (FP) recognition as well. The most prominent

ones are the usage of different sensors and sensor types, alternation in ambient conditions

(e.g. changes in the illumination set-up), differences in the acquisition protocol like vari-

ability in sensor plates’ cleaning, weather conditions, or various skin diseases as reported

in [Dr12].

Considering the high number of potential reasons for FP recognition accuracy degrada-

tions, we investigate a different (i.e. not time-related) explanation for the recently pos-

tulated template ageing effects on time separated data [KU17a, KU17b] in this work. In

[FCM17] it is confirmed that a) FP images can be designed which include the biometric

minutiae information of at least 2 fingers and b) that such imprints cause serious troubles

during the recognition process using state-of-the-art implementations. In Figure 2, display-

ing example imprints of the datasets used in [KU17a, KU17b], it is easy to find minutiae

information in the background, which clearly do not belong to the acquired finger in the

region of interest (ROI). This additional information, a so called “ghost” FP, can be found

very frequently in the considered datasets. It is rather obvious that a ghost FP would not

cause any decrease in the quality measure analysis as performed in [KU17a, KU17b].

Further, the presence of ghost FP was discussed as a complicating factor during FP seg-

mentation in [THG16, WTG07, Zh06] and most importantly, the detailed observation of

our considered imprints revealed that background information (i.e. ghost FP) is not always

present in each image of the used data. There are images which contain identical ghost

1 University of Salzburg, Jakob-Haringer-Str. 2, 5020 Salzburg, AUSTRIA, skirch@cosy.sbg.ac.at
2 University of Salzburg, Jakob-Haringer-Str. 2, 5020 Salzburg, AUSTRIA, uhl@cosy.sbg.ac.at
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FPs each time an imprint of the same finger is acquired. But, there are also FP images

available where no such information can be retrieved. This alteration in the presence of

ghost FPs actually leads to template changes, which could cause changing error rates and

thus could be made responsible for template ageing effects. However, it is not correct that

these changes can be classified as being time-related. A varying presence of ghost FPs is

caused by acquisition protocol variations, i.e. the definition when the sensor surface is be-

ing cleaned. Of course, acquisition protocols differing with respect to this property could

be used in two sessions without any time separation in-between. Thus, if our experiments

reveal that ghost FPs cause the observed effects, template ageing is not the reason but a

time-unrelated template change effect.

The rest of this paper is organised as follows: In Section 2, we review the current state of

the art on the relation of fingerprint recognition and ageing. The experimental setup, i.e.

the used FP recognition SDKs, datasets and a detailed discussion on the used experimental

methodology will be presented in Section 3. The subsequently performed experiments and

corresponding results are analysed in Section 4, before concluding this study in Section 5.

2 Fingerprint Recognition and Ageing

The biological reason for FP ageing is the loss of collagen [Mo07]. This structural pro-

tein ensures that the human skins’ fibrous tissue is resilient during time. Even though, it

is possible to measure skin ageing. The most prominent methods are the usage of high-

frequency skin ultrasonography, prophilometry and skin micro-relief descriptors [BG04].

Furthermore it is even possible to describe skin topography changes from capacity images

by analysing the 3D profile. This analysis reveals the introduction of wrinkles and a cell

enlargement caused by the biological ageing process [GJ98]. Uchida et al. [Uc96] quan-

tify skin ageing by analysing the 3D profile of subjects aged 20-60 using 2D DFT features

(assessing skin ridges) resulting in less high frequency components for elder people - but

also wide scattering. But there are also more recent studies which focus on the ageing

behaviour of latent FP, being of high importance in crime scene analysis, looking into bi-

ological aspects in more detail. First the FP information of the various test subjects was

deposited at e.g. glass or synthetic material. The particular biometric traits were acquired

after some period exhibiting different time-spans. In [PPP10] the relationship of these la-

tent FPs, their corresponding time-spans and biological degradations during the specified

time period was investigated. Apart from classical examination methods like morphologi-

cal and structural approaches, biochemical and DNA based tests have been used as well to

measure FP degradations. The investigations revealed that for example the blood groups

do have an influence on the degradation. It seems that people exhibiting blood group B

are slightly more resistant to biochemical ageing influences. Of course those results are

more important for forensic datasets, but small biochemical variations could also lead to

degradations which can influence the recognition process. The authors of this particular

study used 800 FP images for the performed experiments. Further specifications on the

used analysis tools, e.g. microscope and DNA extraction process, may be looked up in

[PPP10].

Another biological aspect was investigated in [Me13], using chromatic white light sen-

sors to study latent long-term FP ageing. The authors state that an image contrast loss can
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be observed over time, considering imprints of 40 volunteers. The corresponding images

have been acquired at three different locations independently and were compared during

the experiments based on four different research goals. The results revealed a high number

of variance among the different time series of user’s FP images. The authors concluded

that the reason for this observation might be a different biochemical composition of the

imprints.

2.1 Fingerprint Age Group Analysis

Focusing on the aspect of human ageing it is natural that studies have been performed,

which investigate the influence of different subject age groups in FP datasets on recogni-

tion performance. In [SE05] it was shown that older age groups exhibit a worse perfor-

mance in terms of FP quality and recognition performance. This conclusion was achieved

by analysing the relationship between FP’s moisture content and the volunteer’s age using

a one-way analysis of variance (ANOVA) and the Pearson correlation coefficient. The cor-

responding database contains images of 79 people (age group from 18-25) and imprints

of 60 people (age group 62+). In total 948 images of age group 18-25 and 720 of the

second age group are included in this dataset. Of each volunteer, 3 images of each index

finger (left and right hand) have been acquired. This database was reused in subsequent

research [ME06], where the authors focused on minutiae point based analysis. This re-

sulted in the conclusion that elderly people exhibit a higher number of minutiae points,

but the biometric quality (using NIST Fingerprint Image Quality algorithm3) displayed a

degradation compared to the younger age group. Finally in [Mo07] this investigation was

extended once more. The dataset was expanded by two additional age groups (26-39 and

40-64). The authors could confirm the results stated by [SE05] that older age groups are

displaying a worse performance in terms of FP quality and recognition.

In [UW09] a similar study was performed, but the core aspect of this research was the con-

sideration of a different dataset exhibiting very young people as well. Not only age groups

of volunteers older than 19 years have been taken into account, but also the age group from

3 to 18 years. According to this aspect two different sub-datasets have been acquired: One

containing the adult biometric templates (172 in total) and one displaying the young vol-

unteers’ images (498 in total). Further specific information on the volunteers can be looked

up in [UW09]. Additionally it must be mentioned that the acquisition was done by the use

of a optical scanning device (a HP 3500c flatbed scanner) with 500 dpi resolution, captur-

ing the full hand. Data analysis was done by the usage of 5 different (hand-)geometric and

texture-based methodologies, including FP minutiae, eigenfingers, geometric and shape

based approaches. The interested reader is referred to [RF05] (eigenfingers) and [JRP99]

(geometric methods) for more detailed information on those techniques.

The final results concerning the recognition performance are based on three different age

groups. These groups have been selected as subsets of the previously introduced adult and

children datasets: The first group is called young group and contains all images of children

who are between 3 and 10 years old, the second one (youth group) includes the imprints

of all volunteers whose age is between 11 and 18 years, and finally the adult group (19+

years). In most performed experiments it can be observed that kids’ FP performance suf-

fers compared to adults recognition performance [UW09].

3 https://www.nist.gov/programs-projects/biometric-quality-homepage
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To cope with different age groups and effects which are introduced by the usage of data ex-

hibiting such variability some studies have been performed as well. In [Go11] an isotropic

rescaling method was used on children data to improve the recognition performance from

11−14% to 5−6% equal error rate (EER). The experiments were done on imprints, whose

feature extraction and matching procedure was improved by analysing the FP’s shape and

the application of some rescaling approach.

2.2 Fingerprint Ageing Analysis (FP Template Ageing)

Ageing effects in human FP recognition been a topic in research since Galton’s first study

on the permanence of FPs [Ga92]. In all papers discussed subsequently, increased error

rates have been reported for time-separated data. Time intervals of 10 to 30 years have

been studied in [ABI05] using a dataset provided by the German federal criminal police

office (BKA, i.e. forensic FPs). The authors reported a lower recognition accuracy when

the time interval is increased. Further, [RJK07] performed experiments on the so called

Korea Fingerprint Recognition Interoperability Alliance (KFRIA) database acquired with

three different commercial sensors (2 optical and 1 capacitive sensor type). This dataset

exhibits a time span of 1 year between acquisition sessions, which is quite a short time

gap, but despite this fact the authors have been able to report an EER increase using three

different sensors. The EER of the second acquisition’s data was about two times higher

than the EER of the corresponding imprint of the first acquisition.

Similar to these results of [ABI05, RJK07], a degradation of different FP matching per-

formance figures (e.g. equal error rate (EER)) was observed on data acquired by a flatbed

scanner [UW13], where in particular a decrease of genuine scores was detected for a time

separation of 5 years (the genuine scores revealed a decrease of roughly 33% and a 2-4

times lowered EER performance is found). These observations were confirmed on a further

massive forensic FP dataset including time-spans up to 7 years in [YJ15] as well. Similar

to the detected genuine score degradation on 2D FP data discussed so far, it was possible to

observe a decrease in matching and recognition performance using some 3D finger range

data which were acquired by covering only a time span of 16 weeks between sessions

[WF05]. In [KU16], the presence of similar effects are confirmed on time-separated FP

data acquired by off-the-shelf commercial FP scanners by analysing user-group specific

effects which are known as the “Doddington Zoo” concept [Do98]. Further investigations

on the same data [KU17a, KU17b] revealed very similar effects with respect to decreased

recognition performance on time separated data as reported by [UW13, YJ15].

However, most studies done on time-separated FP data have not performed experiments

to reveal the reasons for decreased recognition accuracy in detail. In fact, it does not suf-

fice to describe increased error rates on time separated data to have observed a template

ageing effect. To be compliant with the definition, time-related changes have to introduce

the observed effects, while the sole employment of time-separated data does not auto-

matically imply template ageing being present in case of higher errors (as these might be

caused by non-time-related changes). Only few of the studies on time-separated FP data

[KU17a, KU17b, YJ15] try to explain why the observed effects occur. The very extensive

covariate-fit analysis model in [YJ15] revealed that differences in image quality explain

the observed increased errors better as time-related changes. In [KU17a, KU17b] the anal-

ysis did not indicate that FP biometric quality decrease can be made responsible for the



claimed template ageing effects. However, these studies unfortunately did not employ the

identical experimental and statistical set-up and thus do not even fully clarify the contri-

bution of FP quality to the observed effects, as the results contradict each other.

A potential generic approach to cope with FP template ageing effects is the usage of tem-

plate update techniques, which have been investigated for example by [KB09]. The authors

of this particular study used an adaptive feature set introduced by an algorithm allowing

to reduce intra-personal variabilities over time. Similar to this approach there is more re-

cent work focusing on self-updating algorithms [Ma12]. The mentioned update methods

provide a path-based clustering setup to enhance the initial template selection before start-

ing the update process on the one hand. On the other hand an improved adaption of the

recognition system’s threshold is ensured as well in case high environmental variability is

measured.

3 Experimental Setup

The experiments have been conducted using two minutiae based FP recognition SDKs:

the NIST Biometric Image Software (NBIS) and the Neurotechnology VeriFinger SDK

(NEURO). The first one (release 5.0.0) has been implemented by the National Institute

of Standards and Technology (NIST)4. The second recognition approach (release 9.0) was

developed by the Lithuanian company Neurotechnology5.

According to the study purpose we are using datasets already analysed earlier [Ki16,

KU17a, KU17b]. The data has been acquired at the Center for Biometrics and Security

Research (CBSR) at the Chinese Academy of Sciences, Institute of Automation (CASIA)

in 2009 and 2013. The imprints from 2009 are a subset of the publicly available CASIA

fingerprint database V56. Using an U.are.U 4000 scanner (produced by DigitalPersona),

images of both forefingers and second fingers of 49 volunteers are stored in dataset “CA-

SIA 2009”, which will be denote by A. In total 980 fingerprint images are available, 5 im-

prints of each finger. The same acquisition process was repeated four years later to create

the “CASIA 2013” database, which includes 5 independent subsets in total. Each subset

contains again 980 images of the same volunteers. The main difference among the sub-

sets is the usage of various sensors, among them optical and capacitive fingerprint sensors.

They are denoted as B1-B5. Apart from the “single” datasets containing only imprints of

2009 or 2013 independently, it was necessary to combine the imprints of both years to get

so called “crossed”, i.e. time-separated, datasets C1-C5. In each of these crossed sets the

imprints from 2009 and one of the 2013 “single” datasets are combined (e.g. C1 contains

the imprints of A and B1). Further information on the concrete specifications can be found

in [Ki16, KU17a, KU17b]. For all recognition experiments and datasets the same perfor-

mance figures as in [KU17a] have been derived to evaluate the recognition results. For

the evaluation process of the recognition accuracy, the Fingerprint Verification Contests’

(FVC) procedure was performed, see [Ma09].

In the following, we describe the different techniques applied to separate (minutiae) data

resulting from the currently acquired FP and the already present ghost FP.

4 http://www.nist.gov/itl/iad/ig/nbis.cfm
5 http://www.neurotechnology.com/verifinger.html
6 http://biometrics.idealtest.org/dbDetailForUser.do?id=7
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Masking the Background (MBw): This first method is used to separate the background

and region of interest (ROI) of the FP images from each other by applying FP segmen-

tation. After sharpening the edge information we used a Sobel operator to retrieve the

edges of the ROI. We also tested other edge detection algorithms (e.g. Canny Edge de-

tector, Prewitt operator and Harris corner points as used in [WTG07]), but for the given

data, the Sobel approach worked best. Subsequently performing image dilation and ero-

sion calculations we obtained the final masks. In Figures 1a) and b) an imprint mask and

the combination of mask and image is displayed.

Smooth Masking of the Background (SMB): This approach was designed to enhance

the background masking method (MBw). According to the fact that the edges of the

masks could introduce new positions where minutiae information may be detected falsely,

a Gaussian smoothing operation using σ = 2 as parameter was applied. In Figures 1c) and

d) the example image of user 7 can be seen.

(a) Imprint mask.
(b) Mask and im-

age combined.

(c) Imprint smooth

mask.

(d) Smooth mask

and image com-

bined.

Fig. 1: Background masked fingerprint images of user 7, dataset B4.

Splitting the ROI and Background minutiae (ROIm): This method was designed to

perform a reference analysis for the background masking method in order to mitigate for

newly created minutiae caused by the masking operation. For that reason we created the

minutiae files, then we used the background masks to separate the minutiae which have

been detected in the background and in the ROI. The selected minutiae were stored in

two single files and we repeated the matching process using NBIS on the background and

the ROI minutiae independently. Results are provided for the ROI minutiae only, as back-

ground minutiae do not lead to sensible recognition results.

Removing “stable” ROI and Background minutiae (wS and ROIwS): The previously

introduced approaches are focusing on removing artifacts caused by ghost FPs by focusing

on the ROI only - spatial background information is removed. However, ghost FP might

also affect the ROI of course. To discriminate minutiae resulting from ghost FP from minu-

tiae of the current imprint, we introduce the concept of “stable minutiae”. While for taking

different imprints of the same finger the finger is lifted off the sensor and re-allocated each

time the data is acquired (causing the FP minutiae to manifest at different spatial loca-

tions), this is not the case for minutiae caused by ghost FPs, as these are detectable at the

same x- and y- axis position (as long as the sensor is not cleaned minutiae information

of some previous acquisition of the same finger remained on the sensor plate). According



to a visual analysis it could be confirmed that there is FP information of the same fin-

ger from a previous acquisition present in most of the cases (see Figure 2 as example).

In the presented images minutiae in the ROI are coloured red and blue if they belong to

the background. If a minutia is marked as stable it is coloured green (ROI) or magenta

(background).

Fig. 2: Images with “stable” minutiae (first two images from the left) and ghost fingerprints.

FP recognition, using NBIS minutiae files without stable features (these are explicitly re-

moved), was performed in two different ways. For the first case, we removed the stable

minutiae information in the entire minutiae files. This led to results using all the minu-

tiae detectable in the whole images, except the removed stable ones. We abbreviated this

method with “wS” as acronym for “withoutStable”. In the second approach we only fo-

cused on the ROI area for recognition and removed the stable minutiae there. The corre-

sponding abbreviation is “ROIwS”.

In Table 1 the number of images where stable minutiae information can be detected is

presented in column all images (together with the relative amount of images in percent).

In columns all minutiae, ROIm and ROIwS the average number of detected minutiae is

displayed as well as the standard deviation concerning the minutiae appearance in the se-

lected methods. In column ROIm the results considering only minutiae within the ROI

exhibit a clear difference compared to using the whole imprints. According to the fact that

ghost FPs are present in nearly all images of the datasets it is understandable why the mean

values in ROIm are lower as in the all minutiae case. In terms of the standard deviation

only minor fluctuations can be observed. The same minor variations can be detected in

ROIwS. It seems that stable features are rarely in the imprints’ ROI, which could be a dis-

proof of the assumption that stable minutiae are responsible for effects exhibiting higher

errors. Nevertheless, we considered this set-up in the recognition process as well because

we wanted to prove/disprove the statement entirely.

Tab. 1: Number of images with “stable” minutiae and minutiae counts of all detectable minutiae.

dataset all images
all minutiae ROIm ROIwS

µ σ µ σ µ σ

A 504 (51.43%) 59.98 15.56 46.61 13.21 46.31 13.15

B1 180 (18.36%) 56.05 19.62 52.86 18.43 52.02 18.48

B2 364 (37.14%) 59.42 18.90 47.14 16.14 46.72 16.06

B3 500 (51.02%) 69.17 19.28 52.43 17.16 52.02 17.11

B4 416 (42.44%) 69.56 21.89 56.31 20.27 55.82 20.19

B5 246 (25.10%) 64.57 25.17 59.78 25.18 59.04 25.16
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4 Experimental Evaluation

The most important results (the EER values for the different experimental set-ups) are pre-

sented in Table 2. In the first two columns the reference results, which have been calculated

by analogy to [KU17a], are displayed. The differences in NEURO results as compared to

the original ones of [KU17a] are caused by the usage of different SDK releases. The fol-

lowing columns represent the various experimental outcomes we obtained in this study.

The best results are highlighted in bold numbers. The most obvious observation using

NBIS is that the method MBw leads to a clearly worse EER performance compared to the

reference values. This fact is not only valid for the single datasets, but also for the crossed

ones in all cases. Further, the removal of ghost FPs does enhance the performance if it is

done in a smooth way using some Gaussian filtering (SMB) because comparable measures

can be reported for that case independently from NBIS and NEURO. Additionally, it is

observable that the removal of stable features as it is done in wS and ROIwS experiments

hardly influences the performance. According to that it can be concluded that the experi-

ments we performed in removing ghost FPs did not have any impact on the higher error

rates for time separated data in case of the EER. This performance figure is much higher

for the time-separated datasets once more. But, the de-masking of ghost FPs does have an

impact on the EER if it is done in a very rough way because new minutiae are introduced

falsely (see MBw vs. SMB results). We also performed FP recognition using only the

background information for all the described methods, but it was not possible to get EER

values below (49%). Apart from that, it is interesting to observe that the usage of NEURO

on dataset C1 indicates extraordinary cross-sensor effects, which have not been reported

in [KU17a]. This must be caused by the different release we used. In the following we

Tab. 2: EER results of all datasets using NBIS and NEURO.

dataset
entire images MBw SMB ROIm wS ROIwS

NBIS NEURO NBIS NEURO NBIS NEURO NBIS NBIS NBIS

single - all matching scores

A 7.42 1.58 9.94 2.42 7.47 1.59 7.63 7.45 7.67

B1 8.95 2.77 10.98 2.84 9.71 2.58 8.98 8.93 9.09

B2 8.17 0.74 9.07 0.91 7.78 0.66 7.64 8.17 8.50

B3 9.07 3.06 11.68 3.34 8.99 3.03 9.40 9.24 9.35

B4 5.96 0.99 6.82 1.01 6.34 1.04 5.70 6.18 5.81

B5 7.30 1.29 9.65 1.61 7.82 1.42 7.59 8.23 7.53

crossed - all matching scores

C1 12.63 21.09 15.56 21.61 14.09 21.21 13.15 14.01 13.15

C2 14.76 4.55 17.79 5.02 14.99 4.42 14.43 14.85 14.46

C3 14.37 4.61 17.24 4.63 14.42 4.43 13.77 14.43 13.74

C4 13.18 3.83 15.66 4.10 13.35 3.93 12.94 13.26 12.97

C5 13.46 4.61 16.66 4.78 13.48 4.53 12.86 13.51 12.86

are going to discuss the other performance figures: Average Genuine Scores (AGS), Aver-

age Impostor Scores (AIS), the lowest FRR for FAR less or equal to 0.1% (FAR100), and

Zero False Acceptance Rate (ZeroFAR). The results can be looked up in Figure 3. At first

we want to discuss the most important observation concerning a possible template ageing

effect based on the AGS values: The decrease in the genuine scores is detectable for all

performed NBIS and NEURO experiments independently. This is observable in Figures



3a) and b). There are fluctuations depending on the used dataset and analysis method, but

the overall trend is similar. It is confirmed that NEURO exhibits some cross-sensor effects

in dataset C1 because comparing images of the same finger involving the time-span leads

to much lower genuine scores as can be seen by matching images of the same year. Ac-

cording to that the AGS for C1 is much lower compared to all the other datasets. For the

average impostor scores (AIS) (see Figures 3c) and d)) a very similar stable behaviour as

detected in [KU17a] can be described for the NBIS system. In case of NEURO there are

some dataset dependent fluctuations which are based on the used datasets. In general it

is interesting to observe that the crossed datasets’ AIS is lower as in the single datasets

from 2013. The experiments’ FAR100 can be looked up in Figures 3e) and f). For both

recognition methods it can be reported that the FAR100 is higher in all crossed datasets.

Using NBIS the MB’s performance figure is always worse compared to the others and

some minor fluctuations can be detected for the other analysis methods. The high amount

of variation is not describable in the NEURO case. Finally, we are having a look at the

ZeroFAR values which are displayed in Figures 3g) and h). In general, the ZeroFAR for

the crossed cases is always higher as for the single datasets. Nevertheless it must be men-

tioned that especially the results of B3-B5 and C3-C5 are much higher compared to the

remaining values of the other datasets.

5 Conclusion

Based on the fact that in the given data a high number of ghost FPs (and thus stable minu-

tiae) can be reported, it was a likely assumption that these might be responsible for the

EER increase and average genuine score decrease in FP images exhibiting a time-span

of 4 years. According to the knowledge that ghost FPs cause problems in FP segmen-

tation (see [THG16, WTG07, Zh06]) and that double biometric identities influence the

recognition process (see [FCM17]) the erroneous ghost FP information was removed us-

ing various methods. However, the same tendencies with respect to higher error rates, in

particular increased EER and FRR caused by decreased genuine matching scores can be

detected also with removed ghost FPs in our time-separated data. This leads to the disprove

of the assumption that the observed effects are caused by ghost FP and corresponding sta-

ble minutiae information. This leads to the final statement that something different must

cause the observed effects. So far it is not even clear, if decreased recognition accuracy

as observed on the time separated data considered is caused by time-related or not time-

related changes (i.e. differentiating between template ageing or a simple template change

effect).
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Recognizing infants and toddlers over an

on-production fingerprint database
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Abstract: It is widely known that biometric systems based on adults fingerprints have reached an
outstanding performance when compared against other biometric traits. This explains their exten-
sive use by governmental agencies in charge of citizen identification. Nevertheless, the performance
is highly degraded when fingerprints of newborns or toddlers are used. In this work, we analyze
the performance of existing solutions (both at sensor and matching level) using 45000 infants fin-
gerprints taken from an on-production civilian database. We also propose a solution by zooming
the input fingerprints with an interpolation factor based on ridges distances. The developed solution
shows improvements in both fingerprint quality (NFIQ 2.0) as well as recognition performance.

Keywords: fingerprint, biometric, recognition, newborns, infants, toddlers, id, interpolation

1 Introduction

Fingerprints are commonly preferred over other biometric traits for their inherent fea-

tures, such as distinctiveness, permanence, and performance [RFJ08]. This explains its

extensive use by national IDs/passports issuance offices and borders control among oth-

ers. Fingerprint matching solutions are very mature and achieve a very good performance.

Nevertheless, most available systems and research focus on adult fingerprints. In recent

years, several works were conducted to analyze the suitability of using fingerprints in chil-

dren [Co13, Ja15, Ja16a, Ja16b]. To the best of our knowledge, the most extensive study

was presented by the Joint Research Center of the European Commission (UE) [Co13].

In this work, a database of fingerprints obtained from 2,611 children (in the 0-12 years

old range) with 500 d pi scanners were used. This data was acquired by the Portuguese

government passport issuance offices. The report concluded that it was difficult to identify

children with less than six years old. They also concluded that it is necessary to use higher

resolution scanners. Recently, a longitudinal study done in a population of 309 individuals

ranging from zero to five years old was presented [Ja16b]. It was reported for the first time,

the feasibility of using fingerprint to identify children at an early age: very good results

1 Instituto Ingenierı́a Eléctrica - Facultad de Ingenierı́a - UdelaR, vcamacho@fing.edu.uy
2 Instituto Ingenierı́a Eléctrica - Facultad de Ingenierı́a - UdelaR, guillermo.garella@fing.edu.uy
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were obtained in children older than six months using special scanners of 1270 d pi. Good

results were also obtained using standard adult fingerprint scanners of 500 dpi in children

of at least one year old.

In this work, we conduct an extensive analysis using a considerable size dataset obtained

from an on-production environment. The data was obtained from the Uruguayan National

Identification Agency (DNIC3) which is responsible for issuing Uruguayan passports and

ID cards. The main contributions of the present work are twofold. First, we continue the

analysis done in previous studies [Co13, Ja15, Ja16a, Ja16b] but with a greater number

of individuals. Secondly, we show the robustness of fingerprints to identify children on an

on-production civilian database, where fingerprints were acquired during the standard ID

card and Passport issuance processes.

The rest of the article is organized as follows. In Section 2 we describe the scenario in

which the data was obtained. Section 3 describes the protocol used to perform the analysis.

It includes a preprocessing proposal with a zoom stage, with a learned interpolation factor,

based on the estimation of the ridge distance for an age range. Section 4 describes the

experiment realized and results obtained. Finally, section 5 describes the conclusions and

future work.

2 Description of the Uruguayan scenario

Uruguay has a population of 3.42 millions people, with a born rate of 14.15% 4. The

agency in charge of national identity management is the National Civil Identification

Agency (DNIC) and is responsible of issuing ID cards and Passports. The identification

process is based on fingerprint comparison, which, as usual, is used in two different scenar-

ios: enrollment and renewal. Uruguay is a particular country regarding identification since

the enrollment is done at birth: by law, parents have 45 days to obtain the identity card

for the newborn. This is done since its creation in 1978. Due to the difficulty of matching

the fingerprints of newborns, this information is only stored but not used for identity ver-

ification or de-identification. When the child is 5 years old, a complete ten fingerprint is

obtained and these fingerprints are stored for this individual throughout his life. This pro-

cedure is in execution since 1978 which means that all the Uruguayans born before 1973,

are actually enrolled with their 5 year old fingers (nearly 2.4 millions). It is worth noting

that during the enrollment and the renewal process, an adult fingerprint may be compared

with a fingerprint corresponding to a 5 year old child and this is done systematically and

as part of the actual process. Until 2011, all the fingerprints were obtained using ink on

paper. As part of the enrollment process, these templates were scanned at 500 dpi, seg-

mented on each finger, and stored digitally to further visualization. It was not until 2010

that an AFIS system was installed on DNIC, which was filled with all these previously

scanned fingerprint image. From 2011 until now, the ten fingerprints were acquired using

fingerprint scanners. Given the fact that acquisition devices operate at one fixed resolution,

there are certain disadvantages while working with children, mostly because of the small

3 in Spanish: Dirección Nacional de Identificación Civil
4 https://en.wikipedia.org/wiki/Uruguay
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size fingerprint. Also, there are some problems with certain assumptions used by recog-

nition algorithms with respect to average ridge distances. Another obstacle with smaller

distances between fingerprint features is the decreased ability of algorithms to deal with

the non-similarities introduced by distortion effects and bad positioning of the finger at

capture.

3 Protocol Specification

Because of the national-wide characteristics of the biometric database, the number of in-

dividuals at our disposal is far more bigger than any other work done before.

3.1 Dataset

One of the criteria used to select the individuals and data for this study was obviously to

have at least two fingerprints for the same finger. The total size of the dataset is 45000 pairs

of fingerprints that were grouped by age as detailed on Table 1, where also the total number

of individuals on each group is described.5. The variability on the number of individuals

per group deserves an explanation. As explained before, it is mandatory for all children

born in Uruguay to obtain an identity after 45 days of born. For this reason we have more

than 13000 individuals on the group ranging from 0 to 1 month. In a typical scenario

(if the child was registered in time and the document was not lost or stolen), the child

has to renew the document at the age of 5. This is the reason we have more than 14000

individuals on the group between 5 and 6 years old. The other cases are exceptions on the

typical identity management, and correspond to late enrollments or lost/stolen documents

(it can also correspond to passport emission, which is also included in the same database).

For these reasons, we have different number of fingerprints captures for each group. In

this work, data is distributed according to the age at the time of the first capture. In table

1 we show the distribution of data and the number of fingerprints pairs for each set. All

fingerprints were acquired by a well known commercial scanner model at 500 dpi, used

by DNIC in all its offices (35 in total, distributed all along the country). Finally, and to

compare some of the results with public databases, we also present some results using the

adults NIST database MFCP2 [WF16].

3.2 Preprocessing method

One of the reasons why children identification is challenging is that most of the commer-

cial systems are implemented and configured to work with adult fingerprints. This was

already reported in [Ja16b] using NFIQ 2.0 as a quantitative measure of the quality of the

fingerprints. A similar result was obtained in this work, as can be seen in Table 2. In order

to use existing commercial AFIS systems, we need to preprocess the children fingerprints

5 Due to privacy regulations, DNIC data cannot be published.
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in such a way that the resulting image is well suited for these AFIS systems. This pre-

processing process consists of two steps: an interpolation (to resize children fingerprints

to an adult size) and segmentation (to reduce errors on minutiae extraction). Both steps are

explained in the next sections.

Interpolation: In [Ja15, Ja16b], a fixed interpolation value of 1.8 was used in all cases,

for fingerprints acquired at 500 dpi. In this work, we try to obtain a scale factor that de-

pends on the age, and apply this obtained scale factor to resize the image to adult size.

Even when we compare two children fingerprints, we rescale both of them to an adult size,

enabling the use of existing AFIS systems. To determine the scale factor for each age, we

follow [Kh11]: knowing the local ridge orientation, distance between ridges is measured

by projecting the gray value levels along an orthogonal direction to the local ridge orienta-

tion and finding the minimum values. For each one of the ages, the median of the distances

between ridges was selected, which was later compared with the distance between adult

ridges on a 500 dpi image (9 pixels). The relation is given by Equation 1.

foi = distance between ridges on adults/distance between ridges on age group(dci)(1)

Table 1 shows the result of the ridge distance analysis, divided by age group. As expected,

median value augment as age increase. Table 1 also includes the final interpolation values

for each age, which are the ones used to interpolate fingerprints in all the experiments done

in this work.

Age group

at first

capture

Total of

fingerprints

Average age

at first

capture

Average age

at second

capture

Interpolation

Factor

Distance

between

ridges

Newborns 13050 18 d 8 m 1.52 5.92

1-2 m 5395 1m 12 d 8 m 1.63 5.52

2-3 m 902 2m 12 d 8 m 1.65 5.43

3-4 m 349 3m 13d 8 m 1.58 5.68

5-6 m 195 5m 13d 10 m 1.60 5.62

6-12 m 627 8m 27d 1 y 2 m 1.54 5.86

1-2 y 988 1y 6m 2 y 2 m 1.49 6.06

2-3 y 1164 2y 6m 3 y 7 m 1.47 6.14

5-6 y 14836 5y 6m 7 y 2 m 1.32 6.80

6-7 y 2234 6y 6m 7 y 6 m 1.29 6.96

7-8 y 1397 7y 6m 8 y 8 m 1.26 7.13

8-9 y 1471 8y 8m 9 y 10 m 1.24 7.27

9-10 y 2787 9y 9m 10 y 7m 1.22 7.40

Tab. 1: Description of database, interpolation factor and distance between ridges for each

set.(d=days, m = months, y = years, newborns < 1 m)

Segmentation: In order to eliminate the background acquisition noise on paper captures,

fingerprints are segmented by looking for the first n aligned points whose values are

black enough, assuming that they belong to the fingerprint, and cropping the image to this

bounds. Values n and the threshold to assume that pixels are enough black were learned

from FVC 2004 [Fi04].
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4 Experiments and results

4.1 Performance Evaluation Metrics

In order to analyze the system performance, we use the the usual metrics: True acceptance

rate (TAR) which is the percentage of times that the system correctly verifies a true claim

of identity, and False Acceptance Rate (FAR), which is the probability that the system

incorrectly matches the input pattern to a non-matching template in the database. Receiver

Operating Characteristics (ROC) curve is plotted as TAR vs FAR at different thresholds

(from 0 to 1) to indicate the verification performance.

4.2 Quality vs accuracy

Performance of biometric systems depends to a great extent on the quality of data. There-

fore, quality indicators can be used as a way to compare the effectiveness of different

preprocessing methods. In this work we used NFIQ 2.0[De], which delivers a number

from 0 to 100 directly related with the performance prediction of the matcher evaluating a

single fingerprint. In table 2 NFIQ 2.0 data quality is shown.

Age

Group

Numbers of

fingerprints

Initial

Quality

Preprocessing

quality

Variance of

preprocessing

quality

Newborns 2264 1,68 2,62 4,37

1-2 m 2176 2,25 6,98 9,19

2-3 m 733 2,66 9,83 11,55

3-4 m 288 3,46 8,17 11,95

5-6 m 161 3,59 10,37 9,97

6-12 m 482 6,12 14,16 15,07

1-2 y 712 14,50 30,23 20,53

2-3 y 784 23,55 42,83 22,96

5-6 y 2963 36,03 48,56 25,48

Adults

(NIST MFCP 2)
1086 45,98 - -

Tab. 2: NFIQ 2.0 data quality

4.3 EXPERIMENTS

We start our set of experiments by analyzing interpolation. We compare a classic bi-cubic

interpolation with two other interpolation methods: Interpolation with Geometric Con-

tour Stencils [Ge11a] and Tensor-Driven Diffusion for Image Interpolation [Ge11b]. Fig-

ure 1(a) presents the results obtained on a one year old database with 720 fingerprints. In

all cases, we use the interpolation factor described in Table 1. We can see that there is

no significative difference between the different methods and in fact, bi-cubic obtains the

better results. For the rest of the experiment, we use bi-cubic as the interpolation method.
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In the next experiment, we analyze the results on a database of one and five years old

and compare them with the performance on an adult database (NIST MFCP2 database

[WF16]). Table 3, Figures 1(b) and 1(c) presents the results. In this case, each pair of fin-

gerprint is considered an identity (we present the results considering two fingerprints per

identity later). It is clear from the results that interpolation is mandatory to obtain good

results. What is more, applying the correct interpolation factor improves the results in the

case of five years, as we can see when we compare the results obtained using the interpo-

lation factor from Table 1 and the one obtained with an interpolation factor of 1.8. In the

case of one year, we obtain almost the same performance for both interpolation factors.

Since selected minutia extractor works with a default image size, using the proposed in-

teprolation factor we ensure looking for minutias over the whole fingerprint. In our final
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experiment, we compare the results obtained using the corresponding interpolation factor

obtained from Table 1 for different databases grouped by age. Figure 1(d) and Table 4

present the results. We also include the results obtained for an adult database. From the
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IF=1 IF proposed IF=1,8 Fusion IF proposed Fusion IF=1.8

TAR (%) five years 74,41 92,64 84,35 98.33 90.65

TAR (%) one year 18.12 61,88 62.34 79.28 81.42

TAR(%) Adults 98.39 - - - -

Tab. 3: Performance given by TAR for a fixed FAR in 0.1% for interpolation factor of 1.8 and the

proposed, with and without fusion for two fingers, (IF = interpolation factor)

results, we can see that from 5-6 years old (92,64%) are comparable to the ones obtained

for adults (98,39%) and even 1-2 years and 2-3 years present good results (61,88% and

78,37%). We recall that in all these experiments, we consider that each identity has only

one fingerprint. In order to compare our results with the one obtained in [Ja16b], we per-

form a last experiment where we consider two fingerprints for each individual (right thumb

and right index). In the five years old database, where we have 599 individuals, we obtain a

TAR of 98.33% at a fixed FAR in 0.1%. From a total of 111 subjects in one year database,

we obtain a TAR of 79.28% at a fixed FAR in 0.1%. In [Ja16b], authors reported a TAR of

100% for a fixed FAR in 0.1% for children from one to five years old. When we replicate

the experiment with our dataset (applying 1.8 factor), we obtain a TAR 90.65% for the five

years old and a TAR of 81.42% for one year old database, in both cases with a FAR of

0.1%. We believe that the main differences with the result reported in [Ja16b] is obviously

the source of the dataset. In our case, the data was obtained directly from the on-production

environment, without any participation on the way fingerprints were acquired. We consider

that the results obtained from the fusion experiment (which is in fact the usual scenario on

identification, where in general we have more than one fingerprint per individual) are very

illustrative and confirms that fingerprints can be used to identify children starting from one

year old. This claim is supported with the data used in this work, obtained directly from

an on-production system.

Age

Group
TAR (%) TAR (%) with preprocessing

Newborns NA 1,25

1-2 m NA 7,57

2-3 m NA 15,61

3-4 m NA 10,53

5-6 m NA 20,00

6-12 m 2,53 34,88

1-2 y 18,12 61,88

2-3 y 27,24 78,37

5-6 y (2000) 74,41 92,64

NIST MFCP 2 98,39 98,39

Tab. 4: Performance given by TAR for a fixed FAR in 0.1%

5 Conclusions and future work

In this work, we present an analysis of using fingerprints for children identification and

verification. We perform all the study on a production database, where fingerprints were
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acquired on usual ID card and Passport. The results show that fingerprints can be used

without any additional hardware starting from one year old. As we can see in Table 4,

performance improves in accordance with children’s growth. We also show that applying

the corresponding interpolation factor, we obtain similar or better results than using a fixed

interpolation size. We conclude that preprocessing fingerprint according to their age is a

necessary step that deserves more research.

In future works, we plan to determinate the system performance using the interpolation

factor corresponding to each fingerprint ridges distance more than to a range according to

age. We also want to acquire fingerprints with a scanner with a higher resolution in order

to analyze the feasibility of using fingerprints for children below one year old. Because

we have access to the full fingerprint database at DNIC, we are planning to repeat the

experiments with far more individuals including matching between children and adults.
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Benchmarking Fingerprint Minutiae Extractors

Tarang Chugh , Sunpreet S. Arora , Anil K. Jain , Nicholas G. Paulter Jr.1 2 1 3

Abstract: The performance of a fingerprint recognition system hinges on the errors introduced in
each of its modules: image acquisition, preprocessing, feature extraction, and matching. One of the
most critical and fundamental steps in fingerprint recognition is robust and accurate minutiae ex-
traction. Hence we conduct a repeatable and controlled evaluation of one open-source and three
commercial-off-the-shelf (COTS) minutiae extractors in terms of their performance in minutiae de-
tection and localization. We also evaluate their robustness against controlled levels of image degra-
dations introduced in the fingerprint images. Experiments were conducted on (i) a total of 3,458
fingerprint images from five public-domain databases, and (ii) 40,000 synthetically generated finger-
print images. The contributions of this study include: (i) a benchmark for minutiae extractors and
minutiae interoperability, and (ii) robustness of minutiae extractors against image degradations.

Keywords: fingerprint recognition, minutiae extraction, robustness to noise, interoperability

1 Introduction

A fingerprint recognition system typically comprises of four major modules: image acqui-

sition, preprocessing, feature extraction, and matching (See Fig. 1). The errors introduced

in each of these four modules, from image acquisition to matching cumulatively impact

the overall system recognition performance. For instance, the low fidelity4 of a fingerprint

signal acquired by a sensor can introduce errors in preprocessing, induce poor feature ex-

traction, and ultimately deteriorate the matching performance. Therefore, it is important to

perform a comprehensive evaluation of each module independently to improve the overall

performance of the fingerprint recognition system.

Fingerprint sensor certification standards (e.g. PIV-071006 [Ni06] and Appendix F [Ni05])

mandate independent evaluation of fingerprint sensors. Hence vendors are required to demon-

strate that their sensors can acquire a high-fidelity image with low-noise characteristics.

Existing studies have evaluated the performance of sensors in terms of their resilience

to external environmental factors (temperature and humidity), intrinsic subject-dependent

factors (skin humidity and pressure) [Ka03], operational quality [CFM08], their interop-

erability [Al08], and finger liveness detection [Gh13]. Arora et. al [Ar16] have designed

This research was supported by grant no. 60NANB11D155 from the NIST Measurement Science program.
1 Tarang Chugh and Anil K. Jain are affiliated with the Department of Computer Science and Engineering,

Michigan State University, East Lansing, MI, 48824. Email: {chughtar, jain}@cse.msu.edu
2 Sunpreet S. Arora is currently affiliated with the Emerging Technology, Risk and Authentication Products

Group, Visa Inc., Foster City, CA, 94404. Email: sunarora@visa.com. At the time this research was conducted,

Sunpreet was affiliated with the Dept. of Computer Science and Engineering, Michigan State University.
3 Nicholas G. Paulter Jr. is affiliated with the National Institute of Standards and Technology, 100 Bureau Dr.,

Gaithersburg, MD, 20899. Email: paulter@nist.gov
4 Fidelity refers to the degree of exactness with which friction ridge patterns on a finger are reproduced by the

sensor
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Figure 1: Framework of a typical fingerprint recognition system. While existing studies evaluate the

recognition system from an end-to-end perspective, we provide a benchmark for minutiae extraction

module. Errors introduced at different steps of the system, i.e. fingerprint acquisition (e1), preprocess-

ing (e2), minutiae extraction (e3), and matching (e4), cumulatively impact the overall performance.

and fabricated 3D fingerprint targets and whole hand targets for repeatable evaluation and

calibration of fingerprint sensors.

On the contrary, studies pertaining to fingerprint preprocessing, feature extraction, and

matching, evaluate these modules in entirety as a black-box with the goal to improve the

overall matching performance. National Institute of Standards and Technology (NIST) con-

ducts fingerprint vendor technology evaluations (FpVTE) to benchmark the capabilities

of fingerprint recognition systems in terms of identification accuracy and computational

requirements [Wi04, Wa14]. The 2014 FpVTE [Wa14] reports that the best performing

system achieved a FNIR of 1.9% for single index finger, and 0.09% using all ten-fingers,

at a FPIR of 0.1%. Fingerprint verification competitions5 (FVC 2000-2006) also evaluate

systems from an end-to-end perspective. Although these third-party evaluations are useful,

they do not evaluate individual modules. For instance, in the case of a false match or a

non-match, it is uncertain whether the error is caused due to poor image quality, minutiae

extraction errors, or inability of the matcher to handle distortion. An independent evalua-

tion of the individual modules will enable us to understand the error sources and design an

interoperable system.

It is generally known that minutiae extraction is critical to fingerprint recognition accu-

racy. Minutiae-based representation is the most widely used approach, essentially due to

its (i) interpretability, (ii) high matching performance, (iii) storage efficiency, (iv) appli-

cability to match fingerprints/latents in forensic casework, and (v) evidential value (i.e.

expert testimony based on mated minutiae is admissible in the courts of law) [JFN10]. The

FVC-onGoing [Do09], in addition to benchmarking performance at the system level, also

provides benchmarks for (i) fingerprint orientation extraction, and (ii) matching standard

minutiae-based templates [ISO/IEC 19794-2 (2005)]. However, accuracy and robustness

evaluation of minutiae extracted using different minutiae extractors are needed in order to

benchmark their performance and minutiae interoperability.

5 https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx
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Minutiae interoperability tests (e.g. MINEX III [Fl15]) evaluate the compliance between

minutiae-based template generators and matchers from different vendors. Kayaoglu et al.

[KTU13] compared the matching performance based on automatically extracted minutiae

and manually labelled minutiae. However, these tests did not evaluate the underlying fac-

tors limiting the minutiae interoperability, i.e. variations in the minutiae detection and lo-

calization ability. Moreover, the images input to minutiae extractors may contain distortion

and motion blur due to variance in pressure applied on the sensor platen, and may have

poor contrast due to dry/wet fingers (See Fig. 2). To address these challenges, this study

conducts:

• A repeatable and controlled evaluation of minutiae extraction in terms of their detec-

tion and localization performance, for one open-source and three commercial minu-

tiae extractors.

• A rigorous assessment of robustness of minutiae extractors in the presence of con-

trolled levels of noise and motion blur to understand their limitations.

(b) (c) (d) (e)(a)
Figure 2: Challenges in automated fingerprint processing. Five different impressions of the same fin-

ger (from FVC2004 DB1A). These illustrate (a) reference fingerprint, (b) large non-linear distortion

(compare the triangle in (b) to triangle in the reference fingerprint (a)), (c) smudged areas due to wet

fingerprint, (d) and (e) broken ridge structure due to dry and noisy fingerprints.

2 Evaluation Protocol

2.1 Databases

The fingerprint images used in this evaluation study are grouped into two sets.

• Dataset-A contains 3,458 real fingerprint images compiled from five public do-

main databases: FVC 2002 (DB1A and DB3A), FVC 2004 (DB1A and DB3A) and

NIST SD27 rolled prints database6. Each FVC database contains 800 fingerprint

images (100 unique subjects, 8 acquisitions/subject), with ground truth minutiae

marked by human subjects [KTU13]. NIST SD27 [NI] contains 258 rolled prints

with ground truth minutiae marked by at least two certified forensic examiners.

• Dataset-B contains 40,000 synthetic fingerprints (including 5,000 unique master-

prints, and 35,000 fingerprints degraded with controlled levels of noise and motion

blur) generated using Novetta’s biosynthetic software [No14]. It contains four levels

of noise (including anatomical deformations, dryness, ridge noise) and three levels

of motion blur.



108 Tarang Chugh, Sunpreet S. Arora, Anil K. Jain and Nicholas G. Paulter Jr.

FVC 2002 DB1A FVC 2002 DB3A FVC 2004 DB1A FVC 2004 DB3A NIST SD27
(Rolled Prints)

Synthetic Fingerprints
(Novetta Biosynthesis)

Figure 3: Examples of fingerprint images from the six databases used in this evaluation study.

Figure 3 presents example fingerprint images from each of these databases. The two sets

of fingerprint databases used in this study are summarized in Table 1. The average NIST

Fingerprint Image Quality 2.0 (NFIQ 2.0) [Na16a], which lies in the range [0,100] where

0 indicates the worst quality, and 100 refers to the best quality, is also presented for each

database.

Database (# Fingerprints,

# Subjects)

Ground Truth Image Capture Image Size

(h×w)

Avg. NFIQ2

value (s.d.)

Dataset-A

FVC2002 DB1A [Ma02] (800, 100)

Manually Marked

Optical sensor 374×388 64 (15)

FVC2002 DB3A [Ma02] (800, 100) Capacitive sensor 300×300 26 (13)

FVC2004 DB1A [Ma04] (800, 100) Optical sensor 480×640 59 (17)

FVC2004 DB3A [Ma04] (800, 100) Minutiae Thermal sweep sensor 480×300 47 (16)

NIST SD27 (rolled prints) [NI] (258, 258) Digitized ink and paper 768×800 42 (10)

Dataset-B

Synthetic masterprints [No14] (5,000, 5,000) N/A Synthetically generated 480×512 71 (6)

Noisy prints [No14] (20,000, 5,000) Minutiae extracted Synthetically generated 480×512 40 (23)

Motion blurred prints (15,000, 5,000) from master prints Synthetically generated 480×512 44 (26)

Table 1: A summary of fingerprint databases used in this evaluation study.

2.2 Evaluating Minutiae Detection and Localization

An ideal fingerprint minutiae extractor is expected to exhibit high precision in minutiae

detection and localization, and minimize spurious and missing minutiae. We evaluate the

performance of one open-source minutiae extractor mindtct [Na16b], and three minutiae

extractors (COTS - A, B, and C) by comparing the extracted minutiae with the ground truth

obtained from human subjects for Dataset-A. The performance of a fingerprint minutiae

extractor depends heavily on the quality of input fingerprint images. Considering the large

variations in the NFIQ 2.0 values, we segregate the fingerprint images from Dataset-A into

five quality bins [0,20], [21,40], [41,60], [61,80], and [81,100] based on the NFIQ 2.0

values. Figure 4 presents examples of fingerprint images corresponding to each of the 5

quality bins. For a fair evaluation, performance comparison between minutiae extractors is

6 NIST SD27 is no longer publicly available.
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[0, 20] [21, 40] [41, 60] [61, 80] [81, 100]NFIQ 2.0
Quality Bins

Dataset - A

Figure 4: Examples of fingerprint images from Dataset-A corresponding to the 5 quality bins based

on NFIQ 2.0 values, where [0,20] represents the worst quality bin and [81,100] indicates the best

quality bin.

done only for fingerprint images within each quality bin. We do not utilize the synthetic

fingerprint images (Dataset-B) for this evaluation, as the synthesis process itself introduces

some spurious minutiae.

2.2.1 Minutiae Detection

Given a fingerprint image, let Fd = { f 1
d , f 2

d , ..., f N
d } be the set of N minutiae detected by

a minutiae extractor, and Fg = { f 1
g , f 2

g , ..., f M
g } be the set of M ground truth minutiae

marked by human subjects. A detected minutia fd , and a ground truth minutia fg are said

to be paired, if fd lies within a distance threshold δ around fg. As the average ridge width

for a 500 ppi fingerprint image is known to be approximately 9 pixels [Ma09], we fix the

threshold to 10 pixels. If there is more than one detected minutia within the threshold, the

one closest to the ground truth minutia is paired with it. In case of a tie, the pairing decision

is made in favor of the minutia with smaller orientation difference. If a minutia has to be

inserted in the set Fd , in order to pair it with a minutia in the set Fg, it is considered as

a missing minutia. Similarly, if a minutiae in the detected set Fd , cannot be paired with

any minutia in ground truth set Fg, it is deemed to be a spurious minutia. We utilize the

Goodness Index (GI) metric of Ratha et al. [RCJ95] to evaluate the minutiae detection

performance.

GI =
∑L

i=1 Qi[Pi −Di − Ii]

∑L
i=1 QiMi

(1)

where L = no. of 16×16 non-overlapping patches in the input image, Qi = quality of the ith

patch (good = 4, medium = 2, poor = 1), Pi = no. of paired minutiae in the ith patch, Di

= no. of spurious minutiae in the ith patch, Di ≤ 2 ·Mi, Ii = no. of missing minutiae in the

ith patch, and Mi = no. of ground truth minutiae in the ith patch, Mi > 0. In order to restrict

the negative impact of outlier patches, the number of spurious minutiae (Di) in a patch is

restricted to a maximum value of 2 ·Mi.

The quality index proposed by Chen et al. [CDJ05] is utilized. We do not consider patches

with zero minutiae (near image boundary). The maximum value of GI is +1, which is

obtained when Di = Ii = 0 and Pi = Mi, i.e. all detected minutiae are paired and no. of

detected and ground truth minutiae is the same. The minimum value of GI is −3, which is

obtained when Pi = 0, Di = 2×Mi, and Ii = Mi, i.e. no detected minutiae could be paired



110 Tarang Chugh, Sunpreet S. Arora, Anil K. Jain and Nicholas G. Paulter Jr.

and the no. of spurious minutiae takes its maximum possible value of 2 ·Mi. Larger the

value of Goodness Index, better the performance of a minutiae extractor. In addition to

Goodness Index (GI), we also report the average percentages of paired (Pi/Mi), spurious

(Di/Mi), and missing (Ii/Mi) minutiae.

2.2.2 Minutiae Localization

For a given minutiae extractor, let f̂d = { f̂ 1
d , f̂ 2

d , ..., f̂ P
d }, f̂d ⊆ Fd , be a set of P detected

minutiae points, paired with a subset of known ground truth minutiae points f̂g ⊆ Fg. The

positional error (ep) for the paired minutiae set ( f̂g, f̂d) is computed using the Root Mean

Square Deviation (RMSD) [Tu11] given by:

ep( f̂g, f̂d) =

√
∑P

i=1[(x
i
g − xi

d)
2 +(yi

g − yi
d)

2]

P
(2)

where, (xi
d ,y

i
d) and (xi

g,y
i
g) represent the locations of the detected minutia and the ground

truth minutia, respectively. Similarly, the orientation error (eθ ) between the set of paired

minutiae ( f̂g, f̂d) is computed using:

eθ ( f̂g, f̂d) =

√
∑P

i=1 φ(θ i
g,θ

i
d)

2

P
(3)

where φ(θ1,θ2) =

{ θ1 −θ2 if −π ≤ θ1 −θ2 < π

2π +θ1 −θ2 if θ1 −θ2 <−π

−2π +θ1 −θ2 if θ1 −θ2 ≥ π

2.3 Evaluating Robustness of Minutiae Extractors

The primary reason of errors in minutiae detection is the presence of artifacts due to varia-

tions in finger placement on the sensor platen, noise, finger moisture, fingerprint alterations,

etc. A common evaluation technique, known as stress testing, is used to test a system be-

yond normal operating conditions, often to a breaking point. We evaluate the robustness

of one open-source minutiae extractor mindtct [Na16b], and three commercial minutiae

extractors in the presence of controlled levels of noise, finger dryness, and motion blur,

to understand the stable operational conditions. We utilize the synthetic fingerprint images

from Dataset-B for this evaluation.

2.3.1 Robustness against Noise

Fingerprint images acquired by the fingerprint readers may possess noise due to physical

factors such as anatomical deformations in the friction ridge skin (scars, holes, scratches,

etc.), finger moisture, and/or environmental contamination. These noise sources induce sig-

nificant variation in minutiae extraction, even within multiple acquisitions of the same

finger. To quantify the impact of noise on minutiae extractors, synthetic prints with con-

trolled levels of noise are generated from synthetic master fingerprints. The noise model
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in Novetta’s biosynthetic software [No14] is utilized to add (i) anatomical deformations

(scars, holes, and pressure variations), (ii) ridge noise (Perlin noise), and (iii) finger dry-

ness. Fig. 5 presents different levels of noise added to a master fingerprint (used as the

reference).

Reference
Fingerprint Noise Level 1 Noise Level 2 Noise Level 3 Noise Level 4

Figure 5: Four different levels of noise added to the master fingerprint (reference fingerprint).

2.3.2 Robustness against Motion Blur

Movements of the hand during fingerprint acquisition may lead to introduction of motion

blur in the acquired image. We simulate three levels of motion blur in the synthetic master

fingerprints by applying motion lens filter function in both horizontal and vertical direc-

tion [Li16]. The MATLAB functions f special(′motion′,k) and f special(′motion′,k,90),
with three different values of k ∈ {5, 7, and 9} corresponding to increasing degrees of

motion blur, are applied. Fig. 6 presents a synthetic master print and corresponding three

different levels of motion blur.

Reference Fingerprint Motion Blur Level 1 Motion Blur Level 2 Motion Blur Level 3

Figure 6: Three different levels of motion blur added to the master fingerprint (reference fingerprint).

3 Experimental Results

Goodness index, average positional error (ep), and average orientation error (eθ ) are com-

puted by comparing the output from one open-source minutiae extractor, mindtct, and three

COTS minutiae extractors with the manually marked minutiae for Dataset-A, and minutiae

extracted on the master print (without any image degradations) for Dataset-B.

3.1 Minutiae Detection and Localization

Fig. 7 presents an example fingerprint from FVC2002 DB1A dataset with overlaid manu-

ally marked minutiae and the extracted minutiae from one open-source minutiae extractor,



Ground Truth
Manually Marked Minutiae

COTS - A
Goodness Index : 0.90
Avg. Pos. Error (�"): 4.41
Avg. Ori. Error (�!) : 0.07

COTS - B
Goodness Index : 0.77
Avg. Pos. Error (�"): 4.68
Avg. Ori. Error (�!) : 0.05

COTS - C
Goodness Index : 0.70
Avg. Pos. Error (�"): 3.48
Avg. Ori. Error (�!) : 0.06

mindtct (open-source)
Goodness Index : 0.47
Avg. Pos. Error (�"): 2.65
Avg. Ori. Error (�!) : 0.13

Figure 7: Example fingerprint from FVC2002 DB1A dataset with overlaid manually marked minutiae

and minutiae extracted by four minutiae extractors ( mindtct, and COTS A, B, and C). Goodness Index

(GI) is unit less, while Avg. Positional Error (ep) and Avg. Orientation Error (eθ ) are measured in

pixels and radians, respectively.

NFIQ 2.0 Quality Bins Minutiae

Extractor

[0, 20] [21, 40] [41, 60] [61, 80] [81, 100]

# Fingerprints 419 803 1,051 1,053 132

Goodness Index

mindtct −0.64 (0.77) −0.45 (0.70) −0.33 (0.59) 0.11 (0.38) 0.36 (0.25)

COTS-A −0.74 (0.69) −0.14 (0.71) 0.00 (0.67) 0.47 (0.26) 0.60 (0.16)

Avg. (s.d.) COTS-B −0.03 (0.63) 0.22 (0.44) 0.33 (0.30) 0.48 (0.22) 0.57 (0.17)

COTS-C −0.04 (0.70) 0.12 (0.51) 0.21 (0.35) 0.40 (0.21) 0.48 (0.19)

Positional Error (ep) (in pixels)

mindtct 3.95 (0.80) 3.78 (0.69) 3.60 (0.73) 3.22 (0.56) 3.10 (0.46)

COTS-A 4.87 (0.66) 4.64 (0.61) 4.37 (0.64) 4.27 (0.60) 4.22 (0.59)

Avg. (s.d.) COTS-B 4.53 (0.83) 4.24 (0.72) 4.02 (0.73) 4.00 (0.61) 3.89 (0.54)

COTS-C 4.10 (0.86) 4.21 (0.82) 4.23 (0.78) 3.83 (0.70) 3.59 (0.57)

Avg. Orientation Error (eθ ) (in rad.)

mindtct 0.27 (0.23) 0.20 (0.12) 0.18 (0.09) 0.15 (0.06) 0.14 (0.04)

COTS-A 0.16 (0.12) 0.13 (0.07) 0.12 (0.06) 0.11 (0.04) 0.10 (0.03)

Avg. (s.d.) COTS-B 0.13 (0.13) 0.10 (0.06) 0.10 (0.05) 0.10 (0.04) 0.09 (0.03)

COTS-C 0.14 (0.12) 0.11 (0.07) 0.10 (0.05) 0.10 (0.04) 0.09 (0.02)

Table 2: Performance comparison of four minutiae extractors (mindtct, and COTS A, B, and C) in

terms of minutiae detection and localization accuracies. This evaluation utilizes fingerprint images

(Dataset-A) from five public domain datasets, available with manually marked ground truth minutiae.

Minutiae detection is measured in terms of Goodness Index (GI), a unit less measure in the range [-

3, 1]. A large value of GI suggests high number of detected minutiae are paired with ground truth

minutiae and low number of spurious or/and missing minutiae.

mindtct, and three COTS minutiae extractors. The values for the three performance metrics,

Goodness Index, Positional Error, and Orientation Error are also reported for each minu-

tiae extractor output. Tab. 2 presents a summary of the performance comparison between

the four minutiae extractors in terms of minutiae detection and localization accuracies for

Dataset-A. In comparison to other minutiae extractors, COTS-B consistently achieves a

higher value of Goodness Index across all quality levels. Performance of COTS-A is ob-

served to be highly dependent on fingerprint quality, as it achieves the lowest Goodness In-

dex for low quality images (NFIQ 2.0 = [0, 20]), and highest Goodness Index for high qual-

ity images (NFIQ 2.0 = [81,100]). The open-source minutiae extractor, mindtct, achieves

low Goodness Index compared to COTS minutiae extractors across all quality values, how-

ever, it also achieves lowest positional errors suggesting high positional accuracy for the

paired minutiae. In general, a NFIQ 2.0 quality value lower than 20 leads to a negative

Goodness Index and higher localization errors with larger variances. It can be observed that

as the quality level increases, the Goodness Index values also increase, indicating higher
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NFIQ 2.0 Quality Bins Minutiae

Extractor

[0, 20] [21, 40] [41, 60] [61, 80] [81, 100]

# Fingerprints 419 803 1,051 1,053 132

Paired Minutiae / Ground Truth

mindtct 0.77 (0.12) 0.81 (0.11) 0.82 (0.09) 0.84 (0.08) 0.86 (0.07)

COTS-A 0.77 (0.14) 0.79 (0.16) 0.78 (0.17) 0.85 (0.07) 0.86 (0.06)

(Pi / Mi) COTS-B 0.71 (0.15) 0.76 (0.12) 0.79 (0.10) 0.82 (0.08) 0.84 (0.07)

Avg. (s.d.) COTS-C 0.74 (0.14) 0.74 (0.11) 0.75 (0.09) 0.77 (0.08) 0.78 (0.09)

Spurious Minutiae / Ground Truth

mindtct 1.19 (0.63) 1.06 (0.60) 0.97 (0.53) 0.57 (0.34) 0.36 (0.21)

COTS-A 1.29 (0.60) 0.72 (0.52) 0.56 (0.44) 0.22 (0.20) 0.12 (0.09)

(Di / Mi) COTS-B 0.44 (0.45) 0.30 (0.31) 0.25 (0.21) 0.15 (0.13) 0.10 (0.08)

Avg. (s.d.) COTS-C 0.52 (0.55) 0.36 (0.39) 0.30 (0.28) 0.13 (0.12) 0.09 (0.08)

Missing Minutiae / Ground Truth

mindtct 0.23 (0.12) 0.19 (0.11) 0.18 (0.09) 0.16 (0.08) 0.14 (0.07)

COTS-A 0.23 (0.14) 0.21 (0.16) 0.22 (0.17) 0.15 (0.07) 0.14 (0.06)

(Ii / Mi) COTS-B 0.29 (0.15) 0.24 (0.12) 0.21 (0.10) 0.18 (0.08) 0.16 (0.07)

Avg. (s.d.) COTS-C 0.26 (0.14) 0.26 (0.11) 0.25 (0.09) 0.23 (0.08) 0.22 (0.09)

Table 3: Performance comparison of the four minutiae extractors (mindtct, and COTS A, B, and C)

in terms of average percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for

fingerprint images of different quality (Dataset-A).

number of paired minutiae and lower number of spurious and/or missing minutiae. Tab. 3

presents the performance comparison of the four minutiae extractors in terms of average

percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae. It can be

observed that the open-source minutiae extractor produces a much higher percentage of

spurious minutiae, but a much lower percentage of missing minutiae, compared to other

COTS minutiae extractors.

3.2 Robustness against Image Degradations

Tab. 4 summarizes the performance comparison between the four minutiae extractors on

robustness against different levels of image noise for Dataset-B. It can be observed that as

the noise level increases, the Goodness Index decreases, and the avg. positional error and

the avg. orientation error increases. In comparison to other minutiae extractors, COTS-A

achieves a much higher Goodness Index, and low positional and orientation errors even

in the presence of higher levels of image noise. All the minutiae extractors exhibit simi-

lar avg. positional errors, but a much higher variance is observed in the case of COTS-C.

Tab. 5 presents the performance comparison between the four minutiae extractors in terms

of average percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for

images with different levels of noise. It can be observed that COTS-A achieved a very high

percentage of paired minutiae and much lower percentage of missing minutiae, resulting

in a high Goodness Index. In terms of spurious minutiae, mindtct is observed to consis-

tently perform poorly across all noise levels compared to the COTS minutiae extractors,

producing much higher percentage of spurious minutiae.

The performance comparison of the four minutiae extractors in terms of minutiae detec-

tion and localization accuracies for images degraded with different levels of motion blur

is presented in Tab. 6. It is observed that COTS-A achieves high Goodness Index value

compared to other minutiae extractors with low avg. positional and orientation errors. In

general, higher level of motion blur results in large negative values of Goodness Index for
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Noise Levels Minutiae

Extractor

Level 1 Level 2 Level 3 Level 4

Goodness Index

mindtct 0.36 (0.27) 0.09 (0.32) −0.43 (0.33) −0.80 (0.25)

COTS-A 0.80 (0.12) 0.72 (0.14) 0.52 (0.21) 0.15 (0.37)

Avg. (s.d.) COTS-B 0.53 (0.19) 0.43 (0.21) 0.19 (0.23) −0.15 (0.30)

COTS-C 0.72 (0.19) 0.53 (0.28) −0.08 (0.44) −0.60 (0.35)

Positional Error (ep) (in pixels)

mindtct 2.27 (0.59) 2.87 (0.72) 3.86 (0.72) 4.55 (1.05)

COTS-A 2.07 (0.55) 2.54 (0.61) 3.43 (0.67) 4.17 (0.73)

Avg. (s.d.) COTS-B 2.11 (0.63) 2.75 (0.74) 3.80 (0.69) 4.54 (0.72)

COTS-C 2.24 (0.64) 2.85 (0.79) 3.84 (0.91) 4.82 (2.02)

Avg. Orientation Error (eθ ) (in rad.)

mindtct 0.06 (0.04) 0.09 (0.07) 0.19 (0.14) 0.36 (0.30)

COTS-A 0.03 (0.02) 0.04 (0.03) 0.06 (0.05) 0.13 (0.12)

Avg. (s.d.) COTS-B 0.04 (0.02) 0.05 (0.03) 0.07 (0.06) 0.13 (0.12)

COTS-C 0.03 (0.02) 0.04 (0.03) 0.07 (0.07) 0.14 (0.25)

Table 4: Robustness evaluation of four minutiae extractors (mindtct, and COTS A, B, and C) against

different levels of noise (Dataset-B).

Noise Levels Minutiae

Extractor

Level 1 Level 2 Level 3 Level 4

Paired Minutiae / Ground Truth

mindtct 0.75 (0.12) 0.63 (0.11) 0.42 (0.09) 0.24 (0.08)

COTS-A 0.92 (0.14) 0.88 (0.16) 0.81 (0.17) 0.70 (0.07)

(Pi / Mi) COTS-B 0.78 (0.15) 0.74 (0.12) 0.64 (0.10) 0.51 (0.08)

Avg. (s.d.) COTS-C 0.89 (0.14) 0.80 (0.11) 0.52 (0.09) 0.24 (0.08)

Spurious Minutiae / Ground Truth

mindtct 0.14 (0.06) 0.18 (0.09) 0.27 (0.13) 0.28 (0.12)

COTS-A 0.04 (0.04) 0.05 (0.04) 0.10 (0.08) 0.24 (0.18)

(Di / Mi) COTS-B 0.03 (0.03) 0.04 (0.04) 0.09 (0.07) 0.17 (0.10)

Avg. (s.d.) COTS-C 0.05 (0.05) 0.08 (0.06) 0.11 (0.08) 0.08 (0.08)

Missing Minutiae / Ground Truth

mindtct 0.25 (0.12) 0.37 (0.14) 0.58 (0.13) 0.76 (0.12)

COTS-A 0.08 (0.06) 0.12 (0.07) 0.19 (0.08) 0.30 (0.12)

(Ii / Mi) COTS-B 0.22 (0.09) 0.26 (0.09) 0.36 (0.10) 0.49 (0.12)

Avg. (s.d.) COTS-C 0.11 (0.09) 0.20 (0.13) 0.48 (0.22) 0.76 (0.19)

Table 5: Performance comparison of the four minutiae extractors (mindtct, and COTS A, B, and C)

in terms of average percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for

fingerprint images with different levels of noise (Dataset-B).

all minutiae extractors. Tab. 7 presents the performance comparison in terms of average

percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for images

with different levels of motion blur. With increase in the motion blur levels, a much higher

percentage of missed minutiae is observed compared to paired and spurious minutiae.

4 Conclusions

Minutiae extraction is one of the most critical component of an automatic fingerprint iden-

tification systems. We have presented a controlled and repeatable evaluation of one open-

source and three COTS minutiae extractors. Our experiments involve five public domain

databases with manually marked minutiae to determine minutiae detection and localization

accuracies. A large synthetically generated database with controlled levels of image degra-

dations allowed us to quantify the affects of noise and motion blur, on minutiae extraction

performance. The open-source minutiae extractor (mindtct) is observed to produce lowest

positional errors in public domain databases. However, it also generates a higher percentage
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Motion Blur Levels Minutiae Extractor Level 1 Level 2 Level 3

Goodness Index

mindtct 0.76 (0.12) 0.40 (0.16) −0.68 (0.24)

COTS-A 0.90 (0.13) 0.48 (0.16) −0.50 (0.25)

Avg. (s.d.) COTS-B 0.81 (0.15) 0.51 (0.15) −0.56 (0.17)

COTS-C 0.88 (0.10) 0.46 (0.13) −0.70 (0.26)

Positional Error (ep) (in pixels)

mindtct 3.05 (0.19) 3.69 (0.37) 4.14 (0.35)

COTS-A 3.13 (0.20) 3.73 (0.38) 4.09 (0.31)

Avg. (s.d.) COTS-B 3.08 (0.22) 3.84 (0.47) 4.10 (0.40)

COTS-C 3.11 (0.19) 3.88 (0.31) 4.27 (0.58)

Avg. Orientation Error (eθ ) (in rad.)

mindtct 0.02 (0.01) 0.06 (0.02) 0.10 (0.02)

COTS-A 0.01 (0.00) 0.06 (0.02) 0.09 (0.02)

Avg. (s.d.) COTS-B 0.01 (0.01) 0.04 (0.01) 0.10 (0.03)

COTS-C 0.01 (0.00) 0.06 (0.01) 0.08 (0.02)

Table 6: Robustness evaluation of four minutiae extractors ( mindtct, and COTS A, B, and C) against

different degrees of motion blur (Dataset-B).

Motion Blur Levels Minutiae Extractor Level 1 Level 2 Level 3

Paired Minutiae / Ground Truth

mindtct 0.90 (0.09) 0.73 (0.14) 0.26 (0.18)

COTS-A 0.96 (0.08) 0.76 (0.15) 0.34 (0.16)

(Pi / Mi) COTS-B 0.93 (0.09) 0.78 (0.14) 0.30 (0.16)

Avg. (s.d.) COTS-C 0.95 (0.07) 0.75 (0.15) 0.25 (0.17)

Spurious Minutiae / Ground Truth

mindtct 0.04 (0.03) 0.06 (0.04) 0.20 (0.13)

COTS-A 0.02 (0.01) 0.04 (0.03) 0.18 (0.11)

(Di / Mi) COTS-B 0.05 (0.03) 0.05 (0.04) 0.16 (0.13)

Avg. (s.d.) COTS-C 0.02 (0.02) 0.04 (0.03) 0.20 (0.12)

Missing Minutiae / Ground Truth

mindtct 0.10 (0.04) 0.27 (0.08) 0.74 (0.26)

COTS-A 0.04 (0.02) 0.24 (0.06) 0.66 (0.19)

(Ii / Mi) COTS-B 0.07 (0.02) 0.22 (0.05) 0.70 (0.24)

Avg. (s.d.) COTS-C 0.05 (0.02) 0.25 (0.06) 0.75 (0.20)

Table 7: Performance comparison of the four minutiae extractors (mindtct, and COTS A, B, and C)

in terms of average percentages of paired (Pi/Mi), spurious (Di/Mi), and missing (Ii/Mi) minutiae for

fingerprint images with different levels of motion blur (Dataset-B).

of spurious minutiae compared to COTS minutiae extractors, deteriorating its overall per-

formance. COTS-A exhibits significantly high robustness against different levels of image

noise and motion blur.
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De-duplication using automated face recognition: a

mathematical model and all babies are equally cute

Luuk Spreeuwers 1

Abstract: De-duplication is defined as the technique to eliminate or link duplicate copies of re-
peating data. We consider a specific de-duplication application where a subject applies for a new
passport and we want to check if he possesses a passport already under another name. To determine
this, a facial photograph of the subject is compared to all photographs of the national database of
passports. We investigate if state of the art facial recognition is up to this task and find that for a large
database about 2 out of 3 duplicates can be found while few or no false duplicates are reported. This
means that de-duplication using automated face recognition is feasible in practice. We also present a
mathematical model to predict the performance of de-duplication and find that the probability that k
false duplicates are returned can be described well by a Poisson distribution using a varying, subject
specific false match rate. We present experimental results using a large database of actual passport
photographs consisting of 224 000 images of about 100 000 subjects and find that the results are
predicted well by our model.

Keywords: De-duplication, face recognition, large database, binomial distribution

1 Introduction

De-duplication is defined as the technique to eliminate or link duplicate copies of repeat-

ing data. In biometrics, there are several applications for de-duplication. One application

is the cleaning of databases to make sure there is only one record per subject. A second

application is to prevent that a new sample is entered in the database as a new entry, while

a record of the subject already exists. In this paper, we address the 2nd category and more

specifically, the application where a person applies for a new passport. The aim is to detect

if this person already has a passport under another name. Currently, in the Netherlands,

there exists a highly secured database of approximately 20 million subjects. The aim of

this research was to investigate if it is feasible to, using modern state of the art auto-

mated facial recognition, determine if a subject has an entry in the database under another

name. The main challenge in this context is the size of the database. In order to make

the de-duplication feasible, if the photograph of an applicant is compared to the complete

database, this should result in few to no false duplicates, caused by so-called look-a-likes,

and should return true duplicates with a high probability. De-duplication becomes feasi-

ble if in 7-9 out of 10 applications, no false duplicates would be generated, while in 99

out of 100 applications the number of false duplicates would be less than 10. The latter

means that an official has to manually inspect up to 10 returned images from the database

1 Biometric Pattern Recognition Group, Chair of Services, Cyber Security and Safety (SCS), Faculty of

Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente, Netherlands,

l.j.spreeuwers@utwente.nl



118 LuukaSpreeuwers

to decide if they are actual duplicates or are caused by look-a-likes. Further in order to

be effective, the probability to detect actual duplicates should at least be above 50% (ev-

ery second duplicate detected). These requirements were drafted in consultation with the

Dutch passport issuance institution as realistic requirements.

There is not much literature available on de-duplication in face biometrics. In [DR13],

an investigative study is presented on de-duplication errors. Two types of errors are in-

troduced: False de-duplication (FDD) which is a match with a look-a-like and False non-

duplication (FND) which corresponds to a missed duplicated. They provide results on a

database with 1 009 identities. In [Ya11], de-duplication based on facial feature points is

reported on a database of Chinese ID cards with 60 000 entries and 100/100 duplicates

detected with 8 false hits. The main subject of the paper is, however, the presentation of a

face recognition method based on 105 facial feature points, and the part on de-duplication

performance is very brief. Scalability is not investigated at all. There are some reports on

the related subject of large-scale 1:N comparison, see e.g. [GP04, GN14], but they do not

explicitly address de-duplication.

One of the aims of our research is to investigate scalability to large databases of millions

of entries. The following research questions were therefore formulated:

1. Is S.O.T.A. automated face recognition good enough to reliably detect duplicates in

database with a size of 20 million entries?

2. What are the settings and further requirements for effective du-duplication?

3. Can the performance of de-duplication be predicted using a model?

In order to answer these questions, we developed a model for the de-duplication perfor-

mance based on the binomial and Poisson distributions and set up an experiment using a

database with approximately 100 000 subjects and 230 000 images and two commercial,

state of the art automated facial recognition systems.

The remainder of this paper consists of the following sections: in section 2 a mathematical

model is presented that describes the probability on errors and the probability to detect

duplicates in large databases. In section 3, an experiment using a large database of 100 000

subjects is presented to verify the model. Finally, conclusions are presented in section 4.

2 A mathematical model for detection of duplicates

2.1 Errors in common biometric systems

In its basic form, a biometric system compares two biometric traces, e.g. facial images,

and produces a similarity score s that is higher if the images are more similar. The aim of

the biometric system is to determine if the two traces originate from the same the same

subject. The similarity score is compared to a threshold T and if s ≥ T , the traces are
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Trace origins result type of match

Same subject s < T False Non Match (FNM)

Same subject s ≥ T True Match (TM)

Distinct subjects s < T True Non Match (TNM)

Distinct subjects s ≥ T False Match (FM)

Tab. 1: Types of matches of a biometric comparison

classified as coming from the same subject if not, they are regarded as traces from two

different subjects. For a comparison 4 cases can be distinguished as shown in Table 1.

The performance of a biometric system is represented by an ROC graph, which shows

the True Match Rate (TMR) as a function of the False Match Rate (FMR) for varying

threshold. The ROC shows the trade-off between the TMR and the FMR: if the FMR

decreases, then the TMR decreases and if the FMR increases, then the TMR also increases.

If we choose T such that a certain FMR is realised, then from the ROC, we can read the

TMR of the face comparison system. This is important for biometric systems that are

used for verification applications, e.g. at border control where the one trace is the digital

photograph stored in the passport and the other is a live recorded image. If the comparison

results in a score higher than the given threshold, the probability that this is a True Match

is estimated by the TMR and the probability on a False Match is estimated by the FMR,

and both can be read from the ROC. The ROC is typically obtained using a large dataset

of facial images.

An example of an ROC is given in Figure 1.

increasing T

operating point

T=T1

0 1

0

1

T
M

R

FMR

Fig. 1: ROC with operating point

A second common application of biometrics systems is the identification setting, where a

single trace is compared to a list of traces of multiple subjects to check if the trace belongs

to one of the subjects. We distinguish open set and closed set identification. In the former

it is not known whether the owner of the trace is in the list of subjects, whereas in the latter

case it is. Results are reported in the form of rank identification rates, where the rank-1

identification rate is an estimate of the probability that the subject in the list that results in



the highest score is the correct subject and rank-n that the correct subject is among the n

highest scoring subjects in the list. In open set identification, also FNMR is reported and is

also called False Negative Identification Rate (FNIR). Identification performance depends

highly on the number of subjects in the list.

2.2 Performance of de-duplication

In [DR13], two types of de-duplication errors are distinguished: false de-duplication (FDD),

i.e. the case that a duplicate is found while the corresponding trace in the database is ac-

tually not of the same subject as the probe trace, and false non-duplication (FND) where

a trace of the same subject as the probe trace is present in the database, but not detected.

These, however, apply to the case where one wants to build a database free of duplicates.

In our case, we want to detect duplicates of a facial photograph for a new passport appli-

cation in a database. In order to make this feasible, we need to know the probability that

a true duplicate (TD) is detected and the probability that the number of false duplicates

(NFD) is below a certain threshold. For this we introduce the following measures:

Description measure

Probability that a true duplicate is detected P(TD)

Probability on k false duplicates P(NFD = k)

Probability that number of false duplicates is less than k P(NFD < k)

Tab. 2: Measures for de-duplication, TD=True Duplicate, NFD=Number of False Duplicates

In the introduction we suggested that de-duplication is feasible in practice in the passport

application if P(TD)> 0.5, P(NFD = 0)> 0.7 and P(NFD < 10)> 0.99.

2.3 A mathematical model for de-duplication

We assume that we have a facial image of a subject X and a large dataset of M images of

which there are ND duplicates and N images of other subjects. Furthermore, we assume that

we have an automated face recognition (FR) system that compares two images, resulting

in a score that is compared to a threshold T . The performance of the FR system is defined

by its ROC, i.e. for a threshold T , we know the corresponding TMR and FMR.

If we compare the trace of X to all images in the database, then the probability that we

detect a specific duplicate is given by the probability of a true match (α) when the trace is

compared to a duplicate, i.e. it is estimated by the TMR obtained from the ROC.

P(TD) = α ≈ TMR (1)
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The probability on k false duplicates is modelled by a a series Bernoulli trials, where the

probability on a false duplicate for a single comparison (β )is estimated by the FMR. The

probability on k false duplicates is then given by the binomial distribution:

P(NFD = k) =

(
n

k

)
β k(1−β )N−k (2)

This is the probability that k comparisons result in a score above T , while N −k result in a

score below T . The probability that less than k false duplicates are detected is then:

P(NFD < k) =
k−1

∑
i=0

(
n

k

)
β k(1−β )N−k (3)

Note that an 1:N comparison is in practice not always described properly by N 1:1 compar-

isons, because FR systems may use various ways of score normalisation. For our deriva-

tions we ignore this effect.

Now, it can be shown that if N is very large and N >> k, then the binomial distribution

can be approximated by the Poisson distribution [PP02]:

P(NFD = k) =

(
n

k

)
β k(1−β )N−k ≈

1

k!
µke−µ (4)

Here, µ = Nβ . Now this has an interesting implication if we want to predict the behaviour

of de-duplication for varying database size N. If N increases by a factor λ , then if at the

same time β (or the FMR) is decreased by a factor 1
λ

, the same probabilities result for

P(NFD = k) and P(NFD < k)!

The Poisson distribution has three different modes, depending on µ:

range of µ behaviour as a function of k

µ ≤ 1 strictly decreasing

1 < µ ≤ 5 first going up, then down

5 < µ starting at nearly 0 going up then down

Tab. 3: Behaviour of the Poisson distribution as a function of µ

The three modes are also illustrated in Figure 2. Note that since k is an integer, the curves

are not continuous.

Since we require P(NFD= 0)> 0.7, we need µ < 0.5. As a matter of fact, we can calculate

P(NFD = 0) as a function of µ and likewise P(NFD < k) as well. These relations are

shown in Figure 3, where in the right figure 1−P(NFD ≤ 10) is plotted.

We can derive that for P(NFD = 0)> 0.7, we need µ < 0.36, for P(NFD = 0)> 0.9, we

need µ < 0.11 and for all µ < 2, P(NFD < 10) >> 0.99. Since µ = Nβ , we can also
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Fig. 3: P(NFD = 0) and 1-P(NFD ≤ 10) as a function of µ

calculate the required β or FMR for a given dataset size. For various dataset sizes the

required FMR values are given in Table 4.

N β for P(NFD = 0) = 0.9 β for P(NFD = 0) = 0.7

1 000 1.1 ·10−4 3.6 ·10−4

100 000 1.1 ·10−6 3.6 ·10−6

200 000 5.5 ·10−7 1.8 ·10−6

10 000 000 1.1 ·10−8 3.6 ·10−8

20 000 000 5.5 ·10−9 1.8 ·10−8

Tab. 4: Required β or FMR for various dataset sizes

In conclusion, we can state that it is very well possible to predict the large scale behaviour

of de-duplication using the Poisson distribution. There is, however, one catch: when we

model the distribution P(NFD = k) using the binomial distribution with constant β , we

assume that for every subject, this β (or FMR) is the same. This, however, is not the

case: some subjects are easier recognised than others and some subjects look more like

each other than others. The used β is actually only the average β , β̄ over all subjects.

Thus β will vary per subject. In order to investigate the dependency of the results on the

variation of β , we assumed that β would vary between 0.1β̄ and 1.9β̄ with a homogeneous

distribution.
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The probability on a certain number of false duplicated is thus calculated as:

P(NFD = k) =

1.9µ̄∫
0.1µ̄

1

k!
µke−µ dµ (5)

Where µ̄ = Nβ̄ . Of course this is not the actual distribution of β , but it at least gives an

indication of the effect of varying β for the different subjects. In Figure 4 the effect of

varying µ (same as varying β , since µ = Nβ ) is shown.
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Fig. 4: Effect of non constant µ on P(NFD = k), where 0.1µ̄ < µ < 1.9µ̄

We can observe that for µ̄ = 0.1, the effect is negligible (the curves for constant and

varying µ coincide), for µ̄ = 0.7 the peak at k = 0 is shifted up slightly and the tail becomes

slightly longer. For larger µ̄ , the peak of the curve P(NFD = k) shifts to the left, while the

whole curve becomes flatter and the right tail is longer.

Since we are interested in values of µ in the order of 0.1, we may expect that the subject

specific variation in β has only small impact on the number of expected false duplicates.

3 An experiment on passport data

We set up an experiment with a database of passport photographs that was made available

by the Ministry of Interior and Kingdom Relations of the Netherlands. Since strict privacy

regulations apply to this database, the data could only be accessed in a highly secured envi-

ronment and were only available for generating comparison scores and to a limited extend

for visual inspection. In total the database consisted of 224 000 images of approximately

100 000 subjects. Of most subjects only two images were available, but of some more.

Using 2 commercial face recognition (FR) systems, all images of all subjects were com-

pared to all other images, which would result in 50 · 109 scores. Due to time and space

limitations, fewer scores were calculated. For the first system, 217 049 and for the second

system 101 000 images were compared to all 224 000 images.

First the ROC for both FR systems were determined. They are not provided here, because

their shape may reveal their origin. From Table 4, we can read the required FMRs (β )



that for databases of 200 000 and 20 000 000 images. For these settings the two facial

recognition systems have a TMR as reported in Table 5.

Dataset size P(NFD = 0) FMR TMR system 1 TMR system 2

200 000 0.9 5.5 ·10−7 0.76 0.82

200 000 0.7 1.8 ·10−6 0.79 0.84

20 000 000 0.9 5.5 ·10−9 0.23 0.22

20 000 000 0.7 1.8 ·10−8 0.56 0.51

Tab. 5: FMR and TMR for two FR systems

From Table 5, we can see that for a dataset size of 200 000 the systems perform quite rea-

sonably and allow for around 80% of the duplicates to be detected (4 out of 5). However,

for a dataset of 20 000 000 the probability on detection a true duplicate drops to barely

above 50% if P(NFD = 0) = 0.7. Note that with a FMR of 5.5 ·10−9 we are at the limit of

statistical certainty, because we have only about 20− 40 · 109 false positive scores avail-

able. Also some subjects had a very high number of false duplicates, upto a few hundreds.

Therefore, we visually inspected the images of the concerning subjects. To our surprise,

they appeared to be all of babies and toddlers and young children, see Figure 5. As one of

the results of this research we can therefore state that all babies look equally cute for the

used FR systems. Indeed, poorer performance of FR for children has been reported before,

see e.g. [GN14].

Fig. 5: All babies are equally cute (images obtained from the www)

We repeated the experiment with only subjects of ages above 14 years old, the results of

which are represented in Table 6.

Dataset size P(NFD = 0) FMR TMR system 1 TMR system 2

200 000 0.9 5.5 ·10−7 0.89 0.92

200 000 0.7 1.1 ·10−6 0.92 0.94

20 000 000 0.9 5.5 ·10−9 0.28 0.27

20 000 000 0.7 1.1 ·10−8 0.65 0.65

Tab. 6: FMR and TMR for two FR systems for subjects with age 14+

We now see that for a database size of 20 000 000, 7 out of 10 subjects return no false

duplicates and almost 2 out of 3 true duplicates are found according to our mathematical

model, which, according to our set criteria is acceptable.

To investigate if the mathematical model is valid, we compared the predicted behaviour

at various settings with the actual behaviour. From the complete set of 224 000 images,

we drew 3 sets of 100 000, 10 000, and 1 000 images respectively and determined the

probability on k false duplicates for a FMR such that µ = N · FMR = 0.1 (Figure 6 on
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the left), and µ = N ·FMR = 1 (Figure 6 right). We also predicted the behaviour with the

models described in equations 4 and 5. These are shown as the solid curves in Figure 6.
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Fig. 6: Comparison of predictions by the mathematical model with actual measurements; for small

µ , the model (drawn lines) match the measured results (various dashed/dotted lines) very well, while

for larger µ the deviations are bigger

From the curves in Figure 6, we can observe that for small µ (left), the model predicts the

behaviour very well and the behaviour for varying database sizes with fixed product N ·β is

replicated well. This means we can predict the behaviour for larger databases reliably. For

larger µ , the accuracy of the prediction is less, but still the basic behaviour is characterised

quite well (figure on the right). We can also observe that the model of Equation 5 for

varying µ better predicts the behaviour than the Poisson distribution (Equation 4).

4 Conclusion

In this article we studied a specific de-duplication application where a subject applies for

a new passport and we want to check if he possesses a passport already under another

name. To determine this, a facial photograph of the subject is compared to all photographs

of the national database of passports, in the Netherlands with a size of about 20 000 000.

We investigate if state of the art facial recognition is up to this task and find that for a

database of this size, duplicates can be detected with a probability of 65% (about 2 out

of 3 duplicates is detected), while in 70% of all cases no false duplicates are reported

and in more that 99% of all applications fewer than 10 false duplicates. This means that

de-duplication using automated face recognition is feasible in practice.

We developed a mathematical model to predict the performance of de-duplication and find

that the probability that k false duplicates are returned can be described well by a Poisson

distribution using a varying, subject specific false match rate. An interesting and very

useful property of the Poisson model is that if the database size increases N with a factor

λ , the same behaviour is obtained provided the threshold for the FR system is chosen such

that the FMR decreases with a factor 1
λ

, i.e. the product N·FMR remains constant.

Finally, we found that the used FR systems cannot distinguish small infants very well: for

them all baby faces are equally cute.
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Multi-scale facial scanning via spatial LSTM for latent

facial feature representation

Seong Tae Kim , Yeoreum Choi , Yong Man Ro1 1 2

Abstract: In the past few decades, automatic face recognition has been an important vision task.

In this paper, we exploit the spatial relationships of facial local regions by using a novel deep

network. In the proposed method, face is spatially scanned with spatial long short-term memory

(LSTM) to encode the spatial correlation of facial regions. Moreover, with facial regions of

various scales, the complementary information of the multi-scale facial features is encoded.

Experimental results on public database showed that the proposed method outperformed the

conventional methods by improving the face recognition accuracy under illumination variation.

Keywords: Face recognition, facial feature representation, spatial LSTM, deep learning

1 Introduction

In the past few decades, automatic face recognition has been an important vision task for

many applications such as video surveillance and biometric identification [JRP04,

CRP12, KKR16a]. For biometric identification, it is important to extract discriminative

features which discriminate inter-person differences while being robust to intra-personal

variations (e.g. illumination variations) [DCTD16].

As recent progress of deep learning, convolutional neural networks (CNN) have shown

outstanding performance on many fields of computer vision such as image classification

[KSH12, DCTD16], object detection [RHGS15], and action recognition [JXYY13].

Recently, the CNN has also been used to solve face recognition problems by learning

latent and discriminative features [PVZ15, CKR16, KKR16b]. Generally, the CNN is

comprised of one or more convolutional layers with a subsampling layer and followed

by one or more fully-connected layers. In the convolutional layer, the filters slide over

input images with convolutional operation to encode local image features. The neurons

of feature maps obtained by convolution layer are connected to neurons of the fully-

connected layer. In other words, spatial information extracted from local regions is

simply aggregated to construct the image features. However, there are spatial

relationships in facial local regions, which could not be encoded in the conventional

CNN framework for face recognition [PVZ15, CKR16].
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In this paper, we propose a novel face recognition framework using deep network to

solve the abovementioned limitation of the conventional CNN for face representation.

To exploit the spatial relationships of facial local regions, we devise a long short-term

memory (LSTM) network with which the whole face is scanned sequentially. The LSTM

network originally introduced for sequence learning [HS97, GMH13, KKR16a]. It

incorporates memory cells with three control gates (i.e., input, forget, output). The

memory cells can store, modify, and access an internal state to learn long-term

dependencies [BSF94]. In the proposed method, spatial long short-term memory has

been devised to learn spatial dependencies of facial local features extracted from facial

local regions. The contributions of this paper are summarized as followings: 1) A novel

framework has been devised to encode latent facial features from spatial relationship of

facial local regions. First, the facial local features are encoded by the CNN. Then the

each facial local feature is used to construct facial latent spatial relationship-feature by

scanning the whole face image. In other words, the face is scanned by the spatial LSTM

network to learn relationship and dependencies of spatially sequential facial local

regions. The memory cells of the spatial LSTM enable the proposed deep network to

discover latent relationship of facial local regions. 2) The effectiveness of the proposed

framework has been validated on the public face database. By the experiments, it is

verified that the proposed method is robust to extract facial features under illumination

variation. Moreover, the performance of face recognition could be further improved with

multi-scale spatial long short-term memory, which combines latent facial features

learned from multi-scale facial local regions.

The rest of this paper is organized as follows: The proposed latent facial feature

representation using facial scanning is described in Section 2. Face recognition with

multi-scale facial scanning is explained in Section 3. Section 4 presents and discusses

experimental results. Finally, Section 5 provides concluding remarks.

2 Proposed latent facial feature representation by spatial LSTM

Figure 1 shows the overview of the proposed latent facial feature representation. The

proposed method consists of facial local feature representation and spatial LSTM

network. To learn the proposed latent facial feature representation, each face image is

divided into regions horizontally and vertically, as shown Fig. 1. The objective of spatial

LSTM is to learn relationship and dependencies of spatially sequential facial local

regions. The spatial LSTM network consists of horizontal LSTM networks and vertical

LSTM network. For horizontal scan, we divide face evenly into hN parts with

overlapping between two eye centers. The two eye centers are located based on facial

landmark detection method [AZCP14]. For vertical scan, vN horizontal patch sets are

evenly divided between an eye corner and a lip corner. Eye corner and lip corner are also

located by the facial landmark detection method. In this way, we can acquire vh NN 
facial local patches from a face image (as shown in Fig. 1).
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Fig. 1. Overall framework of the proposed latent facial feature representation. It consists of facial

local feature representation and spatial LSTM.

The facial local features such as texture and shape are encoded by a CNN. The facial

local features are used for input sequences of a spatial LSTM network. Let

 m
N

mmm

h
xxxF ,...,, 21 denotes facial local features, which are extracted from the m-th

horizontal patch set { }m
N

mmm

h
pppS ,...,,= 21 where m = 1, 2, …, vN . m

np denotes the n-th

local patch in m-th horizontal patch set and m
nx is the facial local feature encoded from

m
np .

We employ bidirectional LSTM to consider both directions in face scanning as:

where )(fwdLSTM denotes a function which performs the operation of the LSTM layer

in forward direction and
m

nfwd,h is the hidden state of the forward LSTM at n-th local

patch in m-th horizontal patch set.

),( 1,,
m

nfwd
m
nfwd

m
nfwd LSTM -hxh  , (1)

),(= 1+,,
m

nbwd
m
nbwd

m
nbwd LSTM hxh , (2)



130 Seong Tae Kim, Yeoreum Choi and Yong Man Ro

where )(bwdLSTM denotes a function which performs the operation of the LSTM layer

in backward direction and m
nbwd ,h is the hidden state of the backward LSTM at n-th

local patch in m-th horizontal patch set. Then horizontal feature m
horizontalh encoded at

m-th horizontal patch set is represented as

The vertical sequence acquired from horizontal LSTM network

 vN
horizontalhorizontalhorizontalhorizontal hhhh ,...,, 21 is used for the vertical LSTM to

encode the facial feature vector facef as followings:

where
mfwd ,

f is the hidden state of the forward LSTM at m-th horizontal feature and

mbwd ,f is the hidden state of the backward LSTM at m-th horizontal feature.

Consequently, both horizontal LSTM networks and vertical LSTM network can learn

gradual changes with respect to facial local distributions.

1       NS

Fig. 2. Various scales of local patches at eye region for multi-scale facial scanning.

3 Face recognition with multi-scale facial scanning

From aforementioned spatial LSTM network which consists of horizontal LSTM

networks and vertical LSTM network, we obtain a facial feature vector. By changing the

],[ 1,,
m
bwd

m
Nfwd

m
horizontal

h
hhh  . (3)

),(
1,, 

mfwd
m
horizontalfwdmfwd

LSTM fhf , (4)

),(
1,, 

mbwd
m
horizontalbwdmbwd

LSTM fhf , (5)

],[
1,, bwdNfwdface

v
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size of local region which is used to encode facial local features, the various facial

feature vectors can be encoded in the spatial LSTM network. Therefore, combining these

multi-scale facial features obtained from facial scanning, the complementary information

could be encoded for face recognition. For this purpose, local patches are extracted with

various sizes for considering multi-scale local features. In details, we acquire local

patches with scale factor  which determines the ratio of the size of local region to the

size of whole face image as shown in Fig. 2. Finally, the facial feature vectors extracted

from various scales are combined as followings:

where ,facef denotes the facial feature vector obtained from facial scanning using local

patch size of

1

and sN denotes the number of multi-scale approach. Finally, a feature

vector multiscalef is used for face recognition. For the face recognition, 1-nearest

neighborhood classifier is used based on Euclidean distance.

4 Experiments

4.1 Experimental conditions

To verify the proposed method, we performed experiments with the publicly available

CMU Multi-PIE database which was collected from the face images under 20

illumination conditions (as seen in Fig. 3) [GMCKB10]. Particularly, the effectiveness of

the proposed method under environment variation (i.e., varying illumination conditions)

was investigated in this paper. We followed the experimental protocol in [CKR16] as

followings. Among 337 subjects, we used mutually exclusive setting between the

training set and the test set for evaluating the proposed method. The first 200 subjects

were used for the training set and the remaining 137 subjects were used for the test set.

In the case of test phase, the gallery images were set with only one frontal illumination

condition and the probe images were chosen with other varying illumination conditions.

In other words, the face images with 19 other illumination conditions of the database

were included in the probe images. The number of gallery and probe images was 137

and 2,603, respectively.

In the experiment, hN and vN were set to 7 for cropping facial local regions. Each

cropped facial local region was resized to 32×32 pixels. To extract feature vectors from

facial local regions, the CNN structure [SKR15, CKR16] which consisted of three

convolutional layers with a max-pooling layer, and two fully-connected layers was

],,,,[ ,,1, sNfacefacefacemultiscale ffff   , (7)
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adopted. For the case of LSTM network, each forward and backward LSTM layer has

512 memory cells, respectively. The proposed deep network was implemented by using

the Keras framework with Theano backend [Ch15]. To avoid over-fitting, fully-

connected layers and LSTM layers were constrained using drop out [SHKSS14].

Fig. 3. Example face images from CMU Multi-PIE under 20 different illumination

conditions.

Fig. 4. Examples of feature changes according to sequential inputs of horizontal LSTM network.

For visualization purpose, one of the feature value was selected from 1
horizontalh and normalized to

[0, 1]. (Red (o): neutral illumination, green (+): left illumination, blue (*): right illumination)

4.2 Analysis of spatial LSTM for each illumination

Figure 4 shows the process of feature changes according to sequential inputs. The

direction of input sequences was left to right. Each figure represents specific feature

value of output feature vector from the LSTM network. One of the feature values

obtained from the first horizontal LSTM network was used for the visualization. There

were three face examples with different illumination conditions, which were neutral, left,

and right illumination. As shown in each figure, the feature values of face images
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showed similar changes under neutral and left illumination. On the contrary, the values

of face images showed different tendency under right illumination. Nevertheless, all the

values converged to feature values as bright parts of face images were put into LSTM

network. These results indicated that the proposed method had the ability to store

important information and forget noisy information, which resulted in encoding

discriminative features under illumination variations.

Method Accuracy

LBP [AHP06] 68.33%

GradientFace [ZTFS09] 84.75%

Weber-Face [WLYL11] 90.47%

VGG-Face [PVZ15] 85.06%

Two-step CNN [CKR16] 96.24%

Proposed method (=2) 96.73%

Proposed method (multi-scale) 98.08%

Table 1. Accuracy of face recognition of the proposed method on CMU Multi-PIE database.

4.3 Face recognition performance under illumination variations

Table 1 shows the face recognition accuracy of the proposed method for CMU Multi-

PIE database. For the comparison, local binary pattern (LBP) [AHP06], GradientFace

[ZTFS09], Weber-face [WLYL11], VGG-face [PVZ15], and two-step CNN [CKR16]

were used. The LBP was one of the popular approaches for local texture feature

representation. The GradientFace and Weber-face were photometric normalization-based

approaches for illumination variation. The VGG-face was CNN model learned from

large scale celebrity face images. In this study, the pre-trained VGG-face model was fine

tunned on the CMU MultiPIE database. The two-step CNN was the CNN-based

approach which compensated illumination effects. As shown in the table, the proposed

latent spatial facial feature representation achieved the accuracy of 96.73% at =2. It

outperformed other methods. This result indicated that encoding spatial sequential

relationships between facial local regions was useful for face representation.

For the multi-scale facial scanning, SN was set to 5. The proposed multi-scale approach

achieved 98.08% accuracy by combining the multi-scale facial features obtained from

various size of facial local regions. It was mainly attributed to the fact that the multi-

scale approach could exploit the complementary information of multi-scale spatial long
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short-term memory.

5 Conclusions

In this paper, we proposed the multi-scale facial scanning via spatial LSTM for latent

facial feature representation. By scanning the face using the spatial LSTM network, the

proposed method could exploit the relationship of the facial local regions. The

experimental results with CMU Multi-PIE dataset showed that sequential relationships

of facial local regions encoded by spatial LSTM network were useful in face recognition

under illumination varioations. It was mainly attributed to the fact that important

information was stored and noisy information was deleted by considering the spatial

relationships of facial local regions in the spatial LSTM network. Moreover, by

combining the complementary information obtained from multi-scale approaches, the

accuracy of face recognition could be further improved in the proposed method.
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Texture-Based Eyebrow Recognition

Mehmet Ozgur Turkoglu , Tugce Arican1 2

Abstract: Recent studies show that eyebrows can be used as a biometric or soft biometric for recog-
nition. In some scenarios such as partially occluded or covered faces, they can be used for recog-
nition. In this paper, we study eyebrow recognition using texture-based features. We apply features
which have not been used before for eyebrow recognition such as 3-patch local binary pattern and
WLD (Weber local descriptor) features. Also, we use more conventional features such as uniform
LBP (Local binary pattern) and HOG (Histograms of oriented gradients). Methods are tested on
both small- and large-sized datasets of images taken from FRGC database. Our experiments show
that using some of these texture-based features together increases the performance significantly. We
achieved more than 95% recognition accuracy for left and right eyebrows.

Keywords: eyebrow recognition, texture-based, local descriptor, HOG, LBP, 3-patch LBP, 4-patch

LBP, WLD

1 Introduction

Face recognition systems have become more popular due to the improvements in hardware

and software components. However, although the hardware and software are more robust

in handling problems such as low resolution or blurring, they are not capable of identifying

people accurately in some cases. For instance, when a person’s face is partially occluded

or covered with a balaclava, face recognition systems may easily fail. For that kind of

challenging cases, one can think to use only some region of the face instead of using

the whole face. Compared to other parts of the face (eye, eyelids or lip etc.) eyebrows

might be more robust to different conditions such as different facial expressions. In recent

years, the periocular region (eye, eye surroundings, and with or without eyebrow) is studied

extensively as an alternative to iris biometrics and it is effective to identify a person. The

eyebrows cover a small area on the face but it still might be very effective as a periocular

region to identify a person.

There are some difficulties regarding the eyebrow biometric. With makeup or cosmetic

operations (e.g. botox, plucking, tattoos), eyebrow shape or texture can be altered. If the

contrast between eyebrow hair and skin is low, it is difficult to detect them and extract

enough features. However, these situations are not frequent, so the eyebrow modality still

might be useful biometric.

Eyebrows provide high-contrast lines which make them very noticeable, but also they

might be detected even from long distances unless they are very thin. Besides, being easily

1 University of Twente, Faculty of EEMCS, Enschede, The Netherlands, m.o.turkoglu@student.utwente.nl
2 University of Twente, Faculty of EEMCS, Enschede, The Netherlands, t.arican@student.utwente.nl
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detected, they also provide high-quality features to discriminate people. Eyebrows have

shape-related characteristics such as thickness, length, and arch type. To discriminate a

person using this kind of basic properties, they have to be determined very precisely, so

accurate eyebrow segmentation is needed. Since it is a challenging problem itself (Dong et

al.[DW11] use shape features; however, they segment eyebrows manually.), using texture

information is easier and more convenient for eyebrow biometrics. In this paper, we focus

on texture features of the eyebrow and propose a method for eyebrow recognition using

multiple texture features. Even though 3-patch LBP and WLD features were successfully

applied in face recognition and promising results were acquired, they have never been

used in eyebrow biometrics before. We are the first to apply 3-patch LBP, 4-patch LBP,

and WLD features in eyebrow recognition. Our proposed method achieved ’state-of-the-

art’ performance. Moreover, our experiments illustrated that eyebrows themselves can be

as effective as a whole periocular region for identification.

This paper is structured as follows. In Section 2, we review related work. In Section 3, we

describe the methods in detail. Then, we mention datasets and experiments in Section 4.

We give the results and discuss our findings and compare with previous works in Section

5 and draw a conclusion in Section 6.

2 Related Work

The research in eyebrow biometrics is still limited even though some previous works such

as [SJS03] and [RCA14] showed that eyebrows are one of the most important features

for face recognition systems. Dong et al.[DW11] investigated the shape-based eyebrow

features for biometric recognition and gender classification. Shape-based features were

extracted from manually segmented eyebrow regions and grouped into three categories

such as global shape features, local area features, and critical point features. They used

three different classifiers: Minimum Distance Classifier (MD), Linear Discriminant Anal-

ysis Classifier (LDA), and Support Vector Machine Classifier (SVM). Best recognition

rates obtained were 89%, 91% on MBGC dataset and 78%, 72% on FRGC dataset for

the left and the right eyebrows respectively. In [LL07], Li et al. proposed a HMM-based

eyebrow recognition system. They used Fourier coefficients as features and constructed

recognition system using K-means classifier and HMMs. The proposed method tested on a

small database which includes 54 eyebrow images from 27 subjects. The method achieved

the highest accuracy of 92.6%. [Xu12] integrated Radon transform and SPP (sparsity pre-

serving projections) and showed the feasibility and validity of their method by conducting

an experiment on BJUT eyebrow database (The highest recognition rate of 87.2% was

reported.). [YHZ13] showed that eyebrows may have the potential to be used in the real

world security applications. They designed an eyebrow recognition system via fast tem-

plate matching and Fourier spectrum distance. The proposed method achieved an accuracy

of 98.6% on the BJUT eyebrow database. [JS11] focused on partial face. They divided the

face into 6 regions (strips) and used eyebrow, eye, nose, and lip strips for recognition. Fea-

tures were extracted by using LBP, WHT-LBP(Walsh-Hadamard Transform-LBP), DCT-

LBP, and DFT-LBP. Unlike previous works, they used a large dataset and followed NIST’s

FRGC EXPERIMENT 4 protocol which involves matching 8K uncontrolled images to
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16K controlled images from the 466 subjects. The average rank-1 accuracy from the full

face was calculated as 47.9%. On the other hand, average accuracy from eyebrow was ob-

served as 31.7%. Although eyebrow strip covers 1/6 of the full face, the average accuracy

decreases by only 16.2%. They concluded that the eyebrow can be used as a stand-alone

biometric.

3 Methodology

3.1 Preprocessing

In our work, we use gray-scale images and use two different methods to obtain gray-level

eyebrow images. In the first method, to align the image, an image is rotated in a way that

left and right eye landmarks are aligned horizontally. Then, the image is cropped based on

eyebrow landmark points (Leftmost, rightmost, topmost, and bottommost points are con-

sidered.). In the second method, we use fixed-eye coordinates. In this coordinate system,

positions of eyes are constant. For instance, the xy-position of right and left eyes are (0,0)

and (d,0) respectively (Here d is constant.). The image is transformed (rotation, scaling,

and translation) in a way that left and right eye landmark points move to those specific

positions in the space. Then, we place a fixed-size bounding box by incorporating eye-

brow landmarks and crop the images. After applying both methods, the resulting images

are resized to 36 by 90 pixels and used as an input image to extract features. In addition,

we perform a histogram normalization in order to decrease the illumination effect before

extracting features.

Fig. 1: Facial landmarks which are used in our work. There are 20 landmarks for an eyebrow and 1

landmark for an eye.

3.2 Texture Features

3.2.1 HOG (Histogram of Oriented Gradients) Features

The basic idea behind the HOG is local object appearance and shape can be described by

local intensity gradient distributions or edge directions without knowing the edge posi-

tions [DT05]. In order to calculate the descriptor, the image is divided into small spatial

regions and for each region, a local 1-D gradient histogram is calculated in a region. Then,

histograms from each region are combined into a feature vector.
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Fig. 2: Aligning the face according to facial landmarks. (a) Original image. (b) Transformed image.

Fig. 3: Eyebrow images. (a)-(b) Images which are obtained by the first method. (c)-(d) Images which

are obtained by the second method.

3.2.2 LBP (Local Binary Patterns) Features

The LBP is a descriptor of local spatial patterns and gray scale contrast. It was first in-

troduced by Ojala et al.[OPH96]. Originally, each pixel in a 3-by-3 window is compared

with the center pixel and labeled with 0 or 1 accordingly; then, the 8-bits binary code is

obtained by concatenating all these labels in the window. The descriptor is created by cal-

culating histograms of LBP codes in small regions. In this work, an uniform LBP which is

an extension of the original LBP is used. In the uniform scheme, all the LBP codes which

have more than 2 transitions (0 to 1 or 1 to 0) are assigned to one specific code.

3.2.3 Three-patch LBP Features

The three-patch LBP (TPLBP) descriptor is a different version of the LBP descriptor which

was first introduced in [WHT08]. The way of producing each bit (0,1) in the code assigned

to a single pixel differs. For each pixel in the image, a w by w patch centered on a pixel,

and S additional patches distributed uniformly in a ring of radius r around the pixel are

considered (see Figure 4). α is a parameter for the distance between two patches which

are used at the same time. The value of a single bit is set according to which of the two
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patches in the ring is more similar to the central patch. The resulting code has S bits per

pixel. Simply the following formula is applied to each pixel.

T PLBPr,S,w,α(p) =
S

∑
i

f (d(Ci,Cp)−d(C(i+α) mod S,Cp))2
i (1)

Here d(Ci,Cp) is a difference between pixel values (Ci,Cp). f (x) is an unit step function.

f (x) =

{
1 x ≥ 0

0 otherwise
(2)

To calculate the 3-patch LBP descriptors, the same procedure with LBP features is applied.

The image is divided into m by m small equal sized regions. For each region, a histogram

is obtained by using 3-patch LBP codes. Then, these histograms are concatenated. The

final histogram vector is called as 3-patch LBP descriptor.

Fig. 4: 3-patch LBP process with parameters S = 8, α = 2 and w = 3. (Courtesy [WHT08])

3.2.4 Four-patch LBP Features

The four-patch LBP (FPLBP) was first introduced in [WHT08] as three-patch LBP. For

each pixel in the image, two rings of radii r1 and r2 centered on a pixel, and S patches of

size w by w spread out evenly on each ring are considered (see Figure 5). To produce a four-

patch LBP code, two center symmetric patches in the inner ring with two center symmetric

patches in the outer ring positioned α patches away along the circle (say, clockwise) are

compared. One bit in each pixel’s code is set according to which of the two pairs being

compared is more similar. Thus, for S patches along each circle, there are S/2 center

symmetric pairs which are the length of the binary codes produced. The formal definition

of the four-patch LBP is following.

FPLBPr1,r2,S,w,α(p) =
S/2

∑
i

f (d(C1,i,C2,i+α modS)−d(C1,i+S/2,C2,i+S/2+α modS)2
i (3)

After 4-patch LBP code is calculated for each pixel, the feature vector is created by apply-

ing the same procedure with LBP and 3-patch LBP.
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Fig. 5: 4-patch LBP process with parameters S = 8, α = 1 and w = 3. (Courtesy [WHT08])

3.2.5 WLD Features

Weber local descriptor was first introduced in [Ch08]. It is inspired by Weber’s Law[NE06]

which is a perceptual law and simply states that the size of a just noticeable difference (ΔI)

is a constant (k) proportion of the original stimulus value (I).

ΔI

I
= k (4)

For instance, in a noisy environment, one must shout to be heard while a whisper works in

a quiet room.

This descriptor consists of two components: differential excitation and orientation. Differ-

ential excitation for each pixel is computed as following.

ξ (xc) = arctan(
p−1

∑
i=0

xi − xc

xc

) (5)

here, xc is the central pixel and xi is the neighboring pixel. In order to prevent differential

excitation of the pixel from increasing or decreasing too quickly, the arctan function is

used as the excitation function (A sigmoid function can be used as well.). The orientation

component is computed as following.

θ(xc) = arctan(
xright − xle f t

xbottom − xtop

) (6)

here, xright corresponds to right neighboring pixel of xc. After differential excitation and

orientation are computed, two suitable bins (one for excitation and one for orientation) are

assigned to each pixel in the image, so each pixel is encoded with two numbers. Then, the

image is divided into m by m small equal sized regions. For each region, 2-D histogram

WLD(ξ j,θt) is obtained and then, the 2D histogram WLD(ξ j,θt) is further encoded into

a 1D histogram H by reshaping. The final descriptor is created by concatenating the his-

togram (H) of each region (See Figure 6).

3.3 Score Functions

To compute the similarity between different feature vectors, L2 and χ2 distances are used

which show higher performance compared to L1 and normalized cosine distances.
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Fig. 6: Illustration of the computation of the WLD descriptor. (Courtesy [Ch10])

3.4 Score Fusion

Score-level fusion is used to fuse the information from different methods. Reduction of

high-scores effect (RHE) normalization[He10], which is more robust compared to standard

min-max normalization, is used. The normalized score x′ is computed as following.

x′ =
x−Xmin

X∗
mean +X∗

std −Xmin

(7)

where x is the unnormalized score, X is the set of all the scores (genuine+impostor) and

X∗ is the set of genuine scores.

4 Experimental Setup

4.1 Dataset

In this work, the FRGC (Face Recognition Grand Challenge) v2.0[PF05] dataset was used.

The images were taken in controlled and uncontrolled settings. Frontal images were taken
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into two lighting conditions with two facial expressions(smiling and neutral) from different

poses. In this work, only controlled images are used. In the first experiment, 500 images

have been randomly chosen from 100 subjects (50 female, 50 male), 5 images each. In

the second experiment, all the controlled images with facial landmark points are used, in

total 12078 images from 568 subjects. The maximum number of images per subject is 70.

In order to extract the eyebrow region, the locations of the facial landmark points have

been obtained from DEST (Deformable Shape Tracking) facial landmarks. There are 199

landmarks in total and each eyebrow is encircled by 20 landmark points.

Fig. 7: Example (controlled) images from the FRGC dataset.

4.2 Experiments

We conducted 2 experiments. In the first experiment, we used 5 different feature extraction

techniques (e.g HOG, LBP) and 2 different matching (preprocessing) techniques for left

and right eyebrow images. We did not incorporate any learning (training) procedures. To

compute the similarity between different feature vectors, we used Euclidean (L2) and χ2

distances. Both verification and closed set identification tests were performed. For verifica-

tion, a similarity matrix was created by taking the multiplicative inverse of each distance.

In total, 1K genuine similarity scores and 123K impostor similarity scores were obtained.

The performance was evaluated in terms of EER (Equal Error Rate). For identification,

3 images for each subject were randomly selected as the gallery image and the other 2

images were used as the probe image. The performance was evaluated in terms of rank-1

accuracy. In the second experiment, we used a large data-set. We followed the same proce-

dure with the first experiment except we used only one matching technique and only one

distance (L2 or χ2) for each feature according to first experiment results. For identification,

200K genuine and 72 million impostor similarity scores were obtained. For identification

test, half of the images were randomly selected as gallery image and the remaining images

were used as probe images. In both experiments, information from different sources was

fused in score level and the performances are reported in the same way.

5 Results & Discussion

The results of the experiments are listed in Table I and II and IV in terms of the equal error

rate (EER) and in Table III and V in terms of the rank-1 accuracy. In order to obtain high

performance, parameters of each method were optimized roughly in the first experiment

and in the second experiment exactly the same parameters were used. The second matching
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(preprocessing) technique gives better results (see Table I); therefore, for the rest of the

experiments, only the second method was used. TPLBP and FPLBP features give lower

EER with Euclidean (L2) distance; whereas, HOG and WLD features give lower EER with

χ2 distance; thus in the rest of the experiments, L2 distance is used for TPLBP and FPLBP

features; χ2 distance is used for the other features.

Our work shows that for eyebrow recognition using texture-based approach, transforming

an image into a fixed-eye reference frame and using a fixed-size bounding box (method

2) is much better matching technique than using a variable-size bounding box according

to eyebrow landmarks and re-sizing it to fixed size (method 1). Method 2 is more robust

to inter-shape changes, so it provides impostor similarity distribution with lower variance.

We think that the main reason that causes lower performance of method 1 is that eyebrow

landmarks are not perfectly located on the boundary of the eyebrow (especially at the right

and left tails of an eyebrow).

The uniform LBP descriptor outperforms the rest of the descriptors in terms of both EER

and accuracy. Score fusion improves the performance. Even though FPLBP does not per-

form very well, it is effective when it is used with other features. According to results

obtained, LBP and FPLBP together are quite robust and achieve the highest performance

in most of the cases. The best result obtained in the first experiment is 6.3% EER, 97.5%

rank-1 accuracy and 5.7% EER, 96.5% rank-1 accuracy for the left and the right eyebrows

respectively. The results of the second experiment are compatible with of the first exper-

iment. The best result obtained in the second experiment is 9.0% EER for both eyebrow

and 96.2%, 95.3% rank-1 accuracy for the left and the right eyebrows respectively.

Results of the first experiment indicate that texture features are more robust compared

to shape features which are studied in [DW11]. Dong et al.[DW11] tested their shape-

based method on FRGC dataset with similar dataset size (400 samples, 100 subjects) and

the best performance they achieved (7.0% EER) is worse than we obtained (5.7% EER).

In addition, results show that eyebrows are robust to changes in illumination, pose and

facial expression. Even though eyebrows cover significantly less area than the perioc-

ular region, only small degradation occurs in recognition performance. Mahalingam et.

al.[MR13] studied the LBP-based periocular recognition and they conducted experiments

on the FRGC dataset with similar dataset size and similar dataset split (50% gallery, 50%

probe). They achieved 97.44% rank-1 accuracy which is only 1.2% higher than our highest

rank-1 accuracy.

Distance L2 Distance χ2 Distance

Left-1 Left-2 Right-1 Right-2 Left-1 Left-2 Right-1 Right-2

HOG 10.5 8.0 11.9 8.5 10.3 7.4 11.4 8.0

LBP 10.7 7.2 10.1 7.5 9.5 7.7 9.4 7.0

WLD 14.0 11.2 13.5 10.7 10.2 9.6 10.5 8.3

TPLBP 12.8 9.8 11.9 8.4 15.7 13.2 16.4 13.1

FPLBP 12.8 8.6 12.5 8.8 13.7 9.8 13.2 10.3

Tab. 1: Equal Error Rate (EER)’s of the first experiment.
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Features H+L H+W W+T W+F W+L T+F T+H F+H L+T L+F

Left 6.3 8.0 8.1 7.4 8.0 7.7 7.1 6.7 7.1 6.6

Right 6.5 7.2 7.1 6.2 7.2 6.8 6.9 6.2 6.5 5.7

Tab. 2: Equal Error Rate (EER)’s of the first experiment using multiple features. For suitability, only

first letters of the methods are shown (H:HOG, L:LBP, W:WLD, T:TPLBP, F:FPLBP).

Features H L W T F H+T H+F H+L H+W W+L T+F L+T L+F

Left 92.5 96.0 92.5 92.5 88.5 95.0 94.0 97.5 96.5 96.5 94.5 96.0 96.0

Right 91.5 95.0 92.0 90.5 87.0 93.0 93.5 96.0 94.0 95.0 92.5 96.0 96.5

Tab. 3: Rank-1 accuracies of the first experiment.

Features H L W T F H+T H+F H+L H+W W+L T+F L+T L+F

Left 11.1 10.5 12.9 12.6 11.2 10.4 9.6 9.9 10.6 10.6 10.3 10.2 9.0

Right 11.3 10.1 12.1 12.1 12.0 10.1 9.6 9.9 10.2 10.1 10.4 9.7 9.0

Tab. 4: Equal Error Rate (EER)’s of the second experiment.

6 Conclusion

In this work, we studied eyebrow recognition using several texture-based descriptors.

These descriptors are HOG, uniform LBP, 3-patch LBP, 4-patch LBP, and WLD. We tested

our methods on a large dataset which contains more than 12000 samples and the results

we obtained show that LBP is more successful for eyebrow recognition problem. Also,

we achieved better results by score fusion. The best result is obtained by using LBP and

4-patch LBP together, with 96.2% and 95.3% rank-1 accuracy for left and right eyebrows

respectively. It suggests these texture-based features may be used for biometric recognition

applications.

For the future work, we will test our method under non-ideal imaging conditions. In this

work, we used pre-defined facial landmark points to extract the eyebrow regions, so in

order to create a complete recognition system, we are planning to construct an automatic

eyebrow detector.
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Abstract: With the widespread deployment of biometric recognition systems, the interest in attack-
ing these systems is increasing. One of the easiest ways to circumvent a biometric recognition system
are so-called presentation attacks, in which artefacts are presented to the sensor to either impersonate
another subject or avoid being recognised. In the recent past, the vulnerabilities of biometric systems
to so-called morphing attacks have been unveiled. In such attacks, biometric samples of multiple
subjects are merged in the signal or feature domain, in order to allow a successful verification of all
contributing subjects against the morphed identity. Being a recent area of research, there is to date no
standardised manner to evaluate the vulnerability of biometric systems to these attacks. Hence, it is
not yet possible to establish a common benchmark between different morph detection algorithms. In
this paper, we tackle this issue proposing new metrics for vulnerability reporting, which build upon
our joint experience in researching this challenging attack scenario. In addition, recommendations
on the assessment of morphing techniques and morphing detection metrics are given.
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1 Introduction

Biometrics refers to the automated recognition of individuals based on their biological

and behavioural characteristics [In12]. Due to the strong link between subjects and their

biometric samples, the wide acceptance, and their user convenience, biometric systems

become increasingly popular. Even though the security of biometric systems is increasing,

recent research revealed a security gap to subvert the unique link between a biometric

sample and its subject. By enrolling an artificial sample, generated by merging samples

of two or multiple subjects in image or feature domain, the contributing subjects might

be verified successfully against the manipulated reference. This can be done, for instance,

in the passport application process, where in most countries the applicant brings his own

printed photograph. This way, the unique link between individuals and their biometric

reference data is annulled. The feasibility of such morphing attacks was first shown for

face recognition systems [FFM14, FFM16] and most recently for fingerprint [FCM17]
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Face Image
Feature

Extraction
Classifier Decision
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Fig. 1: Difference between no-reference and differential morphing detection schemes

and iris [RB17] recognition systems. The remainder of the paper will focus on the face

case study, as it most widely studied and allows for a comprehensible visual explanation

of the morphing process and the occurring difficulties.

To prevent the aforementioned morphing attacks, an automatic detection of morphs is

required. Focusing on the workflow of a generic biometric system, two morph detection

tasks can be distinguished: (1) detection during enrolment, e.g. the passport application

process, where the detector processes a single image, referred to as no-reference morphing

detection and depicted in Figure 1(a); and (2) detection at the time of authentication, e.g.

the usage of Automated Border Control (ABC) gates at borders, where a live capture from

an authentication attempt serves as additional source of information for the morph detector,

referred to as differential morphing detection and depicted in Figure 1(b). Moreover, two

attack scenarios can be distinguished: (i) an attacker could try to attack a fully-automated

biometric system or (ii) a semi-automated system with human examiners in the loop. In the

latter case, the role of subjects contributing to a morphed image might be asymmetric, i.e.,

some subjects might have to pass the human inspection while others have to pass biometric

recognition systems.

The metrics and terminology defined in ISO/IEC 30107-3 on Presentation Attack Detec-

tion evaluation [In17] strongly relate to morphing attacks. However, those metrics only

apply to one subject per attack. On the contrary, for morphing attacks success is achieved

if multiple subjects bypass the system for a single sample, i.e., more than one biometric

decisions have to be considered. Thus, only parts of this standard can be employed for

evaluating morphing detection, while other metrics, e.g. the Impostor Attack Presentation

Match Rate (IAPMR), need to be adapted.

Even if there exist some works dealing with morphing [FFM14, FFM16, Go17, RB17,

FCM17] or morphing detection [RRB16, Sc17], no common understanding for morphing

attacks and morphing detection has been developed yet. During the creation of morphing

databases and the design of morphing detection algorithms we observed multiple pitfalls,

which are summarized in this paper. In order to allow a common evaluation of the at-

tack success rate, we propose new metrics, in particular the Mated Morph Presentation

Match Rate (MMPMR) and Relative Morph Match Rate (RMMR). With this proposal,
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we intend to spark a discussion within the research community and awaken the interest

of the ISO/IEC biometrics standardisation committee to compose a comprehensive list of

requirements that need to be taken into account when evaluating morphing attacks.

The remainder of this paper is organized as follows: In Section 2 we present observations

from our work on creating morphed images, based on which diverse recommendations

are given. Section 3 proposes metrics to evaluate the vulnerability of biometric systems

to morphing attacks. In Section 4 recommendations for morphing detection and morphing

detection evaluation are given.

2 Recommendations on Morph Generation

Morphing attack samples generated for research databases may differ from real world

attack samples. In order to achieve significant evaluation results, a large number of attack

samples has to be created, which can be achieved by automated methods. For the sake of

realistic attack scenarios, four major factors have to be considered: (1) the morph quality,

(2) the similarity of the morphed subjects, (3) the consistent quality of the database and

(4) weights used to generate the morph. All of these factors will be discussed in detail in

the subsequent paragraphs.

(1) The real world attacker has the option to spend much time on one single morph, which

might reveal a higher quality compared to automatically generated images, depending on

the goodness of the automatic morphing process and the skills of the attacker. Figure 2(c)

shows a high quality morphed face image attack sample generated using FantaMorph

[Ab17], whereas an example for a low quality morph is depicted in Figure 2(e). Both

images are successfully verified against the contributing subjects, but Figure 2(e) contains

a huge amount of obvious morphing artefacts which can be easily detected by human ob-

servers or common pattern recognition algorithms. As the attacker is willing to do his best

to circumvent the system, the best conditions should be expected for the attacker. In partic-

ular, for face image morphing attacks in border control scenarios, the image needs to fulfill

specific quality requirements, defined in [In05], in order to be accepted as a biometric pass-

port sample. Thus, assuming the preserved chain-of-trust of the passport creation process,

the appearance of obvious artefacts should be minimized during the morphing process.

However, for evaluation purposes morphs with lower quality might be of interest as well.

In order to achieve a significant evaluation on a database containing multiple quality levels

of morphing attacks, a clear labeling of the data is mandatory. For automatically gener-

ated morphs, a consistent quality per algorithm is assumed. Manually generated morphs,

however, might vary in quality, requiring a quality metric to ensure a proper labeling. The

definition of the quality metric depends on the specific scenario and is not in the scope of

this paper.

(2) As motivated in [Go17], morphs of two subjects yielding a high chance of both being

positively matched, referred to as lookalike morphs, are more relevant than morphs of two

subjects highly differing in appearance, referred to as non-lookalike morphs. One option

is selecting subjects to be morphed according to the similarity score returned by a face

recognition algorithm. However, in a real world scenario, realistic lookalike morphs are

necessary to fool human experts [FFM16], e.g. when applying for an ID document. A high
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(a) Subject 1 (b) Subject 2

(c) manual high quality morph (d) automated morph (e) low quality morph

Fig. 2: Differences between morphing qualities

number of non-lookalike or bad quality morphs might reduce the impact of the attack on

the recognition system and at the same time artificially increase the detection performance

of the morph detector. In order to achieve realistic combinations of subjects, a clear pre-

categorization of the subjects according to soft-biometric attributes is recommended, e.g

skin, hair, gender, or age in case of face images. The definition of the different categories

falls out of scope of this work and needs to be addressed in further research. Employ-

ing such a classification scheme, the total number of morphs can be divided into subsets

representing different relevance-classes.

(3) For verification purposes, training on images with different quality and resolution leads

to a higher recognition accuracy and robustness to different scenarios. However, for mor-

phing detection, it is important to obtain an equal quality for bona fide and morphed sam-

ples, in order to avoid bias towards different quality levels on the morphing detection algo-

rithm. To illustrate this fact, Figure 3 depicts the impact of JPEG-compression on morphed

face images. For quality estimation, the Blind/Referenceless Image Spatial Quality Eval-

uator (BRISQUE) [MMB11] was employed. While the image of the originating subject,
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(a) uncompressed face image of

original subject

BRISQUE = 21.0

(b) uncompressed morphed face

image

BRISQUE = 29.1

(c) compressed morphed face im-

age

BRISQUE = 50.0

Fig. 3: Impact of JPEG-compression

(a) eye of manual morph (b) eye of autom. morph

Fig. 4: Differences between different morphing techniques

as well as the morphed face image depicted in Figure 3(b) are uncompressed, Figure 3(c)

is JPEG-compressed. Even if no visual difference can be observed between these images,

the BRISQUE-score indicates a severe quality loss of the image due to the compression.

So far, we have observed that common machine learning algorithms, e.g. Support Vector

Machines (SVM), trained on local image descriptors, e.g. Binarized Statistical Image Fea-

tures (BSIF) [KR12] or Local Binary Patterns (LBP) [OPM02], might classify the images

according to such compression artefacts or image quality differences, if present, instead of

attributes related to the morphing process. The same applies for other artefacts introduced

by some post-processing, e.g. rescaling, image-optimization or rotation. However, distinct

artefacts might disappear if an image is printed and scanned.

The aforementioned quality issues are more likely to appear in automatically generated

morphs, which are thus expected to differ in quality from manual morphs. Figure 2(c)

depicts a manual morphed face image and Figure 2(d) an automatically generated morph.

As emphasized in Figure 4(a) and 4(b), the automatically generated morph reveals small

shadow artefacts which can be avoided in the manual morph.
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(4) Another factor to consider is the weights of multiple subjects in a morph. This is a key

factor in scenarios where humans are required to check the morph against a live subject.

For border control scenarios, it could be feasible to generate a morphed image with a high

weight for the accomplice applying for the passport. This way, the accomplice has a high

chance of deceiving the officer at enrolment time and the criminal will still be able to be

successfully verified by the ABC gate.

3 Assessment of Vulnerability to Morphing Attacks

To assess the vulnerability of a specific biometric system to morphing attacks, a standard-

ized methodology is needed. In general, it is crucial to follow the guidelines proposed in

[MW02], where it is recommended that all comparisons in one evaluation should be un-

correlated. In particular, the samples compared to the morphed face images should not be

the same as the ones used for the morphing process, since such a comparison would ignore

the natural biometric variance.

Regarding evaluation metrics, the Impostor Attack Presentation Match Rate (IAPMR) in-

troduced in ISO/IEC 30107-3 on Presentation Attack Detection evaluation [In17] repre-

sents a standardized metric for attack success evaluation:

IAPMR: in a full-system evaluation of a verification system, the proportion of

impostor attack presentations using the same Presentation Attack Instrument

(PAI) species in which the target reference is matched.

However, for the evaluation of morphing attacks, the aforementioned IAPMR metric presents

some drawbacks, as a morphing attack can only be considered successful if all contribut-

ing subjects are successfully matched against the morphed sample. To avoid a confusion

of the wording impostor, which is used for zero effort impostors, the comparison of a mor-

phed sample to another independent sample of one contributing subject will be referred

to as mated morph comparison. Motivated by the international standard ISO/IEC 30107-3

[In17], we propose a new metric for the evaluation of the impact of a morphing attack in a

full-system evaluation, referred to as Mated Morph Presentation Match Rate (MMPMR).

If the recommendations of [MW02] are considered, only one mated morph comparison

per subject is possible. As the morphing attack succeeds if all contributing subjects are

verified successfully, only the minimum (for similarity scores) or maximum (for dissimi-

larity scores) of all mated morph comparisons of one morphed sample are of interest. The

MMPMR for similarity scores is accordingly defined as:

MMPMR(τ) =
1

M
·

M

∑
m=1

{[
min

n=1,...,Nm

Sn
m

]
> τ

}
, (1)

where τ is the verification threshold, Sn
m is the mated morph comparison score of the n-th

subject of morph m, M is the total number of morphed images and Nm the total number of

subjects contributing to morph m. The following examples are for similarity scores.

If, due to a lack of data, the recommendation in [MW02] is not met, and multiple samples

of one subject are compared to one morphed image, there are two possibilities to adapt
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(a) MinMax-MMPMR (Eq. (2)) (b) ProdAvg-MMPMR (Eq. (3))

Fig. 5: Examples for the computation of MMPMR

the metric. For smaller number of samples, multiple comparisons can be understood as

multiple authentication attempts per subject. For instance, for face image morphing attacks

in a border control scenario, the attacker is able to conduct several authentication attempts

and will be successfully verified, as long as one attempt is above the threshold of the

biometric system. Thus, the metric can be extended by only considering the maximum (for

similarity scores) or minimum (for dissimilarity scores) over all mated morph comparisons

of one subject, referred to as MinMax-MMPMR and depicted in Figure 5(a).

MinMax-MMPMR(τ) =
1

M
·

M

∑
m=1

{(
min

n=1,...,Nm

[
max

i=1,...,In
m

Sn,i
m

])
> τ

}
, (2)

where In
m is the number of samples of subject n within morph m. MinMax-MMPMR also

models the case where Nm subjects launch single attacks to several biometric authentica-

tion systems (In
m = 1).

However, for larger number of probe sample per subject, the MinMax approach is prone

to falsely increase the number of accepted subjects. Thus, we propose a probabilistic inter-

pretation, by calculating the proportion of accepted attempts per subject and multiply the

probabilities of all contributing subjects (i.e., joint probability). The mated morph accep-

tance rate is calculated over all contributing subjects, referred to as ProdAvg-MMPMR, in

analogy to the MinMax-MMPMR and depicted in Figure 5(b):

ProdAvg-MMPMR(τ) =
1

M
·

M

∑
m=1

[
Nm

∏
n=1

(
1

In
m

·
In
m

∑
i=1

{
Sn,i

m > τ
})]

. (3)

MMPMR, as well as IAPMR, are directly dependent on the threshold τ of the biometric

system. In order to achieve a more generalized metric, we propose to compute the dif-
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ference between MMPMR or IAPMR and 1−FNMR, respectively. The Relative Morph

Match Rate (RMMR) is defined as follows:

RMMR(τ) = 1+(MMPMR(τ)− (1−FNMR(τ))) = 1+(MMPMR(τ)−TMR(τ)). (4)

For presentation attacks as described in [In17], MMPMR can be replaced by IAPMR.

Figure 6 depicts different RMMR examples for combinations of distributions and thresh-

olds. If MMPMR and 1−FNMR are equal sized, the RMMR will be 1 (Figure 6(a) and

6(e)). For a more restrictive threshold, the RMMR will decrease (Figure 6(b) and 6(c)),

until the threshold reaches a point where the FNMR increases (see Figure 6(d)). For a

scenario in which all mated morph comparisons are rejected (as depicted in Figure 6(d)),

the distribution of the comparison scores is not of interest. Even for a mated morph dis-

tribution far below the impostor comparisons, the RMMR would remain the same. If the

score distribution of mated morphs is bigger than 1−FNMR, the RMMR will be above 1

(see Figure 6(f)). Note that the latter “extreme” case is considered as unrealistic, since the

RMMR is assumed to be upper-bounded by 1−FNMR.

For security assessment scenarios, a morphed sample is a threat as soon as more than one

subject is successfully verified against it. For these assessments only the two most success-

ful subjects are considered for the MMPMR estimation. If more subjects are successfully

verified against the morphed reference, the attack can be considered as more severe, thus

the amount of successful mated morph comparisons should be reported as the weight of

the attack.

4 Morphing Detection Performance Reporting

Multiple procedures for creating morphed images and/ or multiple morph detectors can

be independently benchmarked employing the metrics defined in [In17]. In particular, the

Attack Presentation Classification Error Rate (APCER) and the Bona Fide Presentation

Classification Error Rate (BPCER) should be computed, and visualised in a Detection

Error Trade-Off (DET) curve.

In addition, in order to achieve reproducible and comparable performance evaluations of

morphing detection systems, for each procedure or detector a common comprehension

of the training and testing methodology is needed. In general, the standards defined in

ISO/IEC 19795-1 on biometric performance testing and reporting [In06] should be fol-

lowed, e.g. a disjoint subdivision of the data into training and testing set. More specifically,

a strict separation of the morphed samples with respect to the originating subjects is impor-

tant, in order to avoid an unrealistic high detection performance. It should be noted, that

one morphed sample is related to at least two subjects and each subject might contribute

to several morphing samples.

As described in Section 2, when aiming to develop and test a robust detection algorithm,

it is crucial to ensure, that the feature extractor is not based on artefacts present on low

quality morphs. Otherwise, it is likely that a trained classifier might strongly rely on these

specific artefacts. As a consequence, if different quality levels of morphed samples should

be examined, these should be evaluated separately according the quality labels defined dur-

ing the database creation process. For Example, if a morphing detection system is trained
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Fig. 6: Behaviour of RMMR for different thresholds and distributions
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on a mixture of low and high quality morphs, the evaluation should be conducted sepa-

rately on low and high quality morphs to ensure reliable performance measures for the

different attack classes.

Finally, for morphed face image attacks in border control scenarios, the employment of

comprehensible detection algorithms is strongly recommended. In order to achive justi-

fiable and reliable results of the detection system, the system should reveal morphing-

specific information, thus a clear separation of frontend (feature extractor) and backend

(classifier) is needed: back-end classifiers shall be based on discriminative features sub-

jective to morphing detection (not necessarily biometric recognition), thus a depending

front-end must be employed, extracting features in a morphing-discriminant space. On

assessing non morphing specific information, classifier training may be mislead regard-

ing nuisance attributes, e.g. processing artefacts introduced by compression or scaling. In

order to avoid opaque results in algorithm benchmarking, we strongly advise against algo-

rithms, not encapsulating a clear distinction between front- and back-end, when aiming at

sensitive operational real world scenarios, such as border control.

5 Conclusion

During the creation of morphing samples, multiple pitfalls have to be avoided. To that end,

we have presented a summary of the observations we made so far. The key issues are the

morph quality, the similarity of subjects and the consistent quality of the database. In order

to allow a fair evaluation of biometric systems’ vulnerability to morphing attacks, we pro-

pose new metrics, i.e. MMPMR and RMMR. Further, our experiences and considerations

regarding morph detection and morph detection evaluation are summarized. The paper fo-

cuses on morphing attacks on face recognition systems, but the considerations and metrics

are applicable for other modalities as well. To facilitate the use of the proposed metrics, an

implementation of the evaluation metrics is provided in [Mo17].
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What you can’t see can help you – extended-range imaging

for 3D-mask presentation attack detection

Sushil Bhattacharjee , Sebastien Marcel1 ´ 2

Abstract: High-quality custom-made 3D masks are increasing becoming a serious threat to face-
recognition systems. This threat is driven, in part, by the falling cost of manufacturing such masks.
Research in face presentation-attack detection (PAD) in general, and also specifically for 3D-mask
based attacks, has mostly concentrated on imagery in the visible-light range of wavelengths (RGB).
We look beyond imagery in the visible-light spectrum to find potentially easier solutions for the
challenge of face presentation-attack detection (PAD). In particular, we explore the use of near-
infrared (NIR) and thermal imagery to detect print-, replay-, and 3D-mask-attacks. This preliminary
study shows that both NIR and thermal imagery can potentially simplify the task of face-PAD.

Keywords: Face Presentation Attack Detection, 3D-Masks, RGB/depth cameras, thermal cameras,

NIR, LWIR.

1 Introduction

Typical face-recognition (FR) methods are highly susceptible to presentation attacks (PA),

also commonly called spoof attacks [EM13, MNL14]. The term ’presentation attacks’ cov-

ers both impersonation as well as concealment attacks [ISO16]. Most research efforts on

presentation attack detection (PAD) so far, have considered specific kinds of attacks, and

have proposed solutions to such attacks under specific conditions. Mainly 2D imperson-

ation attacks, that is, attacks performed using 2D presentation-attack instruments (PAI)

such as printed paper (print attacks) and replay on digital screens (replay-attacks) have

been studied. The proposed solutions have usually considered the scenario where the bio-

metric sensor is a single color-camera. These solutions are very well-suited for certain

applications, such as for current mobile devices. The sensors on such devices are standard

color cameras. Therefore, the same sensor-data is typically used for both, face-recognition,

as well as for face-PAD. The PAD solutions so far have mainly relied on features extracted

from color images and sophisticated machine learning algorithms, to delineate that ever-

shrinking margin between the two classes (bona fide and attack presentations). One reason

why PAD research has evolved in this direction is that adding extra sensors has often been

infeasible, due to cost and space constraints.

PAs using custom-made 3D masks are receiving increasing attention [EM13, Li16]. Figure

1 shows examples of 3D-masks, including rigid masks and soft silicone masks. Highly

realistic 3D-masks, such as the custom-made silicone mask shown in Fig. 1(c), are still

1 Biometrics Group, Idiap Research Institute, Rue Marconi 19, Martigny, Switzerland.

sushil.bhattacharjee@idiap.ch
2 sebastien.marcel@idiap.ch

´
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(a) Custom-made rigid masks

(b) Generic silicone mask (c) Custom-made silicone mask

Fig. 1: Examples of realistic 3D masks. Approximate prices: (a) US$300, (b) US$800, and (c)

US$4000.

quite expensive. However, the process of manufacturing custom-made silicone masks is

evolving rapidly, and such masks will be available at accessible prices in the near future.

The study presented in this paper is motivated by the threat that attacks on FR systems

using high-fidelity custom masks may soon become as commonplace as print-attacks and

replay-attacks today.

A new category of consumer-grade imaging devices, collectively referred to as extended-

range imaging devices, are now available that capture data not only in visible-light wave-

lengths (i.e., color images), but also in near-infrared (NIR) and long-wave infrared (LWIR)

domains. Color/depth (RGB-D) cameras, for example, the Microsoft Kinect and Intel Re-

alSense series of products, and thermal cameras can provide easy solutions for once chal-

lenging PAD problems.
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In this article, we explore the use of such devices to simplify the task of face-PAD for both

2D and 3D attacks. This hardware based approach is especially well-suited for near-real-

time scenarios such as border-control applications. To demonstrate our commitment to

furthering the cause of reproducible research, the data and code used for the experiments

presented in this paper are made freely available on the web3.

Following a summary of related research (Section 2) on the use of extended-range imaging

in face biometrics, as well as on PAD for 3D-mask attacks, we provide, in Section 3, brief

descriptions of the imaging devices that have been used in this work. Experimental results

are presented and discussed in Section 4. Finally, Section 5 gives a summary of this work,

along with an outlook on how this work will evolve in future.

2 Related Work

Previous efforts with specialized imaging-sensors for face biometrics applications have

been concentrated mainly on the problem of face-recognition. Bhowmick et al. [Bh11]

have shown that thermal imagery can be used for face-recognition based on facial vein-

patterns. Bebis et al. [Be06] explore the fusion of visible and thermal imagery for face-

recognition applications. Although they use face-recognition performance as a metric, the

main focus of their work is on evaluating different methods for fusing the data from the

two modalities.

Lagorio et al. [La13] use 3D scans from a Vectra 3D camera in a PAD scenario, to detect

curved-paper based print presentation-attacks. More recently Raghavendra et al. [Ra17]

have published a detailed study on the vulnerability of FR systems in extended multispec-

tral imaging domain, involving seven-band imagery covering the visible light and NIR

illumination. Their work shows that all the four studied FR approaches are consistently

vulnerable in all imaging-bands considered, except for the 930nm (NIR) band. This find-

ing is consistent with previous research [Ka11] showing that the reflectance of human skin

drops significantly in a narrow wavelength band centered at 970nm. Steiner et al. [St16]

have demonstrated the use of multispectral SWIR imagery to reliably distinguish human

skin from other materials, and have shown that such multispectral devices can be used for

PAD.

Good quality 3D masks present clear threats in both impersonation as well as conceal-

ment categories. Erdogmus et al. [EM13] have published the 3DMAD dataset, using a

set of custom-made rigid masks, for experiments in 3D face-PAD. This dataset has also

been used by other research groups [Ag16] in other 2D face-PAD experiments. Liu et al.

[Li16] have published the more recent HKBU-MARs dataset containing images of 3D-

mask based PAs. They have proposed a remote photo-plethysmography (rPPG) based ap-

proach to detecting 3D-mask PAs. Both works ([EM13, Li16]) use several variants of local

binary patterns (LBP) to demonstrate the vulnerability of FR methods to the 3D-mask PAs.

Manjani et al. [Ma17] present an observational study into concealment attacks using 3D-

masks. They describe PAD experiments based on the SMAD dataset [Ma17], which con-

3 https://pypi.python.org/pypi/bob.paper.BioSig2017 3DMaskPreStudy



164 Sushil Bhattacharjee and Sebastien Marcel´

sists of public-domain videos collected from the World-wide Web.The dataset, however,

is relatively small – including only 65 genuine videos and 65 silicon-mask videos. Al-

though observational studies such as this may indicate association between variables (in

this case between the true labels of the test videos and the classifier-score), the influence

of other confounding variables here cannot be ruled out. To demonstrate the efficacy of a

method for detecting 3D-mask based PAs, it is important to design a controlled experiment

to highlight exclusively the causal effect of 3D-masks on the resulting classifier-score.

3 Extended-Range Imagery

(a) RealSense SR300 (b) Xenics Gobi-640

Fig. 2: Cameras used in this work.

In this work we have explored the use of two different cameras – the RealSense SR300

camera from Intel, and the Gobi-640-GigE LWIR camera produced by Xenics4 – for PAD

applications.

The RealSense SR300 camera (Fig. 2(a)) is Intel’s second generation depth-sensing cam-

era. It uses a structured-light approach, based on 860nm NIR illumination, to capture depth

information from a 3D surface. This camera has a relatively shallow field of view, and pro-

duces the most accurate results in the depth range of 0.2m – 1.2m. In practice, the implica-

tion for PAD applications is that the average intensity of the NIR image drops rapidly with

distance. Therefore, to capture good quality images, the subject should be positioned quite

close (0.3m – 0.5m) to the camera. Besides depth-information, the camera also captures

color (RGB) images and NIR images. It is important to note that the two cameras (color

and NIR) have different fields of view, and are not mutually calibrated. For the experiments

discussed in this paper, we have used both color and NIR images at VGA resolution.

The Xenics Gobi thermal camera, shown in Fig. 2(b), covers a wavelength range of 800nm

– 1200nm, and captures 16-bit images at VGA (640×480 pixels) resolution. Although the

camera can take a range of lenses, we have used the standard 18mm f/1 lens, with a

horizontal field of view of 33◦.

4 Website: www.xenics.com
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For both cameras, we have developed data-capture tools in-house, based on software devel-

opment kits (SDK) are available for each camera. When using images outside the visible-

light range of wavelengths, one practical problem that arises is that of face-detection. Most

face-detection tools take a machine-learning based approach, and need to be trained with

sufficient amounts of training-data. Since faces present different spectral characteristics in

different wavelengths, these appearance-based face-detection schemes need to be explic-

itly trained for each imaging modality. We simplify the face-detection process, for each

camera, by positioning the subject such that the face falls within a pre-defined rectangle

(displayed on the live-display monitor). The position and size of the rectangle can be ad-

justed for each subject, and is recorded along with the images. Thus, for each camera,

face-position information is available directly from the data-capture process.

Sample images of bona fide presentations are shown in Fig. 3. The images in Fig. 3(a)

and (b) have been captured using the SR300 RGB-D camera, and show the bona fide

presentation in visible wavelengths (RGB) and NIR band respectively. Figure 3(c) shows

an image captured using the Xenics Gobi thermal camera, illustrating the appearance of a

bona fide presentation in the LWIR band.

(a) Visible (RGB) (b) NIR

(c) Thermal (LWIR)

Fig. 3: Examples of bona fide presentation images, as seen in different wavelength bands. Images in

(a) visible (RGB) and (b) NIR wavelength-bands have been captured using the SR300. The LWIR

band image (c) has been captured using the Xenics Gobi camera.
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4 Experiments

In this section we present experimental results for PAD based on extended-range imagery.

Based on some initial tests, we concluded that NIR images have the potential to easily

detect 2D and 3D PAs. In the experiments reported here, we have specifically investigated

the following questions. (1) Can NIR imagery be useful in detecting 2D PAs? (2) Is it

possible to detect 3D-mask attacks (of both rigid and flexible varieties) in NIR images?

(3) Can we use thermal (LWIR) images to detect custom-made flexible-mask PAs?

4.1 PAD Using NIR Imagery

We start by confirming the intuition that NIR imagery can simplify the task of detecting

2D PAs such as print- and replay-attacks. Figure 4 illustrates typical images captured by

the SR300 camera for various kinds of PAs. Fig. 4(a) and (d) show the appearance of a

print-attack in color- and NIR-imagery, respectively. We note that although the face may

be detected in the color image (Fig. 4(a)), even a simple image-histogram analysis would

be sufficient to determine that no face present in the corresponding NIR image (Fig. 4(d)).

The analysis for the digital-replay attack shown in Fig. 4(b) and (e) is analogous.

Fig. 4(c) and (f) show the color and NIR images for the same rigid mask attack. Visual

inspection of the mask region shows that the simulated facial features, such as the painted

eye-brows and moustache, are entirely suppressed in the NIR image, and the mask region

has a texture-less appearance. Intuition tells us that detecting such surfaces in NIR images

should be reasonably easy. Contrary to initial expectations, however, detecting such 3D

mask PAs in NIR images is not straightforward. Comparing Fig. 4(f) with Fig. 3(b), we

see that the NIR image presents similar image characteristics for both bona fide and 3D-

mask attack presentations. Indeed, our preliminary tests with NIR-860nm band images

showed that lower-order statistics (intensity-histograms, histograms of oriented gradients

(HOG) and gray-level co-occurence matrices (GLCM)) of the 3D-mask presentations are

quite similar to those of bona fide presentations. Detection of 3D mask PAs in NIR images

would require more complex processing such as, modeling of the peri-occular region.

Although counter-intuitive, this result is quite logical. The NIR wavelength used by the

RGB-D cameras has been deliberately chosen to be such that the illumination is strongly

reflected by most kinds of surfaces, including human-skin. This is imperative for the pri-

mary purpose of the camera – capturing depth-information using structured-NIR illumina-

tion.
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(a) Print; Color (b) Print; NIR

(c) iPad; NIR (d) iPad; Color

(e) 3D Mask; Color (f) 3D Mask; NIR

Fig. 4: Various PAs, as seen by the RGB-D (SR300) camera. Three kinds of attacks – print, replay,

and 3D-mask – are shown. Left column (a), (c), (e): the appearance of print, replay, and 3D-mask

attack, respectively, in visible color wavelengths. Right column (b), (d), (f): corresponding images

of the respective scenes under NIR illumination.
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4.2 PAD Using Thermal Imagery

(a) Bona fide (b) 3D-mask attack
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(c) Intensity distribution

Fig. 5: Examples of thermal images of (a) bona fide and (b) 3D-mask attack presentations. (c) His-

tograms of average-intensity over the face-region, for mask- and bona fide presentations, computed

over a small dataset of thermal images.

Thermal (LWIR) images are very well suited for detecting 3D-masks PAs with high cer-

tainty. Figure 5 shows images from the Xenics Gobi thermal camera. The mask in Fig.

5(b), being cooler than the body-temperature of the subject, is clearly demarcated. Figure

5(c) shows distributions of the average pixel-intensity of a small region centered on the

face. This plot has been generated based on a small dataset of bona fide and 3D-mask

attack presentations using five subjects and six rigid masks. The intensity distribution for

the rigid-mask presentations is plotted in red, and the distribution for the bona fide presen-

tations is plotted in green. Although this plot is based on a very small dataset, it indicates

that the average intensity over the face-region is significantly lower when a rigid-mask is

used.

Flexible silicone masks are often hand-finished, and offer greater color and texture fidelity,

and therefore, pose a greater threat, compared to rigid masks. The images in Fig. 6 allow us
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to compare the appearances of bona fide presentations and flexible custom-made silicone-

mask attack presentations, under visible-light and NIR illuminations. The mask shown

here (Fig. 6(c), (d)), which is the same as the mask shown in Fig. 1(c), has been custom-

designed to match the face of the subject shown in Fig. 6(a) and (b)5. Although the mask

may be easily apparent to the human observer, FR systems are quite vulnerable to such

mask-attacks.

(a) Bona fide; RGB (b) Bona fide; NIR

(c) Flex. mask; RGB (d) Flexible mask; NIR

Fig. 6: Comparison of bona fide and flexible silicone mask attack presentations in visible-light and

NIR illuminations. Images captured using the SR300 camera.

Table 1 shows the face-recognition scores for the various attack-attempts on the reference-

subject shown in Fig. 6(a)&(c). The pre-trained VGG-Face neural network [Pa15] has

been used for face-recognition in this experiment. Specifically, the table shows scores for

5 The mask was manufactured based on 3D facial scans of the subject, using the Intel RealSense F200 camera,

which is the predecessor of the SR300 camera. Additional color photographs were used to ensure high-quality

finish for the visual appearance of the mask.
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five zero-effort impostor (ZEI) presentations, one genuine presentation, and one attack

presentation made using a custom-made silicone-mask. Scores are shown for two image-

modalities – color images and NIR images. The first row (labeled ’RGB’) shows scores

of the various presentations using color images, where the target identity is the image in

Fig. 6(a). Scores for a similar experiment using NIR images, with the image in Fig. 6(b)

as the target identity, are shown in the last row of the table. In both experiments we can

see that the score for the genuine presentation is at least an order of magnitude higher than

the scores for the ZEI presentations (Subjects 1-5). It is interesting to note that, in both

illumination wavelength bands, the score for the custom-mask attack is much closer to

that of the genuine presentation, than to the ZEI presentations. This small-scale experiment

cannot be attributed any statistical significance. It does, however, emphasize the necessity

for a large-scale study involving attacks with high-quality custom-made silicone masks.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Genuine Mask-attack

RGB -0.344 -0.253 -0.265 -0.293 -0.263 -0.038 -0.163

NIR -0.330 -0.227 -0.280 -0.216 -0.198 -0.028 -0.096

Tab. 1: Face recognition scores using VGG network.

4.3 Discussion

Fig. 7: Silicone masks can warm up very quickly when worn.

Preliminary experimental results discussed above show that extended-range imaging de-

vices can drastically simplify the task of face-PAD. The task of face-PAD using such de-

vices, however, in not entirely straightforward. For example, the main reason why the face

in the print-attack is not visible in 4(d)) is that the ink used here is not IR-reflective6. There

are, however, IR-reflective inks available on the market, that will show a strong response

in NIR-band images [Ch15]. Further experimentation is therefore necessary to tackle the

challenge print-attacks constructed using IR-reflective inks.

In Fig. 5 we have seen how rigid 3D-mask attacks can be easily detected using thermal

cameras, because the masks have a much lower temperature than average human body

temperature. This advantage is lost to some extent, when dealing with flexible silicone

masks, which can warm up very quickly when in contact with warmer objects, such as

an attacker’s face. Figure 7 illustrates the evolution of the temperature of a silicone mask

when worn by a human subject. The figure shows six frames of a time-lapse sequence

(captured using the Xenics Gobi camera), with an interval of 30 seconds between frames.

6 Note that the specific print-attack used in this example has been printed according to the specifications pre-

scribed in the Norwegian project SWAN.
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From left to right, the change in temperature of the mask is evident, especially in the

forehead region, where the mask makes good contact with the subject’s face. The top of

the mask can be clearly distinguished in the first frame on the left. In the right-most frame,

this region seems to be almost as warm as the subject.

There is a clear need for research into PAD of flexible 3D masks, where the limits of ther-

mal imagery for detecting custom-made masks is explored under various conditions, using

a large set of silicone masks. Thermal cameras such as the Xenics Gobi used in this work

are still quite expensive. However, low-cost options are now becoming increasingly avail-

able. Cameras such as the FLIR-One and the Seek-Thermal Compact Pro are designed to

work with mobile phones, offer adequate spatial resolution, and are available at relatively

modest prices.

5 Conclusions

Due to the affordability of modern RGB-D cameras, researchers are beginning to look into

such cameras for face-recognition applications. These cameras typically use NIR illumi-

nation to recover depth information from the scene. Some RGB-D cameras also return

2D videos in visible-light and NIR wavelengths. In this paper we have presented a pre-

liminary study into the utility of NIR and LWIR imagery for face-PAD. Our tests with

Intel’s RealSense SR-300 camera show that images in NIR wavelength-band can be used

to easily detect various 2D presentation-attacks, such replay-attacks and certain kinds of

print-attacks. Some kinds of printer-ink do show a strong response under NIR illumination

at certain wavelengths. In future work we will investigate methods for detecting print-

attacks created using such inks. Contrary to initial expectations, however, monochromatic

NIR imagery, of the kind provided by low-cost RGB-D cameras, may not be effective for

straightforward detection of 3D-mask attacks.

Realistic custom-made silicone masks will soon be available at affordable prices. Tt is,

therefore, imperative to develop face-PAD methods that are robust to 3D-mask based at-

tacks. The examples presented here indicate that the use of NIR and LWIR imagery for

detecting rigid as well as flexible 3D masks seem to be promising research directions. We

would like to invite the entire biometrics research community to pool resources to create

and share a large and diverse data-set for the purposes of such research.

Thermal cameras have been available for several decades. Until recently, however, they

have been very expensive, and have not been considered for PAD applications for reasons

of cost. Low-cost thermal cameras, such as the FLIR-One7 and the Seek-Thermal Compact

Pro8, have recently appeared on the market. These devices are designed to work with

mobile phones. They offer adequate spatial resolution, and are available at reasonable

prices. In future experiments we plan to explore the applicability of such cameras for

PAD.

7 Website: www.flir.com/flirone
8 Website: www.thermal.com/compact-series.html
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Impact of bandwidth and channel variation on presentation

attack detection for speaker verification

Héctor Delgado1, Massimiliano Todisco , Nicholas Evans , Md Sahidullah ,1 1 2

Wei Ming Liu , Federico Alegre , Tomi Kinnunen , Benoit Fauve3 3 2 3

Abstract: Vulnerabilities to presentation attacks can undermine confidence in automatic speaker
verification (ASV) technology. While efforts to develop countermeasures, known as presentation
attack detection (PAD) systems, are now under way, the majority of past work has been performed
with high-quality speech data. Many practical ASV applications are narrowband and encompass var-
ious coding and other channel effects. PAD performance is largely untested in such scenarios. This
paper reports an assessment of the impact of bandwidth and channel variation on PAD performance.
Assessments using two current PAD solutions and two standard databases show that they provoke
significant degradations in performance. Encouragingly, relative performance improvements of 98%
can nonetheless be achieved through feature optimisation. This performance gain is achieved by
optimising the spectro-temporal decomposition in the feature extraction process to compensate for
narrowband speech. However, compensating for channel variation is considerably more challenging.

Keywords: presentation attack detection, speaker verification, bandwidth and channel variation

1 Introduction

While automatic speaker verification (ASV) [RR95, KL10, HH15] offers a convenient, re-

liable and cost-effective approach to person authentication, vulnerabilities to presentation

attacks [IS16], previously referred to as spoofing, can undermine confidence and form a

barrier to exploitation. By masquerading as enrolled clients, fraudsters can mount attacks

to gain unauthorised access to systems or services protected by biometrics technology.

Presentation attacks in the context of ASV can be performed with impersonation, speech

synthesis, voice conversion and replay [EKY13]. While the study of impersonation has

received attention, e.g. [Ha15], replay, speech synthesis and voice conversion are assumed

to pose the greatest threat [Wu15]. Speech synthesis and voice conversion presentation

attacks combine suitable training or adaptation data with sophisticated algorithms which

generate voice samples whose spectral characteristics resemble those of a given target

speaker. In contrast, replay spoofing attacks require neither specialist expertise nor equip-

ment and can hence be mounted by the lay person with relative ease. Replay attacks in-

volve the re-presentation to an ASV system of another person’s speech which is captured

beforehand, possibly surreptitiously, for instance during an access attempt.

The study of presentation attack detection (PAD) for ASV is now an established area of

research [Wu15]. The first competitive evaluation, namely the ASV spoofing and counter-

1 EURECOM, Department of Digintal Security, France, {delgado,todisco,evans}@eurecom.fr
2 University of Eastern Finland, School of Computing, Finland, {sahid,tkinnu}@cs.uef.fi
3 Validsoft Ltd., United Kingdom, {jasmin.liu,federico.alegre,benoit.fauve}@validsoft.com
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measures (ASVspoof) challenge [Wu17], was held in 2015. It promoted the development

PAD solutions to protect ASV from voice conversion and speech synthesis attacks.

Since the first ASVspoof 2015 evaluation, the community has started to consider a num-

ber of more practical aspects of PAD. Some recent work has explored the impact of ad-

ditive noise on reliability [Ha16, Ti16] and the benefit of speech enhancement and multi-

condition training as a means of improving robustness [Ha16, Yu16].

Other likely influences on PAD performance, e.g. bandwidth and channel variability, have

received comparatively little attention to date [GGS15, VL11]. Given the prevalence of

ASV technology in telephony applications were bandwidth is typically low and where cod-

ing, packet loss and other non-linear effects have potential to degrade performance, these

aspect require attention. However, the ASVspoof 2015 database contains high quality, high

bandwidth recordings. The RedDots Replayed database [Ki17c] which was generated from

the text-dependent ASV RedDots database [Le15], was introduced recently to support the

development PAD solutions for replay presentation attacks. While exhibiting variation in

terms of recording devices and environmental conditions, and hence representing a greater

degree of practical, real-life variability, it still contains wideband audio (16kHz).

The work reported in this paper has accordingly sought to investigate the impact of band-

width and channel variation on PAD reliability for ASV. The work was performed with

bandwidth-limited and coded versions of the ASVspoof 2015 and RedDots Replayed

databases (covering 3 different types of presentation attacks, namely speech synthesis,

voice conversion and replay), generated through band-pass filtering, downsampling and

coding. The work was performed with two PAD solutions, namely linear frequency cep-

stral coefficients [SKH15] and constant Q cepstral coefficients [TDE16, TDE17], both of

which achieve competitive performance for the ASVspoof 2015 database with a relatively

simple back-end classifier. It is stressed that the objective of the work reported here is to

assess the impact on PAD reliability of bandwidth and channel variation. While an issue

of undoubtable importance, the work is NOT concerned with generalisation.

2 Presentation attack databases

The work reported in this paper was performed using two publicly available databases.

2.1 ASVspoof 2015

The ASVspoof initiative [Wu17] was the first community-led effort to collect a com-

mon database to support research in spoofing and countermeasures. The ASVspoof 2015

database contains a mix of bona fide (genuine speech without attack) and spoofed speech.

All bona fide speech data is sampled at 16kHz and was recorded in a semi-anechoic cham-

ber with a solid floor [Wu17]. Spoofed speech is generated with 10 different speech syn-

thesis and voice conversion algorithms. In order to promote generalised PAD systems, only

5 of these were used to generate training and development subsets whereas an evaluation

subset was generated with the full 10. In this paper, the development set containing genuine

and spoofed speech using 5 different attacks is used. Table 1 shows database statistics. Full

details of the ASVspoof 2015 database and example PAD results are available in [Wu17].
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Tab. 1: Statistics of the ASVspoof 2015 database: number of speakers (M=male, F=female), and

number of genuine and spoofed trials.

Partition #Speakers (M / F) #Genuine trials #Spoofed trials

Training 10 / 15 3750 12625

Development 15 / 20 3497 49875

2.2 RedDots Replayed

The RedDots Replayed database [Ki17c] was designed to support the development of

PAD solutions for replay attacks in diverse recording and playback environments. RedDots

Replayed is based upon the re-recording of the original RedDots database [Le15] (part 01,

male speakers) which contains speech data comprising 10 common passphrases recorded

in a number of acoustic conditions using mobile devices with a sampling rate of 16kHz.

Replayed speech is generated with one of 16 different recording devices, 15 different play-

back devices and various different acoustic conditions, including both controlled and more

variable (unpredictable) conditions. Controlled condition recordings are made in a quiet

office/room whereas variable condition recordings are made in noisier environments. A

training subset contains only controlled condition recordings whereas an evaluation sub-

set contains both controlled and variable condition recordings. Table 2 shows database

statistics. Full details of the RedDots replayed database and example presentation attack

detection results are available in [Ki17c]. A subset of the RedDots Replayed database is

also used in the ASVspoof 2017 challenge4 data [Ki17a, Ki17b].

Tab. 2: Statistics of the RedDots Replayed database: number of speakers (male), and number of

genuine and spoofed trials.

Partition #Speakers #Genuine trials #Spoofed trials

Training 10 1508 9232

Development 39 2346 16067

2.3 Bandwidth reduction and channel simulation

PAD performance was assessed with different versions of each database: (i) the origi-

nal full-band versions; (ii) bandwidth-reduced versions, and (iii) versions with additional

channel variation simulated with the Idiap acoustic simulator software5.

Bandwidth reduction involves downsampling from 16kHz to 8kHz. ITU G.1516 com-

pliant bandpass filtering is applied with a gain of -3dB at the passband edges of 300Hz

and 3400Hz. The original and bandwidth-reduced versions are referred to from hereon as

wideband (WB) and narrowband (NB).

4 http://www.asvspoof.org/
5 http://github.com/idiap/acoustic-simulator
6 https://www.itu.int/rec/T-REC-G.151-198811-W/en, accessed: 2017-08-07
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Fig. 1: Average long-term spectra for the utterance ‘He’s worked for several years in the United

States’ for narrowband, landline and cellular channels.

Codec simulations employ a common ITU G.7127 compliant bandpass filter. This is com-

bined with a-law coding8 at a rate of 64kbit/s for landline telephony and with an adaptive

multi-rate narrowband (AMR-NB) codec9 at a rate of 7kbit/s for cellular telephony. These

two scenarios are referred to as landline (L) and cellular (C), respectively. Figure 1 il-

lustrates the distortion in the long-term average spectrum for landline and cellular coded

signals compared to the original narrowband signal for an arbitrary speech utterance from

the ASVspoof 2015 database. These spectra were obtained with the constant Q transform

(CQT, see Section 3). In addition to broad attenuation, the plots illustrates substantial spec-

tral distortion, especially at lower and higher frequencies. The distortion is particularly

pronounced for the cellular-coded signal.

3 Presentation attack detection

The work was performed with two different PAD systems. A backend Gaussian mixture

model (GMM) classifier with two classes, one for fona fide speech and one for spoofed

speech is common to both systems. Models are learned using bona fide and spoofed data

from their respective training subsets and with an expectation maximisation algorithm.

According to independent results, e.g. [PP15, SKH15, TDE17], such a simple classifier

often provides competitive or even better performance compared to other, more sophisti-

cated algorithms. The score for a given trial is computed as the log-likelihood ratio of the

test speech sample given the two GMMs for bona fide and spoofed speech. The frontends

are described below. Neither employs voice activity detection.

7 https://www.itu.int/rec/T-REC-G.712/en, accessed: 2017-08-07
8 https://www.itu.int/rec/T-REC-G.711-198811-I/en, accessed: 2017-08-07
9 https://www.itu.int/rec/T-REC-G.711-198811-I/en, accessed: 2017-08-07
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The linear-frequency cepstral coefficient frontend is the best performing system from

[SKH15]. The energy outputs of a uniformly-spaced, triangular filterbank are processed by

the discrete cosine transform (DCT) to derive cepstral coefficients using an analysis win-

dow of 20ms with a 10ms shift. Since LFCC features are computed with linearly-spaced

filters, the frequency resolution is explicitly related to the number filters. Increasing the

number improves the frequency resolution and captures more detailed spectral character-

istics. While the original work [SKH15] used 20 filters, use of a greater number was found

to improve performance. For work reported here, the number of filters is optimised first

for WB and then for NB data.

Constant Q cepstral coefficients. The second front-end involves constant Q cepstral coef-

ficients (CQCCs) [TDE16, TDE17] which combine the constant Q transform (CQT) [YB78]

with standard cepstral analysis. In contrast to Fourier techniques, the centre/bin frequen-

cies of the CQT scale are geometrically distributed [RB79]. The centre frequency fk for

the k-th frequency bin is given by

fk = fmin2
k−1

B (1)

where fmin is the minimum frequency considered and B is the number of bins per octave.

Higher values of B provide greater frequency resolution but reduced time resolution, while

lower values of B provide greater time resolution but smaller frequency resolution. B thus

determines the trade-off between frequency and time resolutions and is a major optimisa-

tion parameter for CQT-based analysis. Note that the CQCC analysis window length and

shift is effectively variable in order to maintain a constant Q factor (trade-off between cen-

tre frequency and filter width) across frequency bins. Full details of CQCC extraction are

described in [TDE17].

4 Experimental work

This section reports an assessment of bandwidth and channel variation impacts on PAD

performance. All experiments were performed with the standard protocols in [Ki17c,

Wu17] (see Section 2). Assessments are based on the threshold-free equal error rate (EERpad)

metric for a bona fide/presentation attack discrimination task. EERpad is the operating

point where the attack presentation classification error rate, APCER (equivalent to the

false alarm rate, FAR, in binary classification tasks), and the bona-fide presentation classi-

fication error rate, BPCER (equivalent to miss rate in binary classification tasks), are equal.

Shown first are baseline experiments using the original high-quality WB versions of the

ASVspoof 2015 development set (in the following referred to as ASVspoof) and RedDots

Replayed database. The use of the ASVspoof development set alone avoids any influence

of results on presentation attacks for which no training data is available; this paper is not

concerned with generalisation aspects. Then, the adopted methodology is summarised

as follows:

• Baseline experiments using the original high-quality WB databases were performed.

• Identical experiments using NB versions of the same databases were performed to

evaluate performance for bandwidth-reduced audio.
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• Feature extraction configurations are optimised to improve performance for bandwidth-

reduced audio.

• A final set of experiments evaluate the robustness of optimised PAD solutions in the

face of additional speech coding.

4.1 Wideband baseline

Baseline results for LFCC and CQCC features and the original WB databases (no down-

sampling nor channel simulation) are presented in Table 3 (“Wideband” rows). LFCCs

include 20 delta (D) and 20 acceleration (A) coefficients [SKH15] computed using 30

filters while CQCCs include 20 A coefficients [TDE17]. These configurations were opti-

mised for the ASVspoof database. Error rates for LFCC features are twice those of CQCC

features. Error rates for the RedDots Replayed database are markedly higher than for the

ASVspoof database, albeit that these results were generated using un-optimised feature

configurations.

Tab. 3: Performance of LFCC and CQCC PAD systems in terms of EERpad (%) for ASVspoof devel-

opment and RedDots Replayed databases for WB and NB data. PAD systems were not optimized for

NB data. S=static, D=delta, A=acceleration.

Feature
ASVspoof RedDots

2015 Replayed

Wideband LFCC DA 0.11 6.18

(16 kHz) CQCC A 0.05 3.27

S 6.60 13.30

D 3.38 9.02

A 4.06 8.24

LFCC SD 3.72 10.27

SA 3.17 9.56

DA 1.64 8.12

Narrowband SDA 2.27 8.59

(8 kHz) S 10.39 7.13

D 10.93 3.18

A 9.92 2.07

CQCC SD 5.64 4.05

SA 5.90 4.18

DA 8.97 2.14

SDA 5.71 2.88

4.2 Bandwidth reduction

Table 3 (“Narrowband” rows) shows results for the NB versions of ASVspoof and Red-

Dots Replayed databases. Results are shown for both LFCC and CQCC features using

different combinations of static (S), delta (D) and acceleration (A) coefficients. Results in

Table 3 show that, for the ASVspoof database, performance is significantly degraded for
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both LFCC and CQCC features. For LFCC features, the EERpad increases from 0.11%

to 1.64% whereas that for CQCC features increases from 0.05% to 9.92%. In addition, for

CQCC, SD configuration further reduces the error rate of A configuration further down to

5.64%.

For the RedDots Replayed database, performance for LFCC features degrades from 6.18%

to 8.12%. For CQCC features, results improve, with the EERpad dropping from 3.27%

to 2.07%. Our analysis suggests that this is because the salient information for replay

detection is contained within low frequencies for which CQCC features have better reso-

lution. The same behaviour is not observed for LFCC features, however. This is because

LFCC features may lack sufficient resolution at low frequencies to capture the same infor-

mation captured by CQCC features.

While it is not entirely surprising that different features are best for the ASVspoof and

RedDots Replayed databases – they contain presentation attacks of a different nature –

performance is sensitive to the particular configuration. Whereas DA and A combinations

give the best performance for WB ASVspoof data for LFCC and CQCC features respec-

tively, DA and SD combinations give the best performance for NB data. Performance for

the RedDots Replayed database is more consistent with DA and A configurations again

giving the best performance.

4.3 Feature optimisation

Tab. 4: Optimisation of number of filters for LFCC features for NB ASVspoof development and

RedDots databases in terms of EERpad (%) for different configurations of static (S), delta (D) and

acceleration (A) coefficients.

20 30 40 50 60 70 80

A
S

V
sp

o
o

f
2

0
1

5

S 5.74 6.60 6.19 6.12 6.34 6.45 6.52

D 4.48 3.38 3.28 3.19 3.21 3.21 3.25

A 5.21 4.06 4.05 4.05 3.94 3.91 4.04

SD 3.48 3.72 3.62 3.67 3.64 3.65 3.49

SA 3.27 3.17 3.04 3.21 3.13 3.16 3.08

DA 2.10 1.64 1.67 1.49 1.50 1.44 1.55

SDA 2.34 2.27 2.18 2.21 2.13 2.16 2.06

R
ed

D
o

ts
R

ep
la

y
ed

S 13.71 13.30 13.51 13.97 14.45 15.18 15.30

D 9.06 9.02 9.51 9.66 10.14 10.05 10.60

A 8.13 8.24 8.48 8.52 8.97 9.15 9.26

SD 10.67 10.27 10.87 11.64 11.61 11.72 11.74

SA 9.97 9.56 10.14 10.38 10.72 11.08 11.13

DA 8.40 8.12 8.40 9.08 8.72 9.04 9.40

SDA 9.11 8.59 9.63 9.65 10.17 10.57 10.53

Reported now are results for optimised LFCC and CQCC features for NB data. For LFCC

features, optimisation is performed by varying the number of filters. The dimensionality

of static features is fixed by considering first 20 coefficients after the DCT. Table 4 reports

results for ASVspoof and RedDots Replayed databases where the number of filters is
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varied between 20 and 80. For the ASVspoof database, performance is improved for a

higher number of filters. The best performance is obtained with 70 filters and dynamic

coefficients (DA). However, for the RedDots Replayed database, the optimal number of

filters is 30 while performance degrades for higher numbers.

Tab. 5: Optimisation of the number of frequency bins per octave B for CQCC features for NB

ASVspoof and RedDots Replayed databases in terms of EERpad (%) for different configurations

of static (S), delta (D), and acceleration (A) coefficients.

B 192 96 48 24 12 6

A
S

V
sp

o
o

f
2

0
1

5

S 17.23 10.39 5.25 2.95 1.93 3.06

D 16.01 10.93 7.11 5.64 4.53 6.27

A 14.73 9.92 8.08 6.40 4.88 8.69

SD 10.97 5.64 2.72 1.00 0.28 0.37

SA 10.45 5.90 3.35 1.05 0.17 0.31

DA 13.29 8.97 6.25 4.44 3.54 5.70

SDA 10.30 5.71 2.60 0.84 0.16 0.27

R
ed

D
o

ts
R

ep
la

y
ed

S 6.57 7.13 8.82 10.06 9.68

D 3.50 3.18 3.46 7.55 11.68

A 2.50 2.07 3.20 4.65 9.21

SD 3.88 4.05 5.43 7.20 7.74 -

SA 3.85 4.18 5.63 7.30 8.15

DA 2.73 2.14 2.6 4.82 11.05

SDA 2.86 2.88 3.86 6.22 8.44

Table 5 shows optimisation results for CQCC features. Performance is illustrated for dif-

ferent combinations of S, D and A coefficients and as a function of the number of bins per

octave B involved in the CQT computation. The combination of SDA coefficients gives

the best performance for the ASVspoof database (0.16% EERpad for B=12) whereas A

coefficients alone give the more consistent performance for the RedDots database (2.07%

EERpad for B=96). In terms of general trends, smaller values of B give better performance

for the ASVspoof database whereas larger values of B give better performance for the

RedDots database. This would suggest that the detection of voice conversion and speech

synthesis attacks requires a spectro-temporal analysis with higher time resolution. Con-

versely, the reliable detection of replay attacks requires a higher frequency resolution.

4.4 Channel simulation

For experiments described above, PAD algorithms were optimised for a ‘generic’ tele-

phony scenario through the downsampling of original WB data to NB data. Experiments

reported here focus on the evaluation of PAD systems on more challenging data with sim-

ulated landline (L) and cellular (C) channel variation. Results are presented in Table 6 for

the optimised PAD systems corresponding to Tables 4 and 5. LFCC features have dynamic

coefficients (DA) computed using 70 filters for the ASVspoof database. For the RedDots

Replayed database, features are the same, except for 30 filters. Performance degrades sig-

nificantly for both landline and cellular scenarios, more so for the ASVspoof database than

for the RedDots Replayed database.
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Tab. 6: Performance of optimum configurations found in Section 4.3 applied to the ASVspoof and

RedDots Replayed databases with simulated cellular (C) and landline (L) channels (results for

narrowband (NB) also included for comparison).

ASVspoof RedDots Replayed

NB L C NB L C

LFCC 1.44 6.05 11.09 8.12 8.38 10.14

CQCC 0.16 1.86 12.96 2.07 3.10 12.32

CQCC features involve the full SDA configuration with B=16 frequency bins per octave

for the ASVspoof database and A coefficients with B=96 frequency bins per octave for the

RedDots Replayed database. Performance again degrades significantly for both landline

and cellular scenarios and, again, much more for the latter. The relative degradation for

CQCC features in the case of the cellular scenario is significantly greater than for LFCC

features. This could indicate that, despite seemingly better performance for matched con-

ditions, CQCC features are more sensitive to channel variation than LFCC features. Given

that both landline and cellular scenarios share the same bandpass filtering, the degradation

stems from the use of different codecs. The AMR-NB codec has a high compression rate of

7kbits/s. This degradation in performance most likely stems from aggressive compression

and the consequential loss of frequency components which are crucial for presentation

attack detection.
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Fig. 2: DET plots for narrowband, landline and cellular scenarios on the RedDots replayed database.

To further illustrate PAD performance degradation due to codec effects, Figure 2 shows

DET plots of the CQCC PAD system for generic narrowband, landline and cellular scenar-

ios on the RedDots replayed database (replay attacks). PAD on narrowband data is more
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accurate than on landline data for a wide range of operation points. PAD performance on

cellular data is importantly degraded for the complete range of operation points.

5 Conclusions

This paper reports an investigation of bandwidth and channel variation on the reliability

of presentation attack detection (PAD) for automatic speaker verification. Experiments

were performed using two common databases of spoofed speech, namely ASVspoof 2015

and RedDots Replayed which, together, contain a variety of different presentation attacks.

Results show that the performance of two state-of-the-art PAD solutions optimised for WB

speech degrades significantly when applied to NB speech, while PAD optimisation can

improve performance. A higher frequency resolution might be needed for the detection of

replay attacks whereas higher time resolution is need for the detection of voice conversion

and speech synthesis attacks. In the face of channel variation, performance again degrades

significantly. These findings show the need for new, common databases of spoofed speech

which incorporate channel variation in addition to new research in channel compensation

for PAD.
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On the Generalization of Fused Systems in Voice

Presentation Attack Detection

Andre R. Gonçalves´ 1, Pavel Korshunov , Ricardo P.V. Violato ,2 1

Flávio O. Simões1, Sébastien Marcel2

Abstract: This paper describes presentation attack detection systems developed for the Automatic
Speaker Verification Spoofing and Countermeasures Challenge (ASVspoof 2017). The submitted
systems, using calibration and score fusion techniques, combine different sub-systems (up to 18),
which are based on eight state of the art features and rely on Gaussian mixture models and feed-
forward neural network classifiers. The systems achieved the top five performances in the competi-
tion. We present the proposed systems and analyze the calibration and fusion strategies employed. To
assess the systems’ generalization capacity, we evaluated it on an unrelated larger database recorded
in Portuguese language, which is different from the English language used in the competition. These
extended evaluation results show that the fusion-based system, although successful in the scope of
the evaluation, lacks the ability to accurately discriminate genuine data from attacks in unknown
conditions, which raises the question on how to assess the generalization ability of attack detection
systems in practical application scenarios.

Keywords: Presentation attack detection, spoofed speech, cross-database evaluation.

1 Introduction

Presentation (or replay) attacks can be considered as one of the major obstacles preventing

the adoption of speaker recognition in practical applications. This type of attack is rel-

atively easy to perform. If an attacker has access to a speech sample from a target user,

he/she can replay it using a loudspeaker or a smartphone to the biometric system during the

authentication process. The ease of perpetration and the fact that no technical knowledge

of the biometric system is required makes the presentation attack one of the most com-

mon practical attacks. Despite the severity of the problem, researchers started to develop

effective presentation attack detection mechanisms only in the last few years [SKH15].

One of the main challenges in Presentation Attack Detection (PAD) is to find a set of

features that allows systems to effectively distinguish speech signals that were directly

emitted by a human vocal apparatus from those reproduced by a replay device such as a

loudspeaker or a smartphone. Several audio descriptors originally proposed for speaker

verification and speech recognition have also been studied in the context of PAD sys-

tems [SKH15] (and references there in). Features specifically designed for anti-spoofing

systems were the focus of recent research [CRS07, TDE16, MMDM16].

1 CPqD, Brazil. {andrerg,rviolato,simoes}@cpqd.com.br
2 Idiap Research Institute, Switzerland. {pavel.korshunov,sebastien.marcel}@idiap.ch
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Generalization ability of PAD systems has been assessed recently with [TDE17] show-

ing the degradation in performance when specific features optimized using one database

are used unchanged on another database. In [PSS17], cross-database experiments demon-

strated the inability of current techniques to deal with unforeseen conditions. However,

it did not include strict presentation attacks, which can be considered one of the hardest

attack to be detected. The authors of [KM16, KM17] focused on presentation attacks in

cross-database and cross-attack scenarios, and concluded that current state of the art PAD

systems do not generalize well, with especially poor performance on presentation attacks.

In this paper, we present two PAD systems developed for the Automatic Speaker Verifica-

tion Spoofing and Countermeasures Challenge (ASVspoof 2017) [Ki17b]. The submitted

systems are essentially ensembles of several sub-systems composed of state-of-the-art fea-

tures in PAD systems and two well known classifiers: Gaussian Mixture Models (GMM)

and feed-forward neural networks. Calibration and fusion strategies were used to effec-

tively integrate these sub-systems into a possibly more robust PAD systems. We discuss

and compare three different fusion strategies and investigate their performances on the

ASVspoof 2017 database, as well as, by using an unrelated and larger database recorded

in Portuguese language: BioCPqD-PA [Vi13] database.

2 Database and Protocol

Two different databases were used: ASVspoof 2017 and BioCPqD-PA, containing gen-

uine and spoofed recordings. The protocol defined in the ASVspoof challenge splits the

database into three subsets, while BioCPqD-PA is used as just one set. Table 1 summarizes

both datasets. The databases and protocols are described in the following subsections.

Tab. 1: Number of speakers and utterances in ASVspoof 2017 and BioCPqD-PA databases.

ASVspoof 2017 BioCPqD-PA

train dev eval -

# speakers 10 8 NA 222

# genuine 1,508 760 1,298 27,253

# spoofed 1,508 950 12,008 42,768

# total 3,016 1,710 13,306 70,021

2.1 ASVspoof 2017

The ASVspoof 2017 contest focuses on presentation attacks. To this end, the challenge

makes use of the RedDots corpus [Le15] and a replayed version of the same data [Ki17a].

While the former serves as genuine samples, the latter is used as spoof samples, collected

by replaying a subset of the original RedDots corpus utterances using different loudspeak-

ers and recording devices, in different environments, through a crowdsourcing approach.

The database was split into three subsets: train for training, dev for development, and eval

for evaluation. It was also allowed to use both train and dev subsets to train the final system
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for score submission. The evaluation metric adopted was the Equal Error Rate (EER) and

there was no need for participants to provide a decision threshold. The only restriction

concerning the score was that higher scores should favor the genuine hypothesis and lower

scores the spoof hypothesis. A detailed description of the contest can be found in the

challenge evaluation plan [Ki17b].

2.2 BioCPqD-PA

BioCPqD-PA [Vi13] is a proprietary database that contains videos (image and audio) of

participants recorded on different devices (laptops and smartphones) and environments.

All recordings are in Portuguese language. The recordings (genuine audios) are from

222 speakers, collected with 4 different laptops, in 3 distinct environments, and during

5 recording sessions. In each session, 27 utterances with variable content were recorded.

The total of genuine audios is 27,253.

To create the spoof attacks, a subset of these recordings (1,782 utterances sampled from all

speakers’ utterances in such a way that all speakers were represented in the subset) were

replayed in an acoustically isolated room, using 3 different microphones and 8 different

loudspeakers, resulting in 24 configurations. Then, the total number of spoofed recordings

is 42,768 samples (see Table 1). In the cross-database experiments, BioCPqD-PA was

used as one set. Therefore, systems tuned and trained on the ASVspoof 2017 database

(following its protocol) were evaluated on the entire BioCPqD-PA, and, likewise, a system

with the same configuration was trained on BioCPqD-PA and tested on ASVspoof 2017.

3 Description of the submitted PAD systems

In this section, we describe the components that constitute the two submitted PAD systems

referred to as System-1 and System-2 in the rest of the paper.

3.1 Features

We evaluated the performance of the following features previously investigated in the

context of spoofing attacks with synthetic speech: MFCC, IMFCC, RFCC, LFCC, PLP-

Cepstral, SCMC, and SSFC. The use of these features was inspired by [SKH15]. Feature

implementations are available online3, which contribute to reproducibility of results. Other

features were considered, such as CQCC [TDE16], PNCC [KS16], and GFCC [VA12], but

in our previous tests they did not improve the performance of the jointly fused PAD system.

Features are extracted from 20ms speech frames with 50% overlap. All features are based

on short-term power spectrum and were considered 20 coefficients along with their delta

and delta-delta dynamic coefficients.

3 http://cs.joensuu.fi/~sahid/codes/AntiSpoofing_Features.zip and in Bob framework https:

//www.idiap.ch/software/bob/
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3.2 Classifiers

Two distinct classifiers were employed: a traditional 2-class Gaussian Mixture Model

(GMM) classifier, where two 512 components GMM were trained (10 EM iterations),

one for each class, and a Feed Forward Neural Network (FFNN), with the following ar-

chitecture: Input d × 1 → fully connected (12 neurons ReLU) → Batch Normalization

→ Dropout (p = 0.5) → fully connected (64 neurons ReLU) → Dropout (p = 0.5) →
Sigmoid output. The cross-entropy cost function was minimized via Stochastic Gradient

Descent with learning rate equals to 1e-4 with Nesterov’s acceleration.

For 2-class GMM implementation, we used the system provided by the organizers with

the baseline system4 and the implementation in Bob framework5, while FFNN was imple-

mented in python using theano/keras6 framework.

It is important to point out that testing different classification techniques was beyond the

scope of our work for this evaluation. Therefore, a lot of space remains for assessing the

use of more elaborate classifiers for PAD.

3.3 Calibration and Fusion

We focus on a score level fusion due to its relative simplicity and evidence that it leads

to a better performance. The score-fusion is performed by combining scores from each

of the N systems into a new feature vector of length N that needs to be classified. For

classification we consider three different algorithms: (i) a logistic regression (LR), (ii) a

multilayer perceptron (MLP), and (iii) a simple average function (Avg), which is taken on

scores of the fused systems. For LR and MLP fusion, the classifier is pre-trained on the

score-feature vectors from the training set.

When analyzing, comparing, and especially fusing PAD systems, it is important to have

calibrated scores. Raw scores can be mapped to log-likelihood ratio scores with logistic

regression, and an associated cost of calibration Cllr together with a discrimination loss

Cmin
llr are then used as application-independent performance measures of calibrated PAD or

ASV systems. Calibration cost Cllr can be interpreted as a scalar measure that summarizes

the quality of the calibrated scores. A well-calibrated system has 0≤Cllr < 1 and produces

well-calibrated likelihood ratio. Discrimination loss Cmin
llr can be viewed as the theoretically

best Cllr value of an optimally calibrated systems. We refer to [Ma14] for a discussion on

the score calibration and Cllr and Cmin
llr metrics.

3.4 Submitted systems

The two submitted PAD systems are essentially ensembles of different combinations of

features and classifiers. Table 2 shows the set of sub-systems and the fusion method used

4 http://www.ASVspoof.org/data2017/baseline_CM.zip
5 https://gitlab.idiap.ch/bob/bob.bio.gmm
6 Theano: https://github.com/Theano/Theano and Keras: https://keras.io/
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for each PAD system. Features are presented with a subscript ‘all’ or ‘Δs’, where ‘all’

means that all static and dynamic (delta and delta-delta) features were used, while ‘Δs’

indicates that only the dynamic features were considered. The choice of the set of sub-

systems was based on their performances measured on contest’s dev set prior to the sub-

mission.

Tab. 2: Description of the submitted systems: System-1 and System-2.

System-1 System-2

Sub-

systems

GMM with: RFCCall , RFCCΔs, LFCCall , LFCCΔs,

MFCCall , MFCCΔs, IMFCCall , MFCCΔs, SSFCall ,

SSFCΔs, SCMCall , SCMCΔs

FFNN with: IMFCCall , LFCCall , MFCCall ,

PLP-Cepstralall , RFCCall , SCMCall

GMM with: RFCCall , RFCCΔs,

LFCCall , LFCCΔs, MFCCall ,

MFCCΔs, IMFCCall , IMFCCΔs,

SSFCall , SSFCΔs, SCMCall ,

SCMCΔs

Fusion Logistic Regression Logistic Regression

4 Results on the ASVspoof2017 database

Table 3 shows the performance of the submitted systems in terms of EER, both for the

dev and the eval sets. The results obtained for the dev set are based on the systems trained

exclusively on the train set of ASVspoof2017 database, while to obtain the results for eval

set, the systems were trained on the aggregated set: train+dev.

Additionally, the table shows the results of baseline system provided by the challenge

organizers, which is based on CQCC front-end and 2-class GMMs back-end. Best individ-

ual system corresponds to a single IMFCC-based sub-system trained using GMM, which

demonstrated the best performance during pre-submission evaluations. A detailed analysis

of the results can be found in [Ki17b], where the results from all participants are compared.

Tab. 3: EER results for the systems submitted to ASVspoof2017, the baseline system, and the best

individual model (GMM with IMFCC). The performance degradation in the Eval set is possibly due

to the presence of unknown attacks. Ensemble models (System-1 and System-2) are more robust

than individual models on the unseen conditions in the Eval set. Best results are highlighted.

System-1 System-2 Best individual Baseline

Dev (train only) 4.09 4.32 4.86 11.17

Eval (train+dev) 14.31 14.93 29.41 24.65

The only difference between baseline and best individual system is the features used, as the

classifier is the same. An interesting result is the one obtained with best individual system.

While on the dev set it provides comparable performance to the fusion-based systems, on

the eval set it performs dramatically worse.

5 Cross-database analysis

To asses the real ability of the systems trained on the challenge database we applied them

to the completely unrelated BioCPqD-PA database.
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Tab. 4: EER results for the cross-database experiments: system trained on ASVspoof 2017

(train+dev) and tested on BioCPqD-PA, and system trained on BioCPqD-PA and tested on

ASVspoof 2017 (eval). Best results are highlighted.

System-1 System-2 Best

individualAvg LR MLP Avg LR MLP

ASVspoof

(train+dev)
→ BioCPqD-PA 23.35 21.35 22.34 22.23 21.28 22.41 37.24

BioCPqD-PA →
ASVspoof

(eval)
31.86 26.58 30.77 27.74 27.96 28.37 27.77

Table 4 shows that the systems trained on the ASVspoof2017 challenge database (train+dev)

and tested on BioCPqD-PA database led to twice larger EER compared to when the same

systems are evaluated on the eval set of ASVspoof2017 (see Table 3). This finding con-

firms the limited generalization power of the systems. The performance degradation in

cross-database experiments is not unprecedented: it has been observed in previous anti-

spoofing evaluations [TDE17, PSS17, KM16].

Three different fusion methods using Average, LR, and MLP algorithms were tested with

comparable performances. LR led to a slightly better performance, especially for System-

1 trained on BioCPqD-PA database and evaluated on ASVspoof. Comparing the best in-

dividual sub-systems against fused systems, although fusion did not improve results for

systems trained on BioCPqD-PA database, there is a significant improvement when it is

trained on ASVspoof database. Thus, we can reason that, in practice, when the scenario is

unknown, fusion add robustness to the system performance.

Observing the non-negligible difference between the two crossing possibilities in Table 4,

one can arguably say that training data diversity matters. While ASVspoof database has

few speakers (only male) and a limited number of utterances, it contains presumably more

diverse conditions (devices and recording environments) than BioCPqD-PA, due to the

crowdsourcing data collection. On the other hand, BioCPqD-PA is larger, both in terms of

speakers and number of utterances, but recording conditions are more restricted.

6 Discussion

In every challenge, such as ASVspoof or NIST SRE (Speaker Recognition Evaluation7),

the discussion about the provided speech databases emerges. Todisco et al. [TDE17] dis-

cuss the problem of selecting the features set based on results in one database and using

it on another set, pointing out the resulting performance degradation. Based on our ex-

periments, we raise another question regarding the generalization capability of systems to

completely unseen conditions (including different language). Such situation is more likely

to happen in practical PAD systems, where the system is trained on a given database and

the attacks come from completely unknown conditions.

7 https://www.nist.gov/itl/iad/mig/speaker-recognition
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One should note that our cross-database experiments were designed for an extremely mis-

matched situation, when even the language is different between databases. It is expected

that a PAD system should not be sensitive to language mismatch, however that might not

be the case in practice, as most speech features represent acoustic properties of speech that

are indeed affected by the language spoken. This has been a concern for the speaker recog-

nition community as well: the effect of language mismatch has been evaluated in speaker

recognition tasks within NIST SRE along the years.

Training a system with good generalization capability might require a larger and more

diverse database. Modern algorithms based on deep learning [GBC16] approaches, for

instance, which have proven to beat standard approaches in different kinds of tasks, such as

speech recognition and computer vision, need massive amounts of data to provide state-of-

the-art performance. In cases when the acquisition of such an amount of data is unfeasible,

data augmentation strategies, such as [GUNY15], should be considered.

Another point that leads to a controversy is the use of so-called megafusion strategies.

Although the fusion of many systems, sometimes more than a dozen (e.g., the submitted

System-1 is a fusion of 18 systems), usually leads to a better performance, its practical

use is questionable. Megafusion has also been frequently used for the speaker recognition

task, holding the current state-of-the-art results. However, its computational burden makes

it unacceptable in practical cases, specially when system’s response time is crucial.

7 Conclusions

We presented the attack detection systems developed for the Automatic Speaker Verifica-

tion Spoofing and Countermeasures Challenge. The two systems achieved top five error

rate (in terms of equal error rate) among 48 participants. In addition, experiments are

expanded to cross-database scenario (supposedly closer to a realistic application), using

BioCPqD-PA, a different unrelated database. In these experiments, a significant degrada-

tion in performance of the submitted attack detection systems is observed, highlighting the

lack of generalization ability of such systems.

To improve performance, other classifiers, such as support vector machine, random forest,

and deep neural networks (DNNs), need to be tested in the future. As high-generalization

capability classifiers such as DNNs require a large amount of supervised training data, new

data collections or data augmentation strategies will also be considered in future works.

Other features specifically designed for presentation attack also need to be investigated.
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Sarkar, A.; Tan, Z.H.; Delgado, H.; Todisco, M.; Evans, N.; Hautamäki, V.; Lee, K.A.: RedDots
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Exploring Texture Transfer Learning via Convolutional

Neural Networks for Iris Super Resolution

Eduardo Ribeiro 1,2, Andreas Uhl 2

Abstract: Increasingly, iris recognition towards more relaxed conditions has issued a new super-
resolution field direction. In this work we evaluate the use of deep learning and transfer learning for
single image super resolution applied to iris recognition. For this purpose, we explore if the nature
of the images as well as if the pattern from the iris can influence the CNN transfer learning and,
consequently, the results in the recognition process. The good results obtained by the texture transfer
learning using a deep architecture suggest that features learned by Convolutional Neural Networks
used for image super-resolution can be highly relevant to increase iris recognition rate.

Keywords: Single-Image Super Resolution, Iris Recognition, Transfer Learning, Convolutional Neu-

ral Networks.

1 Introduction

Iris recognition is one of the most accurate biometric modality for human identification

mainly because of the intrinsic randomic and stable nature of the iris texture besides its

high degree of freedom and noninvasive acquisition [Hs16]. In an effort to solve the prob-

lems related to the resolution of images mainly due to the iris capture distance and the

inclusion of mobile devices in this field, researchers have focused on improving the image

resolution that may allow the iris recognition of low resolution images since there is a

substantial performance decrease directly related to the lack of pixel resolution. [Ka10]

One of the most relevant areas related to this problem is the Single-Image Super Resolu-

tion, which aim to recover a high-resolution image from a low resolution one. Examples

are the use of internal patch recurrence [HSA15], regression functions [Li15] [TDV15]

and sparse dictionary methods [Ya12]. However, the use of SR techniques for biometric

systems especially for iris recognition is still limited including methods based on PCA

eigen-patch transformation [AFFB15] and non-parametric Bayesian dictionary learning

[Al15].

Over recent years, new techniques applying deep learning have been widely explored to

map models from low resolution to high resolution patches primarily based in previous

models applied to image denoising. Some examples are the use of Convolutional Neu-

ral Networks and Autoencoders [JAL16], [Le16], [Sh16]. Among these several successful

examples, two approaches have become very popular: first the Super-Resolution Convolu-

tional Neural Network (SRCNN) presented by [Do16] that became to be a good alternative

in the first experiments for an end-to-end approach in super-resolution using Convolutional

Neural Networks and then the Very Deep Convolutional Networks for Super-Resolution

This research was partially supported by CNPq-Brazil for Eduardo Ribeiro under grant No. 00736/2014-0.
1 Federal University of Tocantins, Department of Computer Sciences, Tocantins, Brazil, uft.eduardo@uft.edu.br
2 University of Salzburg, Department of Computer Sciences Salzburg, Austria, uhl@cosy.sbg.ac.at
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(VDCNN) proposed by [KLL16] inspired by the VGG-net used for the ImageNet classifi-

cation [SZ14] increasing the network depth to achieve better accuracy.

Some studies show that the use of transfer learning (approach used to improve the per-

formance of machine learning by harnessing the knowledge acquired in another task) also

can be used to assist in the task of single image super resolution as in [YZL17], [SZJ16]

and [SH17]. The main problem is to know which database is more suitable to perform this

transfer learning and to be able to learn the correct patterns that will be useful in the target

database.

For this, in this work we aim to answer the following questions: is the similarity of the

dataset used in the transfer learning important to a better mapping? Are different Iris

Databases more feasible for transfer learning applied to Iris Super Resolution? In partic-

ular, do we get better results in applying the transfer learning for Super Resolution when

the CNN is trained with natural image datasets, texture datasets or iris datasets? Another

issue that we aim to test is if, in a practical application, we could use enrollment images

in high definition already stored on the system to train a CNN and transfer the knowledge

from this dataset to the entire database in order to increase accuracy of the results.

2 Methodology

2.1 Target/Test Database

To test the transfer learning with the different training databases, the chosen target database

was the public iris dataset CASIAIrisV3-Interval that is the most widely use on biometrics

experiments containing a total of 2.655 NIR images of size 280x320 pixels, from 249

subjects captured with a self-developed close-up camera, resulting in 396 different eyes.

In a pre-processing step, all images from this database are resized via bicubic interpolation

to have the same sclera radius, then a square region of 231x231 around the pupil center

is cropped. The images that do not fit in this cropping are discarded. After this procedure,

1872 images from 249 users are remained in the database. For the evaluation method, we

divide this resulting database into two: one containing the first three images of each user

(representing the registration images) and other containing the remaining images from

each user (representing the authentication images). The registration database will be one

of the used databases in the training of the CNN’s and the other (authentication database)

will be used for all transfer learning evaluation.

2.2 Origin/Training Databases

For the CNN training, besides the use of the registration images from the Test Database as

mentioned before, we use 10 different databases including four texture databases, two nat-

ural image databases and four iris databases (from the public IRISSEG-EP [Ho14] dataset)

described as follows.

• Texture Databases: The Amsterdam Library of Textures (ALOT) with 27500 rough

texture images of size 384x256 divided into 250 classes [BG09]. The Describable

Texture Dataset (DTD) with 5640 images of sizes range betwenn 300x300 and

640x640 categorized in 47 classes [Ci14]. The Flickr Material Database (FMD)

containing 1000 images of size 512x384 divided into 10 categories [SRA09]. The
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Textures under varying Illumination, Pose and Scale (KTH-TIPS) database with

10 different materials containing 81 cropped images of size 200x200 in each class

[Da99].

• Natural Image Databases: The CALTECH101 Database is a natural image dataset

with a list of objects belonging to 101 categories [FFFP07]. The COREL1000

database is a natural image database containing 1000 color photographs showing

natural scenes of ten different categories [RBB08].

• Iris Databases: The IIT Delhi Iris Database (IITD) is an Iris Database consisting

of data acquired in a real environment resulting in 2240 images of size 230x240

from a digital CMOS near-infrared camera. The CASIA-Iris-Lamp (CASIAIL) is

an Iris database collected using a hand-held iris sensor and containing 16212 im-

ages of size 320x280 with nonlinear deformation due to variations of visible illu-

mination. The UBIRIS v2 Iris database is a database containing 2250 images of

size 400x300 captured on non-constrained conditions (at-a-distance, on-the-move

and on the visible wavelength), attempting to simulate more realistic noise factors.

The NOTREDAME Iris Database is a collection of close-up near-infrared Iris im-

ages containing 837 images of size 640x480 with off-angle, blur, interlacing, and

occlusion factors.

2.3 CNN Architectures and Frameworks

In this work, for the comparison between different databases using transfer learning we use

a classical Single-Image Super Resolution approach as base called SRCNN [KLL16]. The

framework of this approach consists of three steps: patch extraction/representation, non-

linear mapping and reconstruction. In this method, for the training step, patches of size

33x33 (also called High Resolution (HR) patches) are extracted from the training images

and used as labels for the CNN, then those same patches are downscaled in a factor of

2 and re-upscaled to the original size using bicubic interpolation being used as inputs

to the network (also called Low Resolution (LR) Patches ). The SRCNN architecture is

composed by three convolutional layers, where: the first layer consists of 64 filters of size

9x9x1 with stride 1 and padding 0, the second layer with 32 filters of size 1x1x64 with

stride 1 and padding 0, and the last layer with 1 filter of size 5x5x32 with stride 1 and

padding 0. The loss function used in this case is the Mean Squared Error (MSE) and loss

minimization is done using stochastic gradient descent with the standard backpropagation

method [Le01].

We also decided to use the deeper CNN VDSR [SZ14] that increases significantly the

depth of the network to have a better clarification of the issues raised in this work. The

framework of this approach is done by the following steps: for the training, HR patches

are extracted and downscaled for the factor two, three and four (LR patches) that will

serve as input of the network. In the case of this approach the labels will be the residual

between the LR inputs and then HR patches. The residual-learning boost the convergence

and consequently, the performance of the CNN. The VDSR architecture is composed of

20 layers and the information used for reconstruction have size of 1x41x41 (much larger

than the SRCNN). The training is carried out also based on the gradient descend with

backpropagation [Le01] using the MatConvNet framework [VL14].
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In both frameworks, for the CNN training, a subset of 150000 patches are extracted from

each database to pre-train each CNN from scratch (when the CNN weights are initialized

randomly) using the pre-selected databases and use them in the target database to perform

the Super-Resolution.

3 Experimental Setup

In the method evaluation, to generate the reconstructed image we use the target image

database: images from CASIAIrisV3-Interval that were not used in the training for the

same database (registration versus authentication images) as explained in the previous

section. For each transfer learning procedure the images from the authentication database

are downscaled to the desired factor : 2 (115x115), 4 (57x57), 8 (29x29) and 16 (15x15)

and re-upscaled using the bicubic interpolation for factor 2, then the images pass through

the deep learning CNN (SRCNN or VDCNN) to reconstruct the final super-resolved image

database. Therefore, in this case, to achieve the factor 2 the image will be interpolate and

pass through the trained CNN just one time. To achieve greater factors, images have to

pass through the procedure log2 (n) times, where n is the desired factor.

To evaluate the performance of the transfer learning approach by quality assessment al-

gorithms we use the the Peak Signal to Noise Ratio (PSNR) and the Structural Similarity

Index Measure (SSIM). In these two metrics, a high metric score reflects a high quality.

For the quality tests, all images from the database are used in high resolution as reference

images.

Besides the quality assessment performance, we also conduct recognition experiments us-

ing the USIT - University of Salzburg Iris Toolkit v2 for Iris Recognition [Ra16] with

two different iris segmentation and two feature extraction methods. In the first approach

the iris is segmented and unwrapped to a normalized rectangle of 64x512 pixels using the

weighted adaptive Hough and ellipsopolar transform (WAHET). Then, a complex Gabor

filterbank with eight different filter size and wavelength is used to extract the iris fea-

tures (CG) that will be compared using the normalized Hamming distance [Ra16]. In the

second approach, the iris is segmented also using the weighted adaptive Hough and el-

lipsopolar transform (WAHET). Then, a classical wavelet-based feature extraction is done

with a selection of spatial wavelets (QSW) that will also be compared using the normalized

Hamming Distance [Ra16]. In both cases, with these procedures, using the CASIAIrisV3-

Interval database with 249 users containing at least five or more images per user, we obtain

5087 genuine and 1746169 impostors scores.

We compare our method with bilinear and bicubic interpolation. We are aware that this

comparison is very limited, however Super-Resolution in Iris Recognition research still is

a very new field and the improvement of the comparison of transfer-learning techniques

will lead to a more profound and comprehensive framework to future evaluation.

4 Results

Table 1 shows the quality assessment results for the transfer learning in different databases

using the SRCNN architecture for different factors: 2, 4, 8 and 16. It can be seen that

all transfer learning approaches outperform the bilinear and bicubic interpolations for all
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factors including bigger factors showing the resilience of the deep-learning method when

image resolution decreases.

It also can be noticed that the transfer learning using texture databases perform better

in terms of similarity to the original HR database than the transfer learning using iris

databases. However, the results from the Casia Interval transfer learning present good re-

sults compared to the other iris databases. The best result in this case is when the CNN is

trained with the DTD database especially for higher factors and the Caltech101 database

for smaller factors.
Texture Databases Natural Image Databases Iris Databases

LR Size

(SCALING)
Bilinear Bicubic ALOT DTD FMD

KTH

TIPS

CALTECH

101

COREL

1000
IITD CASIAIL UBIRIS

NOTRE

DAME

CASIA

INTERVAL

115X115

(1/2)

PSNR 0.8855 0.8957 0.9481 0.9595 0.9509 0.9485 0.9492 0.9491 0.9483 0.9422 0.9414 0.9495 0.9502

SSIM 30.77 31.07 35.17 35.87 35.82 35.79 35.85 35.34 35.43 35.12 34.67 35.70 35.80

57X57

(1/4)

PSNR 0.7949 0.8089 0.8243 0.8259 0.8245 0.8232 0.8250 0.8255 0.8214 0.8129 0.8131 0.8216 0.8240

SSIM 27.99 28.67 29.20 29.32 29.29 29.23 29.24 28.97 29.18 29.01 28.86 29.24 29.29

29X29

(1/8)

PSNR 0.6956 0.7061 0.7198 0.7228 0.7157 0.7204 0.7251 0.7236 0.7127 0.7064 0.7085 0.7128 0.7174

SSIM 24.59 25.06 25.61 25.79 25.57 25.69 25.80 25.50 25.44 25.15 25.12 25.44 25.54

15X15

(1/16)

PSNR 0.6120 0.6160 0.6510 0.6544 0.6471 0.6503 0.6557 0.6553 0.6439 0.6406 0.6430 0.6447 0.6494

SSIM 20.78 20.93 23.09 23.23 23.07 23.04 23.21 23.05 23.01 22.67 22.69 22.97 22.95

Table 1: Results of quality assessment algorithms for different databases training with

different downscaling factors (average values on the test dataset) using the SRCNN archi-

tecture comparing to the Bilinear and Bicubic approach.

In the iris recognition verification, it can be seen from Table 2 that the results present

different best results among the databases as well as presents mismatch results between the

quality experimental results from table 2 and the verification results. In the case of EER

the best result for the factor 2 (115X115) is when the DTD database is used (accuracy of

6.07%) in accordance with the quality assessment results (PSNR and SSIM) presenting

even better results than the original database (6.657% of accuracy). Nonetheless, for the

factor 4 (57x57), the best result is from the bicubic interpolation even better than all the

results from the factor 2 and from the original HR database results. Among the training

databases, for the recognition experiments, the more consistently beneficial for the transfer

learning is the KTHTIPS database especially for the factors 4 and 8. Using the enrollment

images from the same target database (Casia Interval) does not lead to good recognition

performances, which means that the CNN poorly memorize the patterns from the users

focusing more in general patterns, mainly because the depth of the network that does not

allow a high feature discrimination.

Texture Databases Natural Image Database Iris Databases

LR Size

(SCALING)
Bilinear Bicubic ALOT DTD FMD

KTH

TIPS

CALTECH

101

COREL

1000
IITD CASIAIL UBIRIS

NOTRE

DAME

CASIA

INTERVAL

115X115

(1/2)

WAHET + CG 6.32 6.39 6.50 6.07 6.66 7.16 6.74 6.39 6.68 6.61 6.37 6.64 6.83

WAHET+QSW 3.26 3.58 3.58 3.32 3.81 4.28 4.02 3.53 3.89 3.92 3.42 4.02 3.84

57X57

(1/4)

WAHET + CG 9.36 5.81 7.19 6.67 6.88 6.22 6.83 6.51 7.90 7.84 8.41 7.59 6.66

WAHET+QSW 6.10 2.65 4.58 3.78 4.09 3.62 3.95 3.74 5.11 5.22 5.75 4.66 3.93

29X29

(1/8)

WAHET + CG 36.11 42.22 32.97 32.19 36.86 22.41 32.88 33.81 38.19 39.88 39.75 39.15 33.89

WAHET+QSW 33.60 42.34 30.62 31.13 34.89 21.75 32.10 33.26 36.50 38.53 37.33 37.04 30.65

15X15

(1/16)

WAHET + CG 31.66 32.96 33.95 33.10 33.03 33.96 33.02 34.68 32.73 28.52 29.62 31.50 31.57

WAHET+QSW 30.68 32.18 32.57 32.06 31.60 33.06 31.66 33.18 31.84 27.60 28.02 31.25 30.17

Table 2: Verification results (EER) for different databases training for different downscal-

ing factors using the SRCNN architecture comparing to the Bilinear and Bicubic approach.

The accuracy result for the original database with no scaling is 6.65% for WAHET + CG

and and 3.81% for WAHET + QSW.
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With the two better databases transfer learning from both quality assessment algorithms

and recognition experiments (KTHTIPS and DTD) we decide to explore the deeper net-

work (VDCNN) comparing the results with the CASIA INTERVAL registration images

transfer learning approach also using the Very deep Super Resolution CNN (VDCNN). It

can be seen in the Table 3 that this architecture leads to superior results comparing to the

SRCNN in the quality measures and mainly for greater factors (8 and 16) in the recogni-

tion experiments. It also can be noticed that with deeper layers, the CNN could be able to

extract more specific texture patterns from the Iris boosting the performance using Casia

Interval database showing much better and consistent performances with this database.

CASIA INTERVAL KTHTIPS DTD

LR Size

(SCALING)
Bilinear Bicubic SRCNN VDCNN SRCNN VDCNN SRCNN VDCNN

115x115

(1/2)

PSNR 0.8855 0.8957 0.9502 0.9555 0.9485 0.9493 0.9595 0.9540

SSIM 30.77 31.07 35.80 36.90 35.79 36.17 35.87 36.56

WAHET + CG 6.32 6.39 6.83 6.63 7.16 6.43 6.07 6.32

WAHET + QSW 3.26 3.58 3.84 3.78 4.28 3.63 3.32 3.53

57x57

(1/4)

PSNR 0.7949 0.8089 0.8240 0.8347 0.8232 0.8256 0.8259 0.8348

SSIM 27.99 28.67 29.29 29.60 29.23 29.42 29.32 29.65

WAHET + CG 9.36 5.81 6.66 6.51 6.22 6.83 6.67 6.69

WAHET + QSW 6.10 2.65 3.93 3.26 3.62 3.41 3.78 3.41

29x29

(1/8)

PSNR 0.6956 0.7061 0.7174 0.7332 0.7204 0.7252 0.7228 0.7374

SSIM 24.59 25.06 25.54 26.04 25.69 25.92 25.79 26.21

WAHET + CG 36.11 42.22 33.89 17.88 22.41 22.14 32.19 19.07

WAHET + QSW 33.60 42.34 30.65 16.72 21.75 19.20 31.13 17.07

15x15

(1/16)

PSNR 0.6120 0.6160 0.6494 0.6563 0.6503 0.6494 0.6544 0.6633

SSIM 20.78 20.93 22.95 23.30 23.04 22.95 23.23 23.57

WAHET + CG 31.66 32.96 31.57 33.87 33.96 31.57 33.10 33.85

WAHET + QSW 30.68 32.18 30.17 32.03 33.06 30.17 32.06 31.76

Table 3: Quality assessment (PSNR and SSIM) and verification results (WAHET + CG and

WAHET + QSW) for different databases training and different downscaling factors using

the SRCNN and VDCNN architectures. The accuracy result for the original database with

no scaling is 6.65% for WAHET + CG and 3.81% for WAHET + QSW.

It also can be noticed with the two different architectures comparing it to the bicubic and

bilinear interpolations that, specially in the SSIM measure, the biggest drop can be ob-

served for small down sampling factors. The CassiaInterval-VDCNN and DTD-VDCNN

database present in both measures (SSIM and PSNR) superior results especially for low

resolution images. On the other hand, for the recognition experiments, despite the good

performance for small factors there is a significant degradation when it comes to very

low resolution using these two databases. It also can be seen that despite the disparity be-

tween quality and recognition results, the databases that present the best recognition results

in average are the KTHTIPS-VDCNN database and the CasiaInterval-VDCNN database

specially for the factors 2, 4 and 8 that the performance is not significantly degraded. We

consider that a good recognition performance is better than a quality measure in this case,

so it can lead to the allowance of using small size images in systems under low storage or

data transmission potential for example.

5 Conclusions
Exploring deep learning for single-image super resolution to improve the performance of

iris recognition still is a new research area. In this paper we explore the use of texture

transfer learning for super resolution applied to low resolution images. This approach was

evaluated in a subset of Casia Iris Database representing the authentication images to also
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verify if the transfer learning from the registration image subset is suitable for this applica-

tion. We have shown how the features from completely different nature can be transferred

in the feature domain, improving the recognition performance if applied to bigger reduc-

tion factors comparing to the classical interpolation approaches.

The experiments showed that the transfer learning was successful using all databases espe-

cially for the texture databases and using a deeper architecture in an uncontrolled scenario

(when both the enrollment and the authentication images are in low resolution) despite

the fact that there was not a best database to be used in all factors. In future work we in-

tend to explore the fusion between the best databases with the enrollment images to see

if the results can be even better for all cases. The direction of this research can become

much more practical to many real scenarios specially in real-life applications when both

the malleability of capturing devices and the recognition rate are important aspects for a

successful iris recognition system.
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Intrinsic Limitations of Fingerprint Orientation Estimation

Patrick Schuch , Simon-Daniel Schulz , Christoph Busch1 2 3

Abstract: Estimation of orientation field is a crucial issue when processing fingerprint samples.
Many subsequent fingerprint processing steps depend on reliable and accurate estimations. Algo-
rithms for such estimations are usually evaluated against ground truth data. As true ground truth is
usually not available, human experts need to mark-up ground truth manually. However, the accuracy
and the reliability of such mark-ups for orientation fields have not been investigated yet. Mark-ups
produced by six humans allowed insights into both aspects. A Root Mean Squared Error of about
7◦ against true ground truth can be achieved. Reproducibility between two mark-ups of a single
dactyloscopic expert is at the same precision. We concluded that the accuracy of human experts is
competitive to the best algorithms evaluated at FVC-ongoing.

Keywords: fingerprint recognition, orientation field estimation, accuracy, reproducibility

1 Introduction and Motivation

The Orientation Field (OF) of a fingerprint is a characteristic feature. It represents the local

orientation of the papillary ridges on the fingerprint. The OFs form typical patterns (see

figure 1). They are decisive for the orientation of the characteristic points of the fingerprint

ridges: the minutiae. Minutiae are the most common biometric features when recognizing

fingerprints. Further processing steps may use information of the OF, e.g. image enhance-

ment and automated minutiae extraction. Thus, fingerprint Orientation Estimation (FOE)

needs to be accurate to allow a precise processing. This makes FOE one of the most im-

portant sub-processes in biometric feature extraction from fingerprints [Ma09].

But what does it mean to have an accurate FOE? An accurate FOE shall not deviate sig-

nificantly from the so-called true ground truth (GT), i.e. the actual OF. Thus one needs to

know GT for a quantitative assessment of an FOE. Unfortunately, the true GT is usually

unknown as one does not know the exact OF. To circumvent this lack of true GT, human

experts may mark-up GT, i.e. estimate the OF manually and record the estimation.

Whenever estimations are made, they should be questioned and analyzed for their ac-

curacy. If in addition humans perform the estimations, reproducibility and whether the

humans need expertise can be a critical issue. Despite the fact that FOE is a key aspect

in biometric feature extraction, neither accuracy nor reproducibility have been assessed in

literature yet. This paper addresses both aspects of FOE by humans.

As a special use case we inspect the benchmark framework FVC-ongoing. It provides the

one and only relevant benchmark for quantitative assessment of algorithms for FOE. This

of course makes use of a human mark-up of the GT [CMT10]. Algorithms under assess-

ment will perform FOE on given fingerprint samples and this estimation is compared to the

1 NTNU, NBL Norwegian Biometrics Lab, Gjøvik, NO, patrick.schuch2@ntnu.no
2 Dermalog Identification Systems GmbH, Hamburg, DE, simon.schulz@dermalog.com
3 NTNU, NBL Norwegian Biometrics Lab, Gjøvik, NO, christoph.busch@ntnu.no
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(a) Whorl (b) Arch (c) Right Loop (d) Right Loop

Fig. 1: The presence or absence of singularities significantly shapes the orientations fields and builds

typical patterns. Those singularities are cores (yellow crosses) and deltas (red crosses). The green

lines emphasize the flow of the ridges around those singularities. The relative positions of the singu-

larities can vary the shape significantly within a pattern type (compare figures 1c and 1d).

GT. GT consists of triplets (x,y,θ GT ) representing ground truth orientation θ GT at pixel

locations (x,y). Let θ E(x,y) be the estimated orientation at location (x,y).
Then accuracy can be measured as the Root Mean Squared Error (RMSE) over all N sam-

pling points provided in a sample:

RMSE =

√
1

N

N

∑
i=1

(θ GT
i −θ E(xi,yi))2 (1)

It is worth mentioning, that the benchmark performs evaluations on two datasets: one

data set contains images of good quality (GQ) and the other one contains images of bad

quality (BQ). Performance is therefore measured in two scalars: AvgErrGQ and AvgErrBQ

representing the average RMSE over all samples on the single datasets. This splitting takes

into account the obvious fact that FOE is a harder task on BQ samples than it is on GQ

samples. Published results of FVC-ongoing confirm this assumption (see figure 2). It is

surprising to observe that since the FVC-ongoing benchmark was started in 2010, the

AvgErrBQ has improved significantly over time, while AvgErrGQ did not. This may be an

indicator for some kind lower bound for RMSE which depends on the benchmark itself.

Additionally, this benchmark gives the opportunity to compare the performance of humans

against the performance of algorithms tested at the benchmark.

The rest of the paper is organized as follows: Related work is described briefly in Section

2. Section 3 describes our assessment on the accuracy of FOE. The findings of this paper

are summarized in section 5.

2 Related Work

Some previous work on FOE is relevant for the method proposed in this paper. One of the

mark-up tools used in this work was presented by Cappelli et al. [CMM09]. Lodrova et al.

have proposed averaging of minutia directions for estimations form multiple experts and

define thresholds when consensus on estimations is found [Lo09]. Dactyloscopic exam-

iners were assessed on several aspects: determination of quality [Ul14][OBB15], minutia
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mark-up [Ul15][Ul16], and identification decisions [Ul11][Ul12]. Oehlmann et al com-

pared algorithms for FOE with two further measures: average deviation (as an alternative

to RMSE) and percentage of area with a deviation larger than 15◦ [OHG15]. This bound of

15◦ can be considered as a threshold between a reasonable estimation and an unacceptable

deviation. They proposed to use RMSE as a measure for the accuracy for FOE against GT

mark-up by a human expert. Chapman et al. provided a guide for the markup of direc-

tions of minutiae [Ch13]. Capelli et al., and Turroni et al. constituted the base for the FOE

benchmark at FVC-ongoing [CMT10][Tu11]. The works of Feng et al. and of Gottschlich

et al. are examples, where manually marked-up OFs were used for assessment of proposed

approaches [FZJ13][GMM09]. Zhao et Jain used manual markups to separate overlapping

fingerprints [ZJ12].

3 Assessment

Fig. 2: Algorithms are ordered by their

publication date. While AvgErrBQ has

been improved significantly over time,

AvgErrGQ stagnates at about 5◦.

Tools We used two different tools for mark-up.

Both differ in the way the mark-up is done and how

the OF is constructed from the mark-up.

Tool A is called FingerprintAnalyzer (see figure 3a).

It was kindly provided to us by the Università di

Bologna. It was the same tool which was used for

marking-up the GT at FVC-ongoing. The tool al-

lows a markup at an equidistant grid. It supports the

editor by giving an initial estimation for the OF at a

selected mark-up point. If the editor does not agree

with this estimation, the local OF can be corrected

manually. The final OF is calculated as a interpolation based on the marked-up support

points. Relevant support points for interpolation are the corner of surrounding triangles

of a Delaunay triangulation on the support points. The output is the OF sampled at an

equidistant grid of every eighth pixel.

Tool B was an internal tool from our team (see figure 3b). It allows to mark-up at any point

of the sample. In addition to local estimations, this tool allows to mark-up singularities

(compare to figure 1). The OF is calculated as a thin plate spline (TPS) on the a complex

plane based on the singularities. The global shape of the OF is modeled using a Zero-Pole

Model. Local deviations from this model can be corrected using control points which use

a TPS to interpolate the residual. No initial orientation proposal is provided for the control

points, i.e. the orientation of the control points must be set manually. The output is an

interpolated OF for every pixel.

Data Acquisition Three experts with perennial experience in the domain of fingerprints

and three laymen marked-up a total of 15 samples. More reliable results would require

more humans involved in the time-consuming mark-up. As we were interested in the high-

est achievable accuracy and best reproducibility, we focused on GQ samples. There were

ten GQ fingerprint samples of dataset FOE-TEST provided by FVC-ongoing (file names

are 110-119). GT marked-up by a human was available for these ten samples.

In addition, three synthetic fingerprint samples were generated by an external synthesizer

tool called SFinGe [CMM04] (see figures 3f - 3g). Two pure synthetic samples completed
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(a) Tool A (b) Tool B (c) SFinGe1 (d) SFinGe2 (e) SFinGe3 (f) Lines (g) Circles

Fig. 3: Two tools are used for mark-up of OF. Tool A interpolates the OF based on marked support

points (yellow lines in 3a). Additionally to local orientation (green lines), our internal tool B takes

into account singularities (cyan triangles and crosses in 3b) and uses Thin Plate Splines for estimation

of the OF. The set of samples to be marked-up consists of the ten GQ samples of FOE-TEST, three

samples generated with SFinGE (3c-3e), and two analytical patterns (3f and 3g).

the dataset to be marked-up: straight lines and circle patterns (see figures 3f and 3g). Used

frequencies were similar to those in fingerprints. For these cases true GT is available.

Both mark-up tools described in section 3 were used for mark-up (see subsection 3). Mark-

up was repeated in three sessions. At least one day break was made between two consec-

utive sessions.

In addition, one expert performed two mark-up sessions on the 50 BQ fingerprint samples

of FOE-TEST. For these samples manual marked-up GT was available, too.

Dataset FOE-TEST provided GT subsampled at an equidistant grid at every eighth pixel.

This sampling rate was the lowest common denominator and was therefore used for all

comparisons. In addition, the foreground area containing the fingerprint is provided with

the set. As only these areas were relevant, only those were evaluated in the RMSE.

4 Analysis and Results

Person Session SFinGe 1 SFinGe 2 SFinGe 3 Lines Circles µSFinGe

Expert 1

1 8.9/7.7 8.9/8.3 6.7/5.6 1.6/0.7 6.1/2.7 8.2/7.2

2 8.9/7.3 8.3/8.2 6.5/7.1 2.1/0.7 6.2/0.9 7.9/7.5

3 7.7/5.3 6.9/7.9 5.2/5.7 1.7/0.7 6.7/0.7 6.6/6.3

Expert 2

1 8.5/6.8 8.8/7.4 8.7/6.1 1.7/0.7 8.3/1.3 8.7/6.8

2 7.8/6.9 7.8/8.2 7.2/5.4 1.3/0.7 6.9/0.6 7.6/6.9

3 8.5/6.1 9.0/7.8 8.6/5.9 3.4/0.7 6.6/0.6 8.7/6.6

Expert 3

1 9.4/9.2 10.0/7.4 6.6/6.3 2.4/0.7 5.1/0.8 8.6/7.6

2 8.3/9.5 8.6/8.5 5.6/6.5 2.6/0.7 2.9/0.7 7.5/8.2

3 8.3/9.6 6.6/8.7 4.7/5.9 1.5/0.7 2.2/1.1 6.5/8.0

Layman 1

1 12.3/21.4 9.7/13.8 7.8/19.8 2.2/0.7 4.8/6.3 9.9/18.3

2 17.0/23.6 9.4/13.2 7.9/11.8 2.5/0.7 8.4/6.8 11.5/16.2

3 11.7/13.0 10.8/13.5 9.5/8.0 1.9/0.7 8.1/8.7 10.7/11.5

Layman 2

1 10.7/11.3 7.5/12.4 7.6/8.3 1.5/2.8 5.0/7.3 8.6/10.7

2 9.5/11.5 8.2/13.4 5.2/6.5 2.0/3.5 5.4/6.5 7.6/10.5

3 10.8/14.7 8.2/11.2 8.3/8.4 2.5/0.0 5.4/6.6 9.1/11.4

Layman 3

1 10.1/9.4 9.8/10.4 5.8/8.7 1.9/2.1 7.6/5.9 8.6/9.5

2 8.2/8.5 9.0/9.5 7.8/6.6 4.4/0.3 5.6/3.9 8.3/8.2

3 10.6/10.8 8.5/11.1 7.9/9.1 2.6/2.8 5.6/2.6 9.0/10.4

µExperts all 8.5/7.6 8.3/8.0 6.6/6.1 2.0/0.7 5.7/1.1 7.8/7.2

µLaymans all 11.2/13.8 9.0/12.1 7.5/9.7 2.4/1.5 6.2/6.1 9.3/11.9

µAll all 9.8/10.7 8.7/10.0 7.1/7.9 2.2/1.1 5.9/3.6 8.5/9.5

Tab. 1: RMSE when marking-up with Tool A/B

Accuracy The accuracy of mark-ups

for FOE can be assessed most accurately

only in comparison to unbiased true

GT. We therefore inspected the RMSE

achieved on the synthetic SFinGe sam-

ples, the lines sample and the circles

sample (see figure 3). Table 1 revealed

that experts performed significantly bet-

ter than laymen on the task of FOE. They

achieved RMSE of 7.8◦ for all SFinGe

samples when the tool A was used. When

tool B was use, 7.2◦ was achieved. These

performances was better than the RMSE

of 9.3◦ and 11.9◦ respectively achieved

by the laymen. Expertise in the domain

of fingerprint recognition was therefore

necessary to produce a more reliable mark-up.

The best single mark-up session for all SFinGe samples achieved RMSE of 6.2◦. The

RMSE achieved for the lines sample showed that this task can be performed with high
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accuracy. Tool B could be used to better approximate the circles due to the capability to

mark-up cores.

Gaining Expertise The development of the RMSE over the consecutive sessions gave

insight, whether FOE is a task which could be learned fast. Surprisingly, laymen did not

improve constantly over time. Despite this, the RMSE for the experts tended to improve

over time. We assumed this effect did not reflect an improvement in the task of FOE itself.

It reflected the fact that the experts got used to the tools and thus became able to express

their knowledge of OF better with the tools.

Humans vs Algorithms Table 2 contains the RMSE achieved against the GT provided

for the samples of FOE-TEST. This allowed to compare the performance of humans

against the capabilities of those algorithms evaluated at FVC-ongoing. The mean RMSE

µ110−119 for all experts achieved with the tool A is 6.2◦ and 7.0◦ for the tool B respectively.

It is worth mentioning, that this was opposite to the higher accuracy against the true GT

from the synthetic images when using tool B. This was likely due to the fact, that tool A

was used to mark-up the GT. Thus, the results might slightly be biased by the mark-up

tool. The best RMSE over all samples µ110−119 was achieved by expert 3 with the tool A:

5.2◦. This was competitive to the best algorithm at FVC-ongoing (see figure 2).

As lower bounds for BQ samples were of interest, too, we performed some extra assess-

ments. One expert additionally performed two mark-up sessions on the 50 bad quality

images of dataset FOE-TEST. The expert achieved a RMSEs of 8.4◦ in the first and 8.3◦ in

the second session against the alleged GT when using tool B and 11.0◦ and 9.6◦ with tool

A respectively. The tool B might therefore be more appropriate for mark up of bad quality

images. However, this accuracy was competitive to the best algorithm at FVC-ongoing

which is called DEX-OF [SSBng].

Person Session 110 111 112 113 114 115 116 117 118 119 µ110−119

Expert 1

1 7.6/7.3 4.9/6.2 5.5/6.1 7.7/7.0 7.3/7.4 5.3/7.0 5.9/6.3 5.5/6.6 7.6/6.8 5.2/6.3 6.2/6.7

2 6.6/5.7 6.7/6.4 6.5/5.8 7.9/7.0 8.3/6.5 5.0/6.4 7.4/5.4 5.9/7.4 7.0/7.0 5.1/5.2 6.7/6.3

3 5.0/4.9 4.5/5.7 5.3/6.1 7.2/7.0 7.8/7.1 5.0/6.3 5.5/5.1 5.1/6.5 6.4/7.2 4.3/5.7 5.6/6.2

Expert 2

1 6.8/6.7 5.8/6.1 7.4/9.5 9.9/7.3 8.7/9.5 4.8/7.9 6.1/5.5 5.5/8.9 6.4/7.9 5.3/5.3 6.6/7.5

2 6.9/5.3 4.9/6.6 5.7/9.2 8.0/6.8 7.6/8.5 4.3/6.5 5.6/6.1 5.4/7.9 6.7/8.1 5.0/5.1 6.0/7.0

3 6.6/6.5 6.6/5.9 6.8/10.3 8.7/9.2 7.9/10.1 4.8/6.8 6.3/5.4 6.1/7.5 5.9/7.9 7.4/6.2 6.7/7.6

Expert 3

1 6.4/6.5 6.4/6.9 6.4/7.7 8.5/8.5 8.1/10.3 6.6/6.7 6.3/8.4 8.6/8.7 6.7/8.1 6.2/6.1 7.0/7.8

2 5.1/7.0 4.6/7.7 4.8/6.1 6.3/8.9 6.6/7.7 4.2/5.5 5.4/6.7 7.1/8.6 5.5/8.9 4.4/5.7 5.4/7.3

3 4.9/7.4 4.5/6.0 4.5/6.1 5.8/7.7 6.7/8.7 4.9/6.0 5.4/6.6 4.4/8.2 6.3/7.4 4.8/5.7 5.2/7.0

µExperts all 6.2/6.4 5.4/6.4 5.9/7.5 7.8/7.7 7.7/8.4 5.0/6.6 6.0/6.2 6.0/7.8 6.5/7.7 5.3/5.7 6.2/7.0

Tab. 2: RMSE against the alleged ground truth provided in dataset FOE-TEST (file names 110-119)

when marking-up with tool A/tool B. The lowest RMSE achieved over all session is 5.2◦.

Local Deviations The distribution of deviations was not uniform for every sampling

point. Figures 4a and 4b visualize the degree of dissent on local orientations for all experts

on a single sample. Let θ E
i (x,y) be the local estimation at location (x,y) from mark-up i.

Then the local dissent δ (x,y) can be measured as the mean deviation from an averaged

estimation µθ (x,y) over M mark-ups:

µθ (x,y) = 0.5∗ arctan

(
∑M

i=1 sin(2 ·θ E
i (x,y))

∑M
i=1 cos(2 ·θ E

i (x,y))

)
(2)

δ (x,y) =
1

M

M

∑
i=1

∣∣∡(θ E
i (x,y),µθ (x,y))

∣∣ (3)
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(a) Tool A (b) Tool B (c) Between Tools (d) Against GT (e) Averaging Mark-ups

Fig. 4: The local dissent among experts on FOE (red tinting in figures 4a and 4b) is similar for both

tools. Dissent is strong near singularities (yellow circles), saddle points of curvature (blue rectangle),

and where the experts need to choose between local fidelity and smoothness (green circle). Where

dissent is large among the expert, the deviation to true GT is large, too (4d). Averaging over more

than one mark-up can reduce such deviations (4e).

(a) Tool A (b) Tool B (c) Between Tools (d) KDE of RMSE

Fig. 5: RMSE between all sessions of all experts and laymen. The block diagonal matrix is high-

lighted by black squares. Those contain the comparison between all sessions of a single person and

therefore allow inference on reproducibility of mark-ups.

The more intense a block was colored red, the larger was the dissent. Not surprisingly, the

dissent was larger in the vicinity of singularities than it was in regions of low curvature.

The local distribution of dissent was similar for both tools (see figure 4c). The area of

dissent near singularities was larger for tool B than it was for tool A (yellow circles). Due

to the fact that singularities could be marked-up with tool B, slight deviations in position

of singularities led to larger areas of dissent. Relevant deviations can also be found where

curvature has saddle points, i.e. where the ridges change their bending (blue rectangle).

Additionally, there were deviations at those points, where experts had to decide between

smoothness of the OF and high fidelity to local changes of the OF (green circle). This was

more an individual bias than it was a critical deviation.

The local deviation among the experts from their estimated mean was strongly correlated

to their mean deviation against the GT on the three samples generated with SFinGE. Pear-

son’s correlation coefficient between both mean deviations is 0.8. Therefore, it is likely

that dissent among multiple mark-ups will coincide with deviations from true GT.

Reproducibility Whenever humans are involved in processes, reproducibility is an im-

portant issue . Single mark-up sessions of the human editors were compared against each

other to assess this aspect. Figures 5a-5c visualizes the RMSE between all mark-ups made

by the six human editors. Since also RMSE between all sessions of a single person were
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included in this graphic, it contains information regarding reproducibility. In general, ex-

perts achieved lower RMSE between their sessions than the laymen did. This holds except

for layman 2 when marking up with tool A. This good reproducibility needed to be put

into perspective of significant higher deviation against true GT (see table 1).

However experts could achieve RMSE between 5◦ and 7◦ between two mark-ups. Surpris-

ingly, these accuracies were only slightly better than the accuracies between the particular

experts. This was an indicator that the single mark-ups were good estimations of the true

OF. The RMSE between the two sessions on the BQ samples was 11.7◦ when using the

tool A and 7.6◦ when using the tool B.

Approximating True GT It seemed, that the mark-ups could be interpreted as true GT

disturbed by some noise. If the noise is mean-free, averaging mark-ups will reduce the

influence of noise. Figure 4e visualized the empirical cumulative density function of devi-

ations between µθ and the true GT of the SFinGe samples. The more mark-ups involved

in averaging, the lower was the deviation against the true GT. There was no significant

difference between averaging all three mark-ups of one expert and averaging one session

each from all three experts.

5 Conclusions

By extensive and time consuming mark-up of OFs, we investigated questions regarding

FOE when performed by humans. We found that expertise in fingerprints increases the

accuracy of marked-up OFs. Experts achieved an RMSE of about 7◦ compared to true

GT. Averaging over more than one mark-up increased the accuracy. Inspection of multiple

mark-ups of a single expert showed, that mark-ups could be produced at similar values of

RMSE. These values were, therefore, interpreted as rough lower bounds for a reasonable

accuracy at FVC-ongoing. When humans were compared to the alleged GT at benchmark

FVC-ongoing, they achieved roughly 5◦ on GQ samples and about 8.4◦ on BG samples

respectively. This was competitive to the best algorithms evaluated by FVC-ongoing.
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Unobtrusive Gait Recognition using Smartwatches

Neamah Al-Naffakh , Nathan Clarke , Fudong Li ,1,2 1,3 i1, Paul Haskell-Dowland1,3

Abstract: Gait recognition is a technique that identifies or verifies people based upon their

walking patterns. Smartwatches, which contain an accelerometer and gyroscope have recently

been used to implement gait-based biometrics. However, this prior work relied upon data from

single sessions for both training and testing, which is not realistic and can lead to overly optimistic

performance results. This paper aims to remedy some of these problems by training and evaluating

a smartwatch-based biometric system on data obtained from different days. Also, it proposes an

advanced feature selection approach to identify optimal features for each user. Two experiments

are presented under three different scenarios: Same-Day, Mixed-Day, and Cross-Day. Competitive

results were achieved (best EERs of 0.13% and 3.12% by using the Same day data for

accelerometer and gyroscope respectively and 0.69% and 7.97% for the same sensors under the

Cross-Day evaluation. The results show that the technology is sufficiently capable and the signals

captured sufficiently discriminative to be useful in performing gait recognition.

Keywords: mobile authentication, gait biomtrics; accelerometer; smartwatch authentication

1 Introduction

Billions of mobile devices are being used globally having a wide variety of applications

(e.g., e-commerce and banking). The use of mobile devices has inherently raised security

concerns and there exists a prevalent requirement to secure these devices. Smartwatches

have been steadily increasing in popularity and this trend is expected to continue as the

technology improves. Therefore, wearables could be used to enhance mobile security in

a more effective way. Recent studies have demonstrated that both smartphones

[DNBB10, MM14, NWB12] and smartwatches [JW15, SMS16, ACDL16] can provide

gait-based biometric authentication service by using various sensors. However, the

majority of prior research either used a limited dataset or trained and tested the system

on data that was collected on the same day (which is not a realistic model for a real

world application as the user would be required to enroll on the system every day). To

this end, this paper explores the use of smartwatches for transparent authentication based

upon gait recogntion. The main contributions of this study are demonstrated as follows

 To the best of the author’s knowledge, this is the biggest dataset for smartwatch-

based gait authentication, which contains gait data of 60 users over multiple days.

 A comprehensive feature set was extracted in the time and frequency domains and

analyzed to highlight their impact on system performance.

 The novel feature selection method utilised a dynamic feature vector for each user

and successfully reduced the feature vector size with better performance.

 Identifying the optimal source sensor for the authentication task.

 The results of this study outperform the prior biometric accelerometer –based studies.
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The rest of the paper is organized as follows: Section 2 reviews the state of the art in

transparent and continuous authentication that specifically uses accelerometer (Acc) and

gyroscope (Gyr) sensors. Data collection and feature extraction are outlined in Section 3.

Sections 4, 5 and 6 present the experiment design, feature selection approach, results and

discussion. Section 7 presents the conclusions and future research directions.

2 Related Work

Gait-based biometric systems have an advantage over password-based systems in that

impersonation is much more difficult to accomplish even video footage of someone

walking on a treadmill (to match the victim’s pace) is not sufficient to mimic a user
[GSB07]. Verifying people based on their walking patterns is an unobtrusive mechanism

that does not require explicit user interaction and provide continuous authentication.

Recently, increased interests are shown in mobile gait authentication; and performance

rates vary considerably depending upon feature extraction methods and types of

classifiers utilised. A comprehensive analysis of the prior studies on gait authentication

using smartwatch and mobile sensors is summarized in Table 1.

Tab 1. Comprehensive Analysis on Gait Authentication using Mobile and Smartwatch Sensors
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[DNBB10] C TD DTW 20.1 (EER) 51 120/MD M

[NDBB11] C TD DTW 21.7 (EER) 48 1200/CD M

[MM14] C TD DTW 19 (EER) 35 240/CD M

[KWM10] S TD NN 100 (CCR) 10 300-600/SD M

[NB11] S FD HMM 6.15 (EER) 48 1200/CD M

[HN12] S FD SVM 10 (EER) 36 1200/CD M

[NWB12] S FD KNN 8.24 (EER) 36 1200/CD M

[CLB15] S TD BN 96.27(CCR) 44 400/SD M

[NBB11] S TD SVM 10 (EER) 51 120/CD M

[JW15] S TD RF 1.4 (EER) 59 300-600/SD SW

[WTGYS16] S TD RF 94.2 (CCR) 17 2160/SD SW

[CAM16] S TD KNN 2.9 (EER) 15 - / SD SW

[SMS16] S TD RF 2.6 (EER) 18 350/CD SW

[KPR16] S TD & FD KNN 95 (CCR) 40 240/SD SW

[ZYCWS17] S TD & FD NN 0.5 (EER) 9 - / SD SW

Legend: C: Cycle-based; S: Segment-based; TD: Time Domain; FD: Freqency Domain; DTW: Dynamic

Time Warping; HMM: Hidden Markov Model; SVM: Support Vector Machine; KNN: k-nearest neighbours;

RF: Random Forest; NN Neural Network; EER: Equal Error Rate; CCR: Correct Classification Rate;

M: Mobile; SW: Smartwatch; SD: Same Day; , CD: Cross Day

Two main approaches can be used to extract gait features, namely cycle and segment-

based. Cycle extraction attempts to segment the data into pairs of steps. This offers a

very exciting opportunity where if such a system is implemented effectively. Howeover,

the literature shows high EERs (ranging from 19% [MM14] to 21.7% [NDBB11]). This

is most likely the result of the complicated and unclear nature of cycle extraction. In
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contrast, the performance of the segment based methods, which focus on fixed-length

blocks of data, appearing to be more effective and stable, with studies reporting EERs

between 1.4% and 10 % [JW15, NBB11]. With respect to features, several studies in the

domain have used both time domain (TD) and frequency domain (FD) features but little

attention has given to measure the impact of these features on the system performance.

As illustrated in Table 1, the most recent studies used a smartwatch device to collect the

Acc and Gyr gait data for transparent authentication systems (TAS). However, in [JW15,

WTGYS16, CAM16, ZYCWS17] the gait data was obtained on the SD and the dataset is

considered limited ranging from 9 to 18 users (apart from JW15). In addition, the authors

did not carry out any particular study on feature selection in order to identify the most

discriminative features. In contrast, a feature selection mechanism was conducted by

[KPR16] and reported 95% CCR by using the SD scenario. However, the system

performance was reduced to 86.8% CCR (with a limited dataset of 13 users only) when

the CD scenario was applied. This can be attributed that the proposed approach is not

sophisticated enough to identify a unique feature set for individuals that work over time.

3 Data Collection and Feature Extraction

The Acc and Gyr data was captured from the Microsoft Band 2 at a rate of 32 samples

per second for the x, y and z-axes and automatically sent to a smartphone residing in the

user’s pocket via Bluetooth. In total, 60 users participated in the data collection; each

user was required to walk on a predefined route in two sessions on two different days

(within a time frame of 3 weeks between the sessions). Every session consisted of three

walks trails from each user. In each trail, the user was asked to walk at a natural speed on

flat ground for 2 minutes with few turns. For a more realistic scenario, the subject had to

stop in order to open a door. Moreover, no other variables, such as type of footwear or

clothing, are controlled. Once the data collection was completed, the signal processing

phase was undertaken- a brief description of the steps is as follows

 Time interpolation: as the Microsoft Band 2 sensors were not able to record data at a

fixed sample rate, time interpolation was required to make sure that the time period

between two successive data points was always equal

 Filtering: a low pass filter was designed in order to enhance the accuracy of the

signal. This was carried out with several settings (i.e. 0.1, 0.2, 0.3, 0.4 and 0.5) and

the cut-off frequency of 0.2Hz achieved the best accuracy.

 Segmentation: the tri-axial raw format for both Acc and Gyr signals were segmented

into 10-second segments by using a sliding window approach with no overlapping.

Therefore, in total 36 samples were collected for each user per day.

A feature extraction process is carried out on both the Acc and Gyr data segments of

each user. In total, 140 features were extracted based upon prior work identified in gait

recognition studies. Features were extracted from both the time and frequency domains

on Acc or Gyr data. Since most features are generated on a per-axis basis and each

sensor has 3 axes, most features are represented by a multiple of three values. The

number of generated features and their types are presented in Table 2. Details of these

features (e.g., how they are calculated) can be found in [KWM10, JW15].
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Tab 2. List of the extracted TD and FD features

Feature Type NF TD FD Feature Type NF TD FD

Difference 3 √ √ Skewness 3 √ √
Variance 3 √ √ Average 3 √ √
Median 3 √ √ Kurtosis 3 √ √

Maximum 3 √ √ Minimum 3 √ √
Energy 3 - √ Entropy 3 - √

Time Between Peaks 3 √ - Standard Deviation 3 √ √
Correlation Coefficients 3 √ √ Root Mean square 3 √ √

Cosine Similarity 3 √ - Covariance 3 √ -

Interquartile range 3 √ √ Binned histogram 30 √ -

Peaks Occurrence 3 √ - Percentile 25,50 6 √ √
Average Absolute

Difference
3 √ √ Average Resultant

Acceleration
1 √ √

4 Experimental Methodology

Biometric authentication or verification is a binary classification problem, where the aim

is to determine if a system can identify a genuine user correctly or as an imposter. A

separate model is generated for each user. The reference and testing templates were

created under three different scenarios for SD, MD and CD. For SD and MD, the data

was divided into two sets: 60% of the data for training and the remaining 40% for

testing; also training samples were extracted from both days for the MD scenario. For

the CD scenario, the first day’s data was used for training and the second day data was

employed for testing. Also, the Feedforward Multi-layer Perceptron (FF MLP) neural

network was used as the default classifier due to its reliable performance [KWM10].

The feature selection step is important for biometrics based studies in order to reduce the

potentially large dimensionality of input data. By selecting an optimal feature set for

individuals, the system performance could be potentially enhanced. Also, it will be

easier to manipulate and calculate smaller feature subsets on digital devices. Majority of

gait recognition systems select common features for all the population; this could be

useful if the system is based on identifying the genuine user only. However, a balance

between security and usability needs to be taken. Therefore, this study focused on

creating a dynamic feature vector that contains distinctive features for each user. As a

result, the feature subset for each user very different from each other (e.g., the reference

templates could be created by using features 1, 2, and 7 for user 1 while features 3, 4,

and 5 for user 2). This can be achieved by calculating the mean and Standard Deviation

(STD) for each feature of all users and then compares the authorized user’s results
against impostors to select the feature set with the minimal overlap. In other words, for

each feature, a score is calculated based upon the following condition:

 If the mean of imposter’s activity is not within the range of the mean +/- STD of

genuine, add 1 to the total score.

 Dynamically select the features according to their score order from high to low. The

highest score means less overlap between imposters and genuine user (see Fig 1 (A)).

Fig 1 shows an example of applying the proposed feature selection method on two

different features for user 1. Based upon the overlap percentage, it is clear from Fig 1

that the Kurtosis feature has lowest overlap score compared to the Covariance feature.
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As a result, the Kurtosis feature was selected to form the feature vector of user1, while

the second feature (i.e. Covariance) was neglected. This procedure is repeated for each

individual and each feature resulting in a bespoke and prioritized feature set.

Fig 1: the effect of the dynamic feature selection approach

In order to evaluate the proposed system, several consecutive experiments were

undertaken that include:

 Analysis and highlighting the impact of the time and frequency domain features on

the system performance.

 The discriminative features were evaluated and the reference and test templates were

created by selecting an optimal feature set for each user independently.

 The results cover the three evaluation scenarios (SD, MD, and CD), the two different

sensors (Acc and Gyr), and one classification algorithm (FF MLP neural network).

5 Results

According to the plan, the first expermient was to highlight the impact of the time and

frequency domains features on the system performance and the results are presented in

Table 3(using the SD scenario).

Table 3: EER of Using All Features, Time and Frequency Domains

Feature type NF EER (%)

Acc Gyr

All Features 140 0.13 3.37

Time domain 88 0.15 3.73

Frequency domain 52 3.09 12.69

It is clear that good performances were achieved by using the TD features and all feature

sets; and little difference in results is observed between the two sets. By using the FD

features alone, reasonable performance is obtained; but its performance is far less

promising in comparison with the results of using TD features alone, suggesting FD

features add little contribution towards the classification process. Given the fact that

detecting redundancies features makes the system more efficient, therefore, only the TD

features (i.e. 88 features) were used in subsequent experiments as it shows low EER.
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Further analysis was conducted to reduce the extracted TD features by applying the

proposed dynamic feature selection method. Table 4 shows the impact of feature

selection under the SD, MD and CD scenarios and two sensors. It can be concluded that

the feature selection mechanism has a positive effect on the performance by minimizing

the number of features and maximizing the discriminative information. In addition, as

expected the system performance of the SD and MD scenarios exceeded the CD

evaluation for both sensors.

Tab 4: Impact of the dynamic feature selection technique upon the performance in detail.

Evaluation

Scenario
Sensor

Number of Selected Features

10 20 30 40 50 60 70 80 88

SD Acc 1.13 0.78 0.24 0.26 0.27 0.13 0.20 0.16 0.15

SD Gyr 6.6 4.88 3.63 3.74 3.12 3.58 3.48 3.43 3.73

MD Acc 2.22 0.82 0.42 0.22 0.25 0.20 0.22 0.16 0.28

MD Gyr 7.63 4.81 3.85 3.80 3.53 3.51 3.24 3.25 3.35

CD Acc 4.68 2.39 1.43 0.9 0.84 0.83 0.69 0.77 0.93

CD Gyr 11.09 9.76 8.62 8.49 8.94 8.53 8.42 7.97 8.29

As shown in the Table 4 vastly good results were achieved with best EERs of 0.13% for

Acc and 3.12% for Gyr by utilizing the SD scenario (compared to 2.9%, 1.4% and 0.5%

of EERs by [CAM16, JW15, ZYCWS17] and CCR of 95% and 94% by [WTGYS16,

KPR16]. Moreover, high performances with EERs of 0.78% and 4.88% can still be

achieved by using only 20 features for Acc and Gyr accordingly. Comparing to the SD

scenario, no significant difference was found in the MD scenario where the best EERs

are 0.16% for Acc and 3.24% for Gyr, as the training set contained samples from both

days. However, these results outperform the outputs (i.e. EER ranging from 6.1% to

21.7%) of previous studies [NB11, NBB11] under the MD scenario.

As shown in Table 4, the best performance of the CD scenario are EERs of 0.69% (for

Acc) and 7.97% (for Gyr). As expected the system performance is droped under the CD

test as the human’s behaviour does change over time. Nonetheless, the presented CD
results are still very promising (i.e. 0.69% EER) in comparison with the prior work that

reported EERs in the range of 2.6% - 21.7% [NDBB1, MM14, NB11, HN12, NWB12,

NBB11, SMS16] . In addition, the CD test does not require the user to re-enrol in the

system on a daily basis.

With the aim to understand how individual user performed, results on each user’s Acc

for both SD and CD scenarios are presented in Figure 2. As shown in Figure 2 high level

of performance (i.e. in the range of 0-2% EER) were obtained for 90% of users, (apart

from users 31, 37, 38, 42, 48, and 51) for both SD and CD scenarios. This suggests that

users have a consistent and distinctive set of ccA pattern characteristics.

With respect to the feature subset size, as shown in Table 4 the SD test requires less

features (i.e., 60 features) than the CD (i.e., 80 features) to produce the lowest EER. This

could be explained because the user’s gait pattern could vary or be inconsistent over time

due to many factors (e.g., shoes, clothes, and mood), hence more features are required

for individual to be identified. Moreover, creating a dynamic feature vector size for each

user independently might greatly reduce the EER (e.g., the refrence template can be

constructed by using 20 features for user 1 while 40 features will be used for user 2)
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Fig 2: The Acceleration Results of Both Scenarios Separated by Users

6 Discussion

As shown in the previous section, the presented results reveal that smartwatch based gait

recognition is highly efficient and recommended to be used for verifying users in a

transparent and continuous manner. The best results were EERs of 0.13% and 0.69% for

SD and CD scenarios respectively by using Acc signals. However, the results were

obtained in controlled conditions, so, further investigation is required by collecting the

user’s data during the entire day over multiple days in order to find the influence of

collecting real life data on the system performance. Although features were extracted

from both time and frequency domains, the findings in Table 2 support the use of time

domain features alone as a better decision especially for mobile devices. For the realistic

test, the EER was slightly increased from 0.13% to 0.69% when the Acc reference and

test templates were created from the data of two different days. Because the obtained

Acc results were very strong, the fusion of data from both sensors was not necessary.

Further influencing factors on the biometric system performance is the selected feature

subset; selecting unique features for each user would improve the results and reduce the

complex computations on the smart devices which have limited processing resources.

Therefore, a feature selection approach of any mobile-based biometric system needs to

be sophisticated enough before the classification phase takes place. As expected, the

proposed feature selection approach in this study, which was based on creating a

dynamic feature vector for each user, successfully reduced the user’s feature vector size

and resulted in lower EER’s of 0.13% and 0.69% for the SD and CD tests respectively
(compared to 0.15% and 0.93% when the whole features were used). However, further

investigation is required to reduce the number of the optimal features for each user

independently which might offer better accuracy/error rates.

7 Conclusions and future work

Based on the performance in this study, smartwatch-based gait recognition shown to be

effective and can be used with in TAS. The paper also presents an analysis of the feature

set to examine the impact of features upon performance, which has resulted in proposing

a dynamic feature set. The proposed system was evaluated by collecting the motion data

from 60 users and analysed the feature set to determine its uniqueness. However, more

experimental work should be carried out to investigate the impact of the dynamic feature

vector size for each user.

Further work will also explore examining a wider range of different activities (e.g., fast
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walking and typing on smartphone touch screen) to expand the technique from merely

gait recognition to activity recognition. A future study will aim to remove the one factor

that is explicitly controlled in all previous studies – the nature of the controlled data

collection and instead look to understand what the performance of the approach is with

real life data over a prolonged period of time. As the nature of the real life signals is

likely to be noisy, an appraoch will be used in order to predict the user’s activity.
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Evaluation of Motion-based Touch-typing Biometrics in

Online Financial Environments

Attaullah Buriro , Sandeep Gupta , Bruno Crispo1 1 1,2

Abstract: This paper presents a bimodal scheme, the mechanism which contemplates the way a user
enters an 8-digit PIN/password and the phone-movements while doing so, for user authentication in
mobile banking/financial applications (apps). The scheme authenticates the user based on the timing
differences of the entered strokes. Additionally, it enhances the security by introducing a transparent
layer utilizing the phone-movements made by the user. The scheme is assumed to be highly secure
as mimicking the invisible touch-timings and the phone-movements could be extremely onerous.
Our analysis is based on 2850 samples collected from 95 users through a 3-day unsupervised field
experiment and using 3 multi-class classifiers. Random Forest (RF) classifier out-performed other two
classifiers and provided a True Acceptance Rate (TAR) of 96%.

Keywords: Smartphones, Biometric Authentication, Human-Computer Interaction

1 Introduction

Mobile banking is among the most sensitive activity a user performs on the Internet. Almost

every bank now offers mobile banking through their dedicated apps. Thus, increasing

number of smartphone users carry their banks around in their pocket rather than limiting

themselves to just desktops or laptops. Recent research revealed that more than 82% of the

teenage users (between 25 to 35 years) and 70% of the household users use online banking

from their smartphones3.

Mobile banking apps perform remote authentication requiring user credentials, as proof of

identities, over the network. The credentials include user-name and the password (given

by the bank or chosen by the user). The entered credentials are matched with the bank’s

database, and if found correct, the identity is confirmed. Since, they are open (exposed to

view), uncontrolled and unsupervised, they pose several security challenges. Banks are

shown to be reluctant replacing completely these schemes with the newer ones because

there are no extensive data on their security.

1 Department of computer Science and Information Engineering (DISI), University of Trento, Via Sommarive 5,

Povo, Trento, Email: {attaullah.buriro, sandeep.gupta, bruno.crispo}@unitn.it
2 DistriNET, KULeuven, Belgium, bruno.crispo@cs.kuleuven.be

3 https://thefinancialbrand.com/62013/mobile-online-banking-payments-billpay/
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This paper proposes motion-assisted touch-typing biometrics - a method to overcome the

limitations of PINs/password, for the users of mobile banking apps. The scheme leverages

two common human behaviors, i.e., touch-typing and phone-movements by the user. It

identifies a user based on the timing differences of the entered strokes and the phone-

movements made during the period of text entry. The user is authenticated on the basis of

what and how she entered the text. In the case an adversary finds what is being entered, the

access will still be denied because of the presence of the two invisible and inherently secure

behaviors, i.e., touch-type timing differences and phone-movement. What we propose is also

a effortless way to adopt behavioral biometrics, which not only complements the existing

traditional methods but also keeps collecting data and security incidents with respect to

time to evaluate dynamically the use of behavioral biometric only or both. We did not have

time in this paper to collect historical data to say something specific about the choice, but

the scheme offers gradual enrollment strategy.

The proposed scheme is fully transparent as it does not require any additional input from

a user besides entering the credentials that makes it not only more usable but augments

an additional layer enhancing the security of PINs/passwords as mimicking the person-

specific movements are extremely onerous. Our scheme utilizes the built-in hardware, i.e.,

3-dimensional sensors, to register user-generated phone-movements, and touchscreen to

obtain touch-strokes. The sensors are started on the first touch and stopped on the last (the

8th). We evaluated our scheme on our collected dataset of 95 users by applying multi-class

classification approach replicating the banking scenario. The main contributions of this

paper are listed below:

• The proposal of a secure and usable behavioral-biometric-based authentication

solution, for mobile banking. The scheme contemplates the touch-strokes timing-

differences and the phone-movements during the process of entering PIN/password.

• Proof-of-concept prototype Android application of a proposed scheme for smart-

phones.

• Collection and sharing (in the due course of time) of the collected dataset of 95 users.

2 Related Work

Since the behavioral patterns can be collected unobtrusively, behavioral-biometric-based

schemes are widely being researched for smartphone user authentication, these days. The

search of new human behaviors, profiled through mobile sensors, have gained significant

focus these days. Among all the researched schemes, i.e., the way a user walks (gait)

[NWB12, De10] and they way a user types/enters any text (touchstroke)[Gi14, Bu15b, Bu16]

are very popular.

Our scheme is a bimodal system which leverages the timing-differences from the entered

8-digit secret and the phone-movements while the user enters the text to login to the banking
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app, we compare our work with the closely related work proposed in the literature, i.e.,

[Gi14, Bu15b, Bu16] .

Giuffrida et al., [Gi14], proposed sensor enhanced keystroke based scheme for user

authentication on Android smartphones. They reported an Equal Error Rate (EER) of 4.97%

and 0.08% on fixed-text passwords (keystroke) and on sensory data, respectively, on a

dataset of 20 users. Later, Buriro et. al., [Bu15b, Bu16] modeled sensory readings as hold

behavior and introduced free-text secret the user needs to enter or writes on the touchscreen.

They reported 1% EER on a dataset of 12 users for touch-typing [Bu15b] and ≈ 95% TAR

at 3.1% False Acceptance Rate (FAR) on the dataset of 30 users [Bu16].

Our scheme is different from the previously proposed schemes in at least two ways: (i)

all these papers performed in-lab supervised experiments and their analysis was based on

a small number of users, i.e., just 12 [Bu15b], 20 [Gi14], and 30 [Bu16]. We evaluated

our scheme on a comparatively larger dataset of 95 users collected in the wild. Since the

number of users in previous studies was less and data was collected in the lab settings, it

is difficult to examine how their achieved error would have varied if the number of users

was more and data was collected in the wild. (ii) All of the papers evaluated their data

either using one class or binary class classification [Bu15b] - replicating authentication on

their smartphones [Bu16, Si15], but we have evaluated our data by applying multi-class

classification replicating server based remote client authentication.

3 Motion-based Touch-typing Biometrics

To perform an online transaction, the user is required to login to the banking app, which

is generally performed by entering the credentials i.e., email, customer-id, and 8-digit

PIN/password. Banking server matches the credentials and decides accordingly. Hence, the

user is authenticated on the basis of entered text and one who enters the correct pre-stored

credentials is treated as the genuine customer/user. Since the password is vulnerable to

spoofing, this mechanism poses a threat to the customer privacy.

Our scheme authenticate the user based on what and how she enters the text. Our scheme

computes the key-hold and inter-stroke timings from the entered 8-digit secret and extracts

the statistical features from different 3-dimensional sensors, for the entire duration of input,

to profile the genuine user. In this way, it provides both usability (because the authentication

mechanism is hidden from the user/customer), and security (because it is very difficult to

impersonate the two inherently secure invisible human behaviors). Thus, the attacker needs

to successfully mimic both invisible and person-specific characteristics to get access.

Figure 1 illustrates our approach. In enrollment phase, the banking server collects all the

required features from the entered text and phone-movements to form a feature vector. Then

it applies feature selection scheme to find out the most productive subset and calls it final

feature. This final feature vector is saved in the bank’s database under a particular label (i.e.,

user id, etc.)
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Fig. 1: Model diagram

In verification phase, the user is required to enter the label and the 8-digit password. The

banking server picks the earlier pre-selected features from the features of the entered

sample, and forms the query feature vector. Later, it compares this feature vector with all

the pre-stored feature vectors under that label to find similarity, and authenticates the user,

accordingly.

It is our assumption that the users would happily provide these much number of samples for

enrollment in final systems, we evaluated our approach for different number of samples, i.e.,

5, 10 and 15. However, we consider these samples too few to train the advance machine

learning algorithms, i.e., deep learning, we chose simple but effective classifiers, which can

perform pretty well even on less training-samples, for our evaluation.

4 Evaluation

4.1 Dataset

We collaborated with “UBERTESTERS a crowd sourcing platform to test the application,

involving 95 users. We prototyped an Android application, namely, PIN&WIN to collect

data. Our application can be installed on any Android device running 4.4.x OS or higher.

We setup a web page with the complete explanation of PIN&WIN, i.e., the user consent,

the procedure to install/uninstall the application. The testers had to agree to the consent

form in order to download the app and to participate to the experiment. Then, they had to

install the application, answer to the demographic questions, enter 8 − digit touch-types

and keep the application running for at least 3 days. PIN&WIN required user’s interaction

in 3 sessions in 3 days. PIN&WIN required 30-minutes of user interaction on the first day,

after installation, and 15 minutes of interaction on the following two days. In this manner,

each user had to test the application for 1 hour, however, they needed to keep the application

installed for 3 − days. We collected 30 samples from each participant (in total 2850).
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Tab. 1: User demographics (M = Male, F = Female, R = Right, L = Left)

Information Description Information Description

No. of Users 95 Gender 75(m), 20(f)

Sample Size 2, 850 (30 X 95) Password 8-digit

Devices Android Smartphones with atleast 4.4.x version Handedness 89(R), 6(L)

No. of Sessions 3 Age Groups 90 (20 − 40), 5 (41 − 60)

4.2 Features Extraction & Selection

Our solution leverages all the 3-dimensional sensors i.e., the accelerometer, the orientation,

the gravity sensor, the magnetometer and the gyroscope besides the touchscreen. Additionally,

it also derives two other sensory readings by applying two filters, i.e., Low-Pass Filter (LPF)

and high-Pass Filter (HPF). The value of α = 0.1 was computed dynamically4 to apply to

these filters [Bu17]. Our solution leverages sensory readings from all 7 (3-dimensional)

sensors in addition to the touchscreen data.

We gathered 4 datastreams from 3-dimensional sensors. Additionally, we computed

4th dimension for all the sensors, and called it magnitude, like in the previous studies

[Bu15b][Zh14][Si15] .

We extracted 4 statistical features, namely mean, standard deviation, skewness, and kurtosis,

from every data stream [Bu15b, Bu16, BCZ17]. Data from every sensor was transformed

into a 4 by 4 features matrix. In total, we obtained 16 features from all four dimensions

of each sensor. So the final feature vector for phone-movement behavior, from 7 physical

sensors, becomes 112 features long. Similarly, the touch-typing feature vector is 30 features

long extracted from the 8-digit password (similar to [Bu15b]). Hence, the final feature

vector after concatenation becomes 142 features long.

The primary purpose of any feature selection scheme is to filter out the redundant and less

productive features and feed the classifier with the most productive ones. Additionally, this

helps also in decreasing the computational cost, i.e., processing smaller feature vectors

would take less time. We applied Information Gain Attribute Evaluator5(IGAE)- a Weka6

implemented Information Gain based feature selection scheme. This scheme evaluates the

worth of a feature by computing its information gain with respect to the class [BCZ17]. We

obtained the threshold for feature selection by dividing the number of users (95) by the total

number of features (142). The feature with higher weight was picked for further analysis.

4 https://developer.android.com/reference/android/hardware/SensorEvent.html

5 http://weka.sourceforge.net/doc.dev/weka/attributeSelection/InfoGainAttributeEval.html

6 http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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4.3 Classifiers

The classifier selection depends upon various parameters, i.e., data size, nature of the data,

training time, etc. Our classification toolbox consists of simple but effective state-of-the-art

classifiers: Naive Bayes(NB), NeuralNet(NN), and RF classifiers. All these classifiers are

considered useful for smaller datasets and found useful in recent studies. We used PRTools7,

a matlab-based toolbox, for all the adopted classifiers and applied all of them in their default

settings.

4.4 Experimental Protocol

As we collected 30 observations from each user, we picked first 5, 10 and 15 training samples

for simultaneous training of the classifier and used the remaining samples for testing. The

training with prior samples looks justified because after repetition the behavior becomes

consistent and might show some biased results, i.e, training with prior samples and testing

with remaining samples provides comparatively less accuracy.

4.5 Results

We report our obtained results in terms of True Acceptance Rate (TAR), False Reject Rate

(FRR), False Acceptance Rate (FAR), True Reject Rate (TRR) and Receiver Operating

Characteristics (ROC) curves. In particular, TAR, FAR, FRR and TRR can be defined as

the fraction of the genuine samples correctly classified as genuine, the impostor samples

incorrectly classified as genuine, the genuine samples incorrectly classified as impostors,

and the impostor samples correctly classified as impostor, respectively. Since the FRR and

TRR can be estimated by computing 1 − T AR and 1 − F AR, respectively, we show TAR

and FAR to avoid redundancy.

In Table 2, we show the TAR and FAR of our chosen classifiers on full and IGAE feature

sets. It is evident that the TAR of all the classifiers increased on IGAE features, i.e., for RF

classifier, it was 80.51% on full features and it increased upto 89.09% on selected features,

for 5 training samples. Similarly, the TAR improved, significantly, as the number of training

samples increased, i.e., from 80.51% to 89.09%, from 87.87% to 95.15%, and from 91.79%

to 96.00%, for 5, 10, and 15 samples, respectively. The maximum TAR obtained by RF

classifier is 96% on 15 training samples.

ROC curves are typically plotted between TAR on the y-axis and FAR on the x-axis. The

curve starts from (0,0) and ends at (1,1) coordinates. The curve closer to (0,1) shows the

better performance. We show an average ROC of all the users obtained through Vertical

7 http://prtools.org/
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Averaging (VA)[Fa04] in Figure 2. In this averaging, the averages of the TAR rates is plotted

against the researcher-defined fixed FAR. Due to the space limitations, we illustrate ROC

curves for best performing classifier, i.e., for RF.

RF classifier outperformed both NB and NN classifier because of its ability to reduce the

variances and its most unlikeliness of overfitting. NB classifier requires Gaussian distributed

data, which might not be true in the dataset, hence it failed to address the problem of

concept-drift. The NN classifier failed because of the limited number of training samples. It

generally requires higher number of training samples to learn well.

Tab. 2: Results of different classifiers (averaged over all 95 users) on full and IGAE features.

5 10 15

Full IGAE Full IGAE Full IGAE

Classifiers TAR FAR TAR FAR TAR FAR TAR FAR TAR FAR TAR FAR

NB 72.72 0.24 79.16 0.19 83.66 0.12 85.11 0.11 87.58 0.07 86.88 0.07

NN 57.81 0.37 77.26 0.20 63.61 0.27 84.51 0.11 70.53 0.16 85.89 0.08

RF 80.51 0.17 89.09 0.09 87.87 0.09 95.19 0.04 91.79 0.04 96.00 0.01
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Fig. 2: ROC curves of RF classifier for (a) 5, (b) 10, and (c) 15 training sample scenarios.

5 Conclusion & Future Work

We have proposed a simple, effective and user-friendly, behavioral biometric-based remote

user authentication solution for financial sector. The paper targets the users of mobile banking

apps and helps the bank server in identifying the genuine user from the timing-differences

of the entered strokes and the movements the user makes while entering the 8-digit secret.

Our schemes is user-friendly, as it does not require any extra action for authentication.

The transparent additional security layer based on phone motion enhances the security of

the scheme, as mimicking simultaneously the two invisible and inherently secure human

behaviors is very difficult, if not impossible.

We tried three different classification techniques and RF outperformed the other two. With

RF as classifier, we obtained as high as 96% TAR on 15 training samples.
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As some papers show [Bu16, Bu15a, Si15] that the behavioral patterns vary in different

situations, so it will be interesting to test the scheme in different situations. We have already

prototyped the proof-the-concept app based on our findings, however, its evaluation in terms

of usability, and robustness against attacks, is a subject of future work. Additionally, its

performance evaluation in terms of power consumption, computational constraints, i.e.,

CPU and memory overhead, and the sample acquisition time and decision time will be

investigated as well.
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Steady-State Visual Evoked Potentials for EEG-Based

Biometric Identification
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Abstract: In this paper we propose a biometric recognition system based on steady-state visual
evoked potentials (SSVEPs), exploiting brain signals elicited by repetitive stimuli having a constant
frequency as identifiers. EEG responses to SSVEP stimuli flickering at different frequencies are
recorded, and both mel-frequency cepstral coefficients (MFCCs) and autoregressive (AR) reflection
coefficients are used as discriminative features of the enrolled users. An analysis of the permanence
across time of the brain response to SSVEP stimuli is also performed, by exploiting EEG data ac-
quired in sessions disjoint in time. The employed database is composed by EEG recordings taken
from 25 healthy subjects during two different sessions with 15 day average distance between them.
The results show that good recognition performance and a high level of permanence can be reached
exploiting the proposed method.

Keywords: EEG Recognition, SSVEP, Biometrics.

1 Introduction

Brain signals have been deeply investigated and exploited for medical and brain-computer

interface (BCI) purposes since the beginning of the twenty-first century [Ba99]. In recent

years, the interest in using such physiological characteristic also for biometric recogni-

tion is rapidly increasing. Many studies in such research field have in fact been focused

on the use of electroencephalography (EEG) signals, showing that the brain response to

specific tasks can be exploited to extract discriminative features able to guarantee high

levels of recognition accuracy [CLR14]. The reason for the interest in using EEG data

for biometric purposes is linked to some advantages the aforementioned signals possess,

compared to other traditional biometric identifiers: universality is in fact guaranteed, and

robustness to spoofing attacks and privacy compliance can be easily achieved. In the con-

text of biometric recognition, EEG signals can be recorded as a response to different kinds

of stimuli. Specifically, brain signals can be acquired when visual stimuli are presented,

that is, when visual evoked potentials (VEPs) are elicited [DMC16, YSL13], or alterna-

tively as a response to tasks such as imagined body movement or speech [MM07, BK10],

or while the involved subject is in resting state conditions [NWS07]. In this paper, we

propose an EEG-based biometric recognition system where discriminative features are

extracted from steady-state visual evoked potentials (SSVEPs). SSVEPs are a particular

kind of VEPs that consist of stationary periodic oscillations observed in brain activity as

response to a repetitive visual stimulus in the range of 4 Hz to 60 Hz. When an indivi-

dual focuses his attention on a flickering stimulus within this frequency range, typically

presented on an LED setup or LCD display, an increased oscillatory activity, with spectral

1 Section of Applied Electronics, Department of Engineering, Rome Tre University, 00146 Roma, Italy

{emanuela.piciucco, emanuele.maiorana, patrizio.campisi}@uniroma3.it
2 Centre for Biomedical Cybernetics, University of Malta, Msida 2080, Malta, {owen.falzon, kenneth.camilleri}

@um.edn.mt
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Fig. 1: (a) Montage of electrodes used during the acquisition stage. (b) Brain regions.

peaks at the stimulus frequency and its harmonics, can be observed in brain signals [RS98].

SSVEPs exhibit a high signal-to-noise ratio and a stable spectrum, properties which have

led to their widespread use for the investigation of cognitive processes such as visual at-

tention and working memory, and clinical conditions such as schizophrenia, autism and

epilepsy [Vi10]. These characteristics have also led SSVEPs to being widely adopted in

BCI systems, that is, systems allowing an individual to communicate or control equipments

solely through their brain activity [Zh10]. The consistent, rapid and prominent response of

SSVEPs also makes these signals particularly appealing for EEG-based biometric appli-

cations. In contrast with their use in BCI systems, where the primary aim is distinguishing

between different visual targets for a given individual, in a biometric system the main

challenge lies in identifying features that are sufficiently distinct across individuals, whilst

ensuring their stability across multiple recording sessions of the same subject [MLRC16].

The use of SSVEP in biometric applications has been so far investigated only in [Ph16]

and [Fa17]. In [Ph16], an analysis based on the peak magnitude and frequency of the short-

term Fourier transform has been exploited to identify five users, whose signals have been

recorded during a single acquisition session. In [Fa17], the performance of SSVEPs has

been assessed for the identification of eight individuals across three recording sessions.

Feature vectors consisting of the normalised magnitude responses at a number of stimulus

frequencies and their harmonics are computed for each participant. The results obtained

indicate that SSVEPs can yield features that are distinct enough between individuals whilst

also being sufficiently consistent across multiple sessions for the same individual.

In this paper, a novel approach for EEG recognition based on SSVEPs is proposed. Being

the issue of permanence across time of paramount importance for real-life applications

of EEG-based biometric systems, the stability of SSVEPs is also specifically addressed.

The paper is structured as follows. Section 2 gives an overview of the employed acqui-

sition protocol and the tools used to acquire EEG data. Section 3 describes the proposed

biometric recognition system, while the achieved performance and permanence results are

reported in Section 4. Some conclusions are eventually drawn in Section 5.

2 Employed Acquisition Protocol

In our work, EEG signals from U = 25 healthy volunteers are recorded and used for ex-

perimental tests. The device employed to elicit SSVEPs consists of a square array of 9

green leds, whose flickering frequency can be manually tuned. Four different elicitation
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frequencies are exploited, namely fS ∈ FS = {6,12,18,24} Hz. During each EEG data

acquisition, subjects were comfortably seated on a chair in a dimly lit room, and asked

to concentrate on the flickering target for one minute for each considered frequency. The

involved subjects were asked to perform the proposed experiment during two temporally

separated sessions, referred in the following as S1 and S2. The second session S2 is car-

ried out after an average temporal distance of 15 days from the first session. EEG signals

are acquired using a GALILEO BE Light amplifier operating at a sampling rate of 256

Hz. Brain activity is recorded from 19 electrodes placed on the scalp according to the

10-20 international system, as shown in Fig. 1.(a), with potentials referred to an electrode

placed at the middle of the central region. At the beginning of each acquisition, the electri-

cal impedance between each electrode and the scalp is kept under 30kΩ using conductive

gel. The recorded EEG signals are later preprocessed in order to remove noise and improve

signal-to-noise (SNR) ratio, before distinctive features are first extracted and then matched

for recognition purposes, as described in Section 3.

3 Employed SSVEP-based Recognition System

The preprocessing applied to the acquired EEG signals is described in Section 3.1. The fea-

tures employed to represent the collected data are introduced in Section 3.2, while Section

3.3 describes the matching procedure employed in the considered identification system.

3.1 Preprocessing

In order to improve the quality of the acquired EEG signals, a spatial filter, namely a

common average referencing (CAR) filter, is first applied to the recorded data. The aim

of such filter is to reduce artifacts related to inappropriate reference choices in monopo-

lar recordings [SA15] or unexpected reference variations. Having indicated as v
(u)
m , with

u = 1, ...,U and m = 1, ...,M, the u-th user’s potential between the m-th electrode and the

reference electrode, filtered data are obtained by computing the difference between the

considered EEG signal and the mean of the entire electrode montage:

c
(u)
m = v

(u)
m −

1

M

M

∑
m=1

v
(u)
m (1)

A band-pass filtering is then performed on the CAR-filtered signals. Specifically, since

EEG data are characterized by a frequency spectrum with significant elements mainly

below 40 Hz, the signals are filtered in the [0.5,40] Hz band. In order to analyze the

brain response behavior, different combinations of the subbands related to the main brain

rhythms, that is Delta (δ , [0.5− 4] Hz), Theta (θ , [4− 8] Hz), Alpha (α , [8− 14] Hz),

Beta (β , [13− 30] Hz) and Gamma (γ , over 30 Hz) are also considered in the performed

experimental tests when defining the applied band-pass filter. The obtained data are then

downsampled at 128 Hz when the frequency interval of interest comprises the γ subband,

otherwise the signals are downsampled at 64 Hz. The so-obtained data are then segmented

into R consecutive overlapping frames y
(u,r)
m , r = 1, . . . ,R, lasting D= 5 s with a normalized

overlapping factor of O = 75% between each frame and the previous one.

3.2 Feature Extraction

After EEG data have been preprocessed, discriminative features are evaluated to generate

a template from each user u’s recording. In this work we exploit two different represen-

tations, namely mel-frequency cepstral coefficients (MFCCs) and auto-regressive (AR)

coefficients, respectively detailed in Sections 3.2.1 and 3.2.2.
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3.2.1 Mel Frequency Cepstral Coefficients (MFCCs)

MFCCs are a parametric representation of the signal based on the Fourier spectrum, widely

used in speech-based biometric systems [GFK05] and recently applied to EEG data [Ng12]

too. The following steps detail the processing carried out for MFCCs extraction:

1. power spectral estimate: the power spectral density (PSD) Y
(u,r)
m of each signal

y
(u,r)
m , m = 1, ...,M and r = 1, . . . ,R, is computed through the Welch’s averaged mo-

dified periodogram approach, using 1-s sliding Hanning windows with 0.5-s overlap;

2. mel-filter bank processing: a bank of B mel-filters is used to warp the computed

spectrum bins into the mel-scale, defined as:

Mel( f ) = 2595log10

(
1+

f

700

)
. (2)

The generated mel-spectrum is indicated in the following as MELY
(u,r)
m [b], b= 1, . . . ,B;

3. log compression: the range of the values of the mel-spectrum is reduced through a

logarithmic transformation, that is LOGY
(u,r)
m = ln(MELY

(u,r)
m );

4. discrete cosine transform: MFCCs are computed from the log-compressed mel-

spectrum using the discrete cosine transform (DCT):

d
(u,r)
m [l] =

B

∑
b=1

LOGY
(u,r)
m [b]cos

[
l

(
b−

1

2

)
π

B

]
, l = 1, . . . ,L, L < B. (3)

In the adopted implementation, B = 18 mel-filters are employed, and L = 12 DCT coef-

ficients are used to generate the representation of each considered signal. The template

associated to the r-th frame of user u’s recording, having length P = M ·L, is eventually

obtained by combining the M representations of each channel:

f(u,r) = [d
(u,r)
1 , . . . ,d

(u,r)
M ]. (4)

3.2.2 AR Reflection Coefficients

Each EEG frame y
(u,r)
m extracted from the preprocessed signals can be modeled as a reali-

zation of an AR stochastic process of order Q, with Q = 10 in the adopted implementation.

According to such assumption, the available signals can be expressed as:

y
(u,r)
m [n] =−

Q

∑
q=1

a
(u,r)
m,Q,qy

(u,r)
m [n−q]+w

(u,r)
m [n] (5)

where w
(u,r)
m [n] is a realization of a white noise process having standard deviation σ

(u,r)
m,Q ,

and a
(u,r)
m,Q,q are the autoregressive coefficients representing the model. The Yule-Walker

equation [Ka88] is used to estimate the Q autoregressive coefficients, employing the re-

cursive Levinson algorithm and introducing the concept of reflection coefficients. In detail,

being a
(u,r)
m,Q,q a generic AR coefficient, we have:a

(u,r)
m,Q,q = a

(u,r)
m,Q−1,q +K

(u,r)
m,Q ·a

(u,r)
m,Q−1,Q−q, q = 1, ...,Q−1

σ
(u,r)
m,Q = σ

(u,r)
m,Q−1

√
1− (K

(u,r)
m,Q )2

(6)

where the term K
(u,r)
m,Q is referred to as reflection coefficient of order Q. In our work, the

reflection coefficients are estimated through the Burg method [Ka88], and employed as



SSVEP for EEG-Based Biometric Identification 231

representative features of each user u’s EEG data. For the generic r-th frame y
(u,r)
m ex-

tracted from the m-th channel of the EEG signal belonging to the user u, we therefore

generate a feature vector K
(u,r)
m composed of the Q estimated AR reflection coefficients.

The overall template associated to a given frame is obtained by combining the M repre-

sentations generated for each channel into a single vector having size P = M ·Q, as:

f(u,r) = [K
(u,r)
1 , . . . ,K

(u,r)
M ]. (7)

3.3 Identification

During the identification stage, the Manhattan (L1) distance is used to evaluate the simila-

rity between features extracted during enrolment, and those obtained from an identification

probe. In more detail, having indicated as f(u,e) the template associated with the e-th frame

extracted from user u’s enrolment, e = 1, . . . ,E, and with f(x,i) the representation generated

from the i-th frame taken from the probe of an unknown subject x, i = 1, . . . , I, the distance

between such identification frame and the whole set of enrolment frames is evaluated as:

d
(u)
i = min

e

{ P

∑
p=1

∣∣∣f(x,i)[p]− f(u,e)[p]
∣∣∣}, (8)

that is, selecting the minimum among the distances computed between the i-th identifi-

cation frame and all the recorded enrolment data. A decision x̂i = argminu{d
(u)
i } is then

taken for each available identification frame, with the final decision x̂ regarding the iden-

tity of the presented subject taken according to a majority voting rule, selecting the identity

with the highest number of occurrences among the votes x̂i, i = 1, . . . , I.

4 Experimental Results

The aim of the present work is to analyze the recognition performance of an EEG-based

recognition system exploiting an SSVEP protocol as stimulus for the involved users, taking

into account issues regarding repeatability and stability across time of EEG signals. For

this purpose, as remarked in Section 2, the collected database comprises EEG recordings

taken, for each user, during two disjoint sessions, separated by an average time distance

of 15 days. Data from the first session (S1) are considered as enrolment samples, while

testing data are selected from the second session (S2). Comparing EEG samples taken

during two distinct sessions allows estimating performance depending only on the pecu-

liar characteristics of subject-specific neural activity. This way, session-specific exogenous

conditions, such as the capacitative coupling of electrodes and cables with lights or com-

puter, induction loops between the employed equipment and the body, and so on, cannot

affect either inter- and intra-class variability of EEG recordings, as instead it may hap-

pen when performing tests by comparing EEG data collected during a single acquisition

session [MLRC16].

In order to estimate statistically-significant results, a cross-validation procedure is carried

out. Specifically, 30 different runs are performed for each of the scenarios described in the

following, with 75% of the frames extracted from S1 employed as enrolment dataset for

each considered user, and 75% of the frames generated from S2 randomly selected and

employed as testing probes at each run.
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Channels SSVEP EEG subband

[0.5,40]Hz [0.5,30]Hz [4,40]Hz [4,30]Hz [8,40]Hz [8,30]Hz

fS = 6 Hz 70.93 76.67 85.07 86.80 73.60 71.87

fS = 12 Hz 92.67 93.73 94.40 92.67 84.80 87.20

All fS = 18 Hz 94.53 90.80 88.27 87.07 84.13 80.00

(M = 19) fS = 24 Hz 89.73 88.93 87.87 89.33 85.33 85.73

fS ∈ FS, feat. fus. 97.47 94.67 99.73 98.67 99.33 95.73

fS ∈ FS, score fus. 95.73 99.33 96.27 97.33 97.33 93.33

fS ∈ FS, dec. fus. 99.47 97.33 99.87 100.00 98.87 98.00

Tab. 1: Average correct recognition rate (CRR %) obtained over 30 cross-validation runs, using MFCCs as

features. The considered subbands are reported in terms of range of associated frequencies.

Channels SSVEP EEG subband

[0.5,40]Hz [0.5,30]Hz [4,40]Hz [4,30]Hz [8,40]Hz [8,30]Hz

fS = 6 Hz 72.93 74.67 78.53 79.07 66.93 64.40

fS = 12 Hz 88.40 88.93 85.47 82.93 79.47 78.67

All fS = 18 Hz 93.60 93.47 94.80 93.47 86.93 83.87

(M = 19) fS = 24 Hz 79.73 79.73 88.80 87.20 82.27 88.80

fS ∈ FS, feat. fus. 96.27 91.60 98.93 96.53 93.87 94.13

fS ∈ FS, score fus. 94.27 92.27 98.93 99.33 96.67 88.27

fS ∈ FS, dec. fus. 99.73 98.80 99.60 97.87 98.27 98.53

Tab. 2: Average correct recognition rate (CRR %) obtained over 30 cross-validation runs, using AR reflection

coefficients as features. The considered subbands are reported in terms of range of associated frequencies.

The performance obtained when exploiting the considered elicitation frequencies fS ∈
FS = {6,12,18,24} Hz, and taking into account all the available channels for template

generation (M = 19), is reported in terms of average correct recognition rate (CRR) in

Tables 1 and 2, respectively for MFCC- and AR-based templates. Besides using the con-

sidered stimuli separately, they are also jointly employed by fusing their contributions at:

• feature level, by concatenating the templates f(u,r) generated from the r-th frame

of user u’s EEG collected at different elicitation frequencies, during both enrolment

and identification phases;

• score level, summing the distances d
(u)
i obtained for each i-th identification frame

matched with user u’s EEG, for signals collected at different elicitation frequencies;

• decision level, adopting a majority voting rule over the final decisions x̂ individually

taken considering EEG data collected at different elicitation frequencies.

As can be seen, for systems employing a single SSVEP elicitation frequency as stimu-

lus, fS = 18 Hz guarantees the best achievable identification rates, with CRR = 94.53%

obtained using MFCCs to represent EEG data in the [0.5, 40] Hz subband, and CRR =

94.80% employing AR features estimated from EEG signals in the [4, 40] Hz subband.

The considered fusion strategies allow to significantly improve such performance, being

able to offer a perfect recognition rate (CRR = 100.00%) when a decision-level fusion is

performed on information generated through MFCCs, while CRR = 99.73% when exploi-

ting decision-level fusion with AR features.
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Channels SSVEP MFCCs AR reflection coefficients

fusion [0.5,30]Hz [4,40]Hz [4,30]Hz [0.5,40]Hz [4,40]Hz [4,30]Hz

Frontal Feature 81.73 85.46 79.60 81.87 75.20 74.00

(M = 7) Score 94.13 90.67 84.67 89.46 91.20 82.27

Decision 87.33 91.06 88.80 89.07 88.13 85.60

Central Feature 78.13 88.27 90.00 80.40 83.60 84.40

(M = 7) Score 86.00 90.13 89.60 84.00 84.53 88.13

Decision 89.33 95.33 95.87 86.93 93.60 94.53

Occipital Feature 84.67 85.87 84.40 90.80 86.40 86.27

(M = 7) Score 74.80 78.13 80.93 77.60 79.47 79.47

Decision 88.16 86.87 89.33 88.13 90.93 83.47

M Feature 92.13 89.60 86.26 91.47 88.13 81.06

(M = 5) Score 90.40 88.80 86.60 83.60 82.13 72.67

Decision 96.00 94.80 93.73 91.47 88.13 84.67

Tab. 3: Average correct recognition rate (CRR %) obtained when different spatial configurations are selected

and 30 cross-validation runs are performed.

Given the high accuracy obtained when exploiting all the available 19 channels, further

tests are carried out to check whether similar results can be obtained while lowering the

number of employed channels. It is worth remarking that minimizing the number of em-

ployed electrodes is an issue of paramount importance to reduce user inconvenience. In

this regard, Table 3 reports the performance obtained when considering only M = 7 elec-

trodes placed in either frontal, central and occipital areas, according to the montages shown

in Fig. 1.(b), together with the rates obtained with an even smaller set M ={Fz, Cz, Pz,

O1, O2} with M = 5 electrodes, comprising only midline and occipital channels. Only the

recognition rates achieved exploiting all the considered elicitation frequencies through fu-

sion approaches, and taking into account the best-performing subbands according to the

results shown in Tables 1 and 2, are reported in Table 3. From the obtained accuracies

it can be seen that the central area of the scalp seems guaranteeing the best performance

achievable with a reduced number of electrodes, achieving CRR = 95.87% for MFCC and

CRR = 94.53% for AR representations, when considering EEG recordings filtered in the

θ ∪α ∪ β subband. An even better result is obtained when considering only the set M

with M = 5 in the δ ∪ θ ∪α ∪β subband, for which a CRR = 96.00% is achieved using

MFCCs, while AR features provides CRR = 91.47%.

5 Conclusions

This paper evaluates the feasibility of designing an automatic biometric recognition system

exploiting EEG signals elicited through protocols generating steady-state visual evoked

potentials (SSVEPs). The use of flickering stimuli at specific frequencies and the repre-

sentation of the acquired EEG data through either MFCC or AR templates, allows achie-

ving high identification rates, thanks to the proved existence of permanent characteristics

in SSVEP brain responses across different acquisition sessions. According to the reported

experimental tests, the joint use of multiple elicitation frequencies guarantees a notable im-

provement in recognition rates, thus allowing to reduce the number of electrodes needed

during EEG collection, a relevant property to foster the adoption of EEG-based biometric

identifiers in practical recognition systems.
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Improving Very Low-Resolution Iris Identification Via

Super-Resolution Reconstruction of Local Patches

Fernando Alonso-Fernandez i1, Reuben A. Farrugiaa, Josef Bigun2 

Abstract: Relaxed acquisition conditions in iris recognition systems have significant effects on the
quality and resolution of acquired images, which can severely affect performance if not addressed
properly. Here, we evaluate two trained super-resolution algorithms in the context of iris identifica-
tion. They are based on reconstruction of local image patches, where each patch is reconstructed sep-
arately using its own optimal reconstruction function. We employ a database of 1,872 near-infrared
iris images (with 163 different identities for identification experiments) and three iris comparators.
The trained approaches are substantially superior to bilinear or bicubic interpolations, with one of
the comparators providing a Rank-1 performance of ∼88% with images of only 15×15 pixels, and
an identification rate of 95% with a hit list size of only 8 identities.

Keywords: Iris, biometrics, super-resolution, low resolution.

1 Introduction

While the literature on image super-resolution is ample, its application to biometrics is rel-

atively recent, with most research concentrated on face reconstruction [Wa14]. However,

a number of applications which are becoming ubiquitous, such as surveillance or smart-

phone biometrics, have the lack of pixel resolution as one of their most evident problems

when acquisition is done distantly. One reason of such limited research might be that most

super-resolution approaches are general-scene, aimed at producing overall visual enhance-

ment, which does not necessarily correlate with better recognition performance [Ng12].

Thus, adaptation of super-resolution techniques to the particularities of images from a

specific biometric modality is needed to achieve a more efficient up-sampling [BK02].

This paper investigates two trained super-resolution approaches based on PCA Eigen trans-

formation (eigen-patches) [AFB15] and Locality-Constrained Iterative Neighbor Embed-

ding (LINE) of local image patches [Ji14] in the context of iris identification. The meth-

ods employed make use of coupled dictionaries to learn the mapping relation between

low- and high-resolution image pair in order to hallucinate a high-resolution image from

the observed low-resolution one. This learning-based strategy has the advantage of only

needing one low-resolution image as input, and usually allow higher magnification fac-

tors than reconstruction-based methods, which fuse several low-resolution images into a

high-resolution one [PPK03]. Another particularity of the evaluated methods is that they

1 School of ITE, Halmstad University, Sweden, feralo@hh.se
2 Department of CCE, University of Malta, Malta, reuben.farrugia@um.edu.mt
3 School of ITE, Halmstad University, Sweden, josef.bigun@hh.se
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Fig. 1: Block diagram of patch-based hallucination.

use a patch-based approach, where overlapped local image patches are reconstructed sepa-

rately, and then stitched together. This better represents local details and preserves texture

than if reconstruction of the complete image was done at a time, since each patch has its

own optimal reconstruction function. In our experiments, we employ the CASIA-IrisV3-

Interval database [CA] of NIR iris images, with low-resolution images having a size of

only 15×15 pixels. Identification experiments are conducted with three iris comparators

based on 1D Log-Gabor filters (LG) [Ma03], SIFT key-points [Lo04], 5 and local intensity

variations of iris textures (CR) [RU10]. LG and CR exploit texture information globally

(across the entire image), while SIFT exploits local features in discrete key-points. Thus,

one motivation is to employ features that are diverse in nature. Despite the patch-based ap-

proaches used are not new [AFB15, Ji14], we contribute with its evaluation in the context

of iris identification, and particularly with the application of these three iris comparators to

the reconstructed images. Reported results show the superiority of the two trained recon-

struction approaches w.r.t. bicubic or bilinear interpolations, with an impressive Rank-1

performance of ∼88% with the LG comparator under such very low resolution.

2 Reconstruction of Low Resolution Iris Images

Given an input low resolution (LR) image X, the goal is to reconstruct its high resolu-

tion (HR) counterpart Y. The LR image can be modeled as the HR image manipulated

by blurring (B), warping (W ) and down-sampling (D) as X = DBWY + n (where n repre-

sents additive noise). For simplicity, W and n are usually omitted, leading to X = DBY .

In local patch-based methods (Figure 1), LR images are first separated into N = Nv ×Nh

overlapping patches X = {x1,x2, · · · ,xN} according to a predefined patch size and over-

lap pixels (Nv and Nh are the vertical and horizontal number of patches). Since we will

consider square images, we assume that Nv = Nh. Two super sets of basis patches Hi and

Li are computed for each patch xi from collocated patches of a training database of M

high resolution images {H}. Super set Hi =
{

h1
i ,h

2
i , · · · ,h

M
i

}
is obtained from collocated

patches of {H}. By degradation (low-pass filtering and down-sampling), a low-resolution

database {L} is obtained from {H}, and the other super set Li =
{

l1i , l
2
i , · · · , l

M
i

}
is obtained

similarly from {L}. Each individual LR patch xi is then hallucinated using the dictionaries

Hi and Li, producing the corresponding HR patch yi.

Eigen-Patch Reconstruction Method (PCA). This method is described in [AFB15],

which is based on the algorithm for face images of [CC14]. Here, a PCA eigen- trans-

formation is conducted in the set of LR basis patches Li. Given an input LR patch xi, it is

then projected onto the eigenpatches of Li, obtaining the optimal reconstruction weights

ci =
{

c1
i ,c

2
i , · · · ,c

M
i

}
of xi w.r.t. Li. The reconstruction weights are then carried on to
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weight the HR basis set, and the HR patch is super-resolved as yi = Hic
T
i . Finally, once

the overlapping reconstructed patches {y1,y2, · · · ,yN} are obtained, they are stitched to-

gether by averaging, resulting in the preliminary reconstructed HR image Y′.

Locality-Constrained Iterative Neighbour Embedding Method (LINE). This is based

on the algorithm for face images of [Ji14]. Instead of using all entries of the training dictio-

nary to estimate the reconstruction weights, a set of K <M entries is used. Using all entries

can result in over-smooth reconstructed images which lacks important texture information,

which is essential for iris. Given a LR patch xi, a first estimate of the HR patch vi,0 is ini-

tialized by bicubic up-scaling. Then, an iterative loop indexed by j ∈ [0,J − 1] is started.

For every iteration, the support s of Hi that minimizes the distance d = ||vi, j −Hi(s)||
2
2 is

computed using K-nearest neighbours. The combination weights are then derived using

w∗
i, j = argminw∗

i, j
(
∥∥∥xi −Li (s)w∗

i, j

∥∥∥2

2
+ τ

∥∥∥d(s)⊙w∗
i, j

∥∥∥2

2
) (1)

where τ is a regularization parameter. Operator ⊙ (element-wise multiplication) is used to

penalize the reconstruction weights with the distances between vi, j and its closest neigh-

bors in the training dictionary Hi. This optimization problem can be solved by an analytic

solution [Ji14]. The estimated HR patch is then updated using vi, j+1 = Hi(s)w
⋆
i, j and the

loop is repeated. The final estimate of the HR patch is then derived using yi = vi,J . We em-

ploy τ=1e−5 and J=4 [Ji14]. Contrarily to the PCA method, where reconstruction weights

are obtained in the LR manifold and then simply transferred to the HR manifold, note

that Equation 1 jointly considers the LR manifold (via xi, Li (s)) and the HR counterpart

(via d(s)) during the reconstruction. In addition, reconstruction starts in the HR mani-

fold, which is not affected by the degradation process, and computation of the K nearest

neighbors employed for reconstruction is done in this manifold as well.

Image Reprojection. Inspired by [AFB15], we incorporate a re-projection step to Y′ to

reduce artifacts and make the output image Y more similar to the input image X. The image

Y′ is re-projected to X via Yt+1 = Yt −υU (B(DBYt −X)) where U is the up-sampling

matrix. The process stops when |Yt+1 −Yt | ≤ ε . We use υ=0.02 and ε = 10−5 [AFB15].

3 Experimental Framework

We use CASIA Interval v3 iris database [CA]. It has 2,655 NIR images of 280×320 pixels

from 249 contributors captured with a close-up camera. Manual annotation is available,

including iris circles and noise mask (Figure 2) [AB15, Ho14], which is used as input

for our experiments. All images are resized by bicubic interpolation to have the same

sclera radius (R=105, average of the database given by the ground-truth). Then, images

are aligned by extracting a region of 231×231 around the pupil center (corresponding to

∼1.1×R). If extraction is not possible (for example if the eye is close to a boundary), the

image is discarded. After this procedure, 1,872 images remain, which are then divided into

two sets, a training set with images from the first 116 users (M=925 images) used to train

the hallucination methods, and a test set from the remaining 133 users (947 images) for
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Fig. 2: Example of images of the CASIA Interval v3 database with the annotated circles modeling

iris boundaries and eyelids.

validation. We carry out identification experiments with three iris comparators in the test

set. From the 133 users, we select those eyes having at least two samples, resulting in 163

different eyes (i.e. identities) and 927 images. The first sample of each eye is considered as

enrolment sample, and the remaining 764 samples are used as input for identification. This

results in 764×163=124,532 comparisons. Given an input sample, identification is done

by outputting the N closest identities of the enrolment set. An identification is considered

successful if the correct identity is among the N outputted ones.

The iris comparators used are based on 1D Log-Gabor filters (LG) [Ma03], SIFT operator

[Lo04], and local intensity variations in iris textures (CR) [RU10]. In LG, the iris region

is first unwrapped to a normalized rectangle of 20×240 pixels [Da04] and next, a 1D

Log-Gabor wavelet is applied plus phase binary quantization to 4 levels. Comparison be-

tween binary vectors is done using the normalized Hamming distance [Da04]. In the SIFT

method, SIFT key points are directly extracted from the iris region (without unwrapping),

and the recognition metric is the number of matched key points, normalized by the average

number of detected key-points in the two images under comparison. The CR method starts

by unwrapping the iris to a rectangle of 64×512 pixels, and then it traces intensity vari-

ations across horizontal stripes of distinct height, encoding the paths where the minimum

and maximum grey values of each column occur. The LG implementation is from Libor

Masek [Ma03], using its default parameters. The SIFT method uses a free toolkit3, with

adaptations described in [Al09] to remove spurious matchings. The CR algorithm is from

the University of Salzburg Iris Toolkit (USIT) [RUW13].

Bilinear Bicubic PCA k=75 k=150 k=300

M-LINE

Originalk=600 k=900

Fig. 3: Resulting hallucinated HR images. The original HR image is also shown.

3 http://vision.ucla.edu/ vedaldi/code/sift/assets/sift/index.html
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4 Results

The two reconstruction methods are evaluated together with bilinear and bicubic interpola-

tions. The 947 validation images are used as HR reference images. They are down-sampled

via bicubic interpolation to a size of 15×15, corresponding to a down-sampling factor of

16, and then used as input LR images of the reconstruction methods, from which halluci-

nated HR images are computed. This simulated down-sampling is the approach followed

in most previous studies [Wa14], mainly due to the lack of databases with LR and corre-

sponding HR reference images. In PCA and LINE, we employ a patch size of 1/4 of the

LR image size. This is motivated by [AFB15], where better results were obtained with big-

ger patch sizes. Overlapping between patches is 1/3 of the patch size. We also extract the

LG, SIFT and CR features from both the hallucinated HR and the reference HR images.

Figure 3 shows some examples of reconstructed images with the different methods tested

here. It can be observed that smaller values of K results in sharper reconstructed images,

while a bigger K produces blurrier images. This is expected, since a bigger K implies that

more patches are being averaged, so the output image patch will be smoother.

The performance of the reconstruction methods is measured by reporting identification ex-

periments using hallucinated images. We do not report other measures traditionally used

in super-resolution literature (e.g. PSNR) since the aim of applying these algorithms in

biometrics is enhancing recognition performance [Ng12]. Two scenarios are considered:

1) enrolment samples taken from original HR input images, and query samples from hallu-

cinated HR images; and 2) both enrolment and query samples taken from hallucinated HR

images. The first case simulates a controlled enrolment scenario, while the second case

simulates a totally uncontrolled scenario (albeit for simplicity, both samples have similar

resolution). We first test the LINE method using different values of K, from K=75 (small

neighbors set) to K=900 (nearly the whole training set). Identification results are given in

Figure 4. It can be seen that the preferred neighbor size K is different for each compara-

tor. While LG and CR prefer a bigger set (K > 300), SIFT shows better results with a

smaller set (K = 150). This highlights the need of looking into the performance of individ-

ual comparators, rather than into general scene indicators such as PSNR, since the image

properties recovered by a particular algorithm may not be relevant for a comparator, even

if visual appearance of the reconstructed image can be referred as ‘good’.

We then select the best LINE configurations for each comparator, and report identification

results together with the other reconstruction methods (Figure 5). Our first observation is

the superior performance of PCA and LINE w.r.t. bilinear or bicubic interpolation, high-

lighting the benefits of trained reconstruction. Also, LINE is superior to PCA in some

cases, while in others, both methods show similar performance. In this sense, PCA can be

pre-trained in advance using the set Li of basis patches, since eigenpatches are the same

for any input patch xi, so higher computational speeds can be expected. LINE on the other

hand needs to compute the set of nearest neighbors specific of a particular input patch.

Regarding performance of individual comparators, LG is clearly superior to the others.

Rank-1 performance of LG is above 70% (scenario 1) and 84% (scenario 2). Also, an iden-

tification rate of 95% with this comparator is obtained for a hit list size of just N=8 (sce-
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Fig. 4: Identification results (LINE method). Best seen in colour.

nario 2) using LINE. Rank-1 of SIFT is very poor (less than 10% in scenario 1 and ∼40%

in scenario 2), while an identification rate of 95% cannot be achieved even if N >80). The

CR comparator only does a little bit better than SIFT. It should be noted however that the

size of the LR images is very small (15×15). With respect to the two scenarios evaluated,

scenario 2 has much better performance. In scenario 2, both enrolment and query images

undergo the same down-sampling and reconstruction. It seems that when the two images

do not suffer the same degradation process (i.e. scenario 1), they have fairly different fea-

ture properties, at least with the features employed here. This result has been observed in

previous verification studies [AFB15] as well.

5 Conclusions

While more relaxed acquisition environments are pushing image-based biometrics (e.g.

face or iris) towards the use of low resolution imagery, it can pose significant problems in

terms of reduced performance if not addressed properly. Here, we apply two trained super-

resolution approaches based on PCA transformation [AFB15] and Locality-Constrained

Iterative Neighbor Embedding (LINE) of local patches [Ji14] to improve the resolution
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Fig. 5: Identification results of the different image reconstruction methods employed (LINE method:

best case according Figure 4 is shown). Best seen in colour.

of iris images under infra-red lightning. We carry out identification experiments on the

reconstructed images with three iris comparators based on Log-Gabor wavelets (LG), SIFT

keypoints, and local intensity variations of iris textures (CR). Low resolution images are

simulated by down-sampling high-resolution irises to a size of just 15×15. Experimental

results show a clear superiority of trained approaches under such challenging conditions

w.r.t. bilinear or bicubic methods. Even under such low resolution, a Rank-1 performance

of ∼88% is obtained with one of the comparators (LG), and an identification rate of 95%

is obtained with a hit list size of just 8. Another observation is that the LINE method

is superior to PCA in some cases, but their performance is in general very similar. This

allows computational savings by using PCA, since PCA models are the same for any input

image, so they can be trained in advance.

An avenue of improvement is removing the assumption that reconstruction weights are

the same in the low- and high-resolution manifolds. While this simplifies the problem,

the LR manifold is usually distorted by the one-to-many relationship between LR and HR

patches [Wa14]. Another simplification is the assumption of linearity in the combination of
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patches from the training dictionary. We will also consider including additional recognition

methods [RUW13] and employing imagery in visible range (e.g. smart-phones).
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Deep Quality-informed Score Normalization for Privacy-

friendly SpeakerRecognition in unconstrained Environments

Andreas Nautsch , Søren Trads Steen , Christoph Busch1 1,2 1

Abstract: In scenarios that are ambitious to protect sensitive data in compliance with privacy reg-
ulations, conventional score normalization utilizing large proportions of speaker cohort data is not
feasible for existing technology, since the entire cohort data would need to be stored on each mobile
device. Hence, in this work we motivate score normalization utilizing deep neural networks. Con-
sidering unconstrained environments, a quality-informed scheme is proposed, normalizing scores
depending on sample quality estimates in terms of completeness and signal degradation by noise.
Utilizing the conventional PLDA score, comparison i-vectors, and corresponding quality vectors, we
aim at mimicking cohort based score normalization optimizing the Cmin

llr discrimination criterion.

Examining the I4U data sets for the 2012 NIST SRE, an 8.7% relative gain is yielded in a pooled
55-condition scenario with a corresponding condition-averaged relative gain of 6.2% in terms of
Cmin

llr . Robustness analyses towards sensitivity regarding unseen conditions are conducted, i.e. when
conditions comprising lower quality samples are not available during training.

Keywords: speaker recognition, score normalization, unconstrained environments, neural

networks, deep learning

1 Introduction

Accounting for European data privacy regulations [Eu16], resource limitations of mo-

bile operating scenarios, and technological requirements concerning vast signal quality

variations in unconstrained environment speaker recognition, current score normalization

schemes are put to its limits. In this paper, we propose a quality-informed score normal-

ization scheme utilizing cohort data for the purpose of training a neural network in order

to avoid a distribution of biometric data from cohort subjects, substituting conventional

cohort-based score normalization. This study is limited with respect to deeper network

architectures and the sensitivity to unseen quality conditions. Comparative experiments to

conventional normalization schemes are excluded, since we assume their design to be pro-

hibited due to a restrictive interpretation of §9 in EU regulation 2016/679, i.e. cohort data

which is necessary to estimate parameters of zero-norms shall not be distributed. The EU

regulation 2016/679 [Eu16, §9] prohibits the processing of biometric data, if not – among

others – the biometric subject is giving consent, and the processing relates to personal

data which are manifestly made public by the data subject. Hence, the distribution and use

of cohort data related to other individuals than the biometric subject under processing may

1 da/sec — Biometrics and Internet Security Research Group, Hochschule Darmstadt, Germany,

{andreas.nautsch,christoph.busch}@{crisp-da | h-da}.de
2 Technical University of Denmark, Denmark, stradssteen@gmail.com
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become improper to justify as cohort data would need to be transmitted to the device of

any other biometric user for conducting cohort normalization, especially for data deletion.

This paper is organized as follows: Sec. 2 depicts the related work on speaker recognition

and neural networks. Sec. 3 depicts the proposed normalization scheme. Experimental

evaluations are carried out in Sec. 4, and conclusions are drawn in Sec. 5.

2 Related Work

Recent speaker recognition approaches rely on i-vectors, representing the characteristic

speaker offset from an Universal Background Model (UBM), which models the distribu-

tion of acoustic features, such as Mel-frequency cepstral coefficients [RQD00]. Thereby,

UBM components’ mean vectors are concatenated to a supervector &µUBM.

Speaker supervectors &s are decomposed by a total variability matrix into a lower-dimen-

sional i-vector&i as an offset to the UBM supervector &µUBM [Ke05, De11]. Then, i-vectors

are projected onto a spherical space by whitening transform and length normalization

[GREW11, BBM13]. State-of-the-art i-vector comparators, e.g. Probabilistic Linear Dis-

criminant Analysis (PLDA) [CL14], conduct a likelihood ratio scoring.

2.1 Conventional Score Normalization Methods

State-of-the-art recognition systems [Va16, Br16] utilize score normalization in order to

improve discrimination power on secure operating points by employing statistics from

comparisons of the reference against an independent (cohort) data set, referred to as z-

norm, from comparisons of the probe against a cohort set, referred to as t-norm, and vari-

ations of z- and t-norm, such as the zt-norm, or s-norm, as well as adaptive variations e.g.,

at- [SR05] and as-norm [Cu11]. Exemplary, in [SR05, Ha13], data of 550, 1039 female,

and 435, 680 male speakers is utilized for normalization purposes, respectively, whereas in

[Cu11], solely the usage of 348 female and 273 male voice samples is reported. In mobile

applications, where no data of the biometric subject should leave the device, the cohort

data needs to be present on each mobile device.

2.2 Different Environmental Conditions

Variations in signal quality, i.e. in the probe sample condition, result in different score dis-

tributions per condition [Ma13, MSvL15]. While systems are usually calibrated for known

scenarios and in fixed-condition environments, calibrating systems well among known as

well as unseen conditions is harder, i.e. when facing unconstrained environments.

In this paper, we examine the 55 duration and noise conditions presented in [Na15]. In

[Na15], SNR conditions stem from two noise sources: air conditioner (AC) and crowd

(CROWD) noise. By degenerating voice samples from the I4U file list [Sa13], combined

signal degradation and observation incompleteness (short probe segment duration) effects

are simulated, which are expected to represent the most common conditions, cf. Tab. 1.
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Tab. 1: Label scheme for combined duration and noise conditions, cf. [Na15].

Condition 1 2 3 4 5 6 7 8 9 10 11 . . . 30 31 . . . 55

Duration 5 s 10 s 20 s 40 s full 5 s 10 s . . . full 5 s . . . full

Noise
clean

AC CROWD

SNR 0 dB 5 dB 10 dB 15 dB 20 dB 0 dB . . . 20 dB 0 dB . . . 20 dB

2.3 Estimation of Unified Audio Quality Vectors

For the purpose of estimating quality in speaker recognition, unified audio characteristics

[Fe12] are utilized. Single multivariate Gaussian models Λ j ∼ N (µ j,Σ), j = 1, . . . ,55

are trained in original i-vector space for each quality condition as outlined in Tab. 1. The

models have condition-dependent mean vectors µ j and share a full covariance matrix Σ.

Class-dependent means are estimated using i-vectors from a respective quality condition

and Σ is estimated by pooling all the i-vectors. The resulting vector of posterior probabili-

ties for an i-vector&i represent a condition quality vector (q-vector)&q [Fe12], with entries:

q( j) =
P(&i |Λ j)

∑55
j=1 P(&i |Λ j)

. (1)

2.4 Neural Network schemes

Feed forward neural networks consist of layers of units [Bi06]. An input layer and an

output layer are linked over a number of hidden layers by numerous connections, where

the connections between units of each layer are weighted. In [He15], initial weights are

proposed having a standard deviation of
√

2/nl , with nl being the number of incoming

connections to the unit. In each unit, a linear combination, the response, is constructed

from the outputs of the previous layer’s units. A non-linear activation function is evaluated

on the response to achieve the output, or activation, of the units e.g., the linear recti-

fier, ReLU activation function [LBH15] and the sigmoid function for bounded activations

[Bi06]. Networks are trained to optimize the performance regarding the cost function us-

ing gradient descent, where the Adam algorithm [KB14] and backpropagation [Bi06] can

be employed. As a cost function, the binary cross-entropy function is a measure of the dis-

tance between the distribution of the actual classes and the distribution of the prediction.

In this work, we utilize a single-unit output layer, representing a system’s score. In order to

avoid over-fitting of the training data, different regularization schemes can be employed,

such as weight decay [Bi06], dropout [Sr14], and batch normalization [IS15].

3 Deep Quality-informed Normalization

In order to account for cohort-related data as well as quality information, we propose

to construct the input layer to a feed forward neural network based on the comparison
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score, reference and probe i-vectors&iref,&iprb as well as corresponding q-vectors &qref,&qprb,

cf. Fig. 1, whereas a normalized score between 0 and 1, representing impostor and gen-

uine classes, respectively, is obtained via a single unit output layer with a sigmoid acti-

vation function, yielding rather discriminative than well-calibrated scores. By training the

network on the cohort data set, we assume the network model to comprise cohort and

quality information, whilst achieving anonymity (not only pseudonymization) for the co-

hort speakers. Furthermore, massive data amounts featuring multi-condition quality is not

required to be transferred to each mobile device by the biometric system operator.

&iref

&iprb

&qref

&qprb

LDA,

WCCN,

l-norm.
PLDA S
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input layer

h1
1

h1
U

...

hL
1

hL
U

...
. . .
. . .

. . .

. . .

. . .

S’

linear

layer

L layers,

ReLU

Fig. 1: Proposed deep quality-informed normalization network design with input layer (green), hid-

den layers (red), and output layer score S′. uQ,uQ̄ represent Q-dim. q-vectors, and uI ,uĪ represent

I-dim. i-vectors, respectively.

For the purpose of accounting for linear normalization approaches e.g., linear quality cal-

ibration [Bd11, Fe12, Na16], the first hidden layer of the proposed network employs a

linear activation function f (x) = a+bx. During training, input features are adaptively nor-

malized with respect to the amount of genuine and impostor comparisons. Deeper hidden

layers are non-linear using the ReLU activation function. The weights are initialized by the

scheme proposed in [He15]. Convergence is reached after 3 epochs on a random-selected

20% held-out validation subset, on which the best performing model is chosen. In order

to achieve an effective class balance of equal priors, genuine comparisons are weighted

higher than the impostor comparisons during network training. The network configura-

tion is referred to as (L,U) with a network of a linear layer with U units, followed by L

non-linear layers of U units, cf. Fig. 1.

4 Experimental Set-Up and Analysis

For the purpose of studying the proposed method, first we examine regularization impacts

on a fixed configuration of number of layers and units, finding λ = 10−5 to reduce over-

fitting well, then parameters of the deep neural network with fix regularization parameter

are examined comparing reasonable configurations on the testing set. In order to gain

insights on the robustness of the proposed normalization scheme, a sensitivity analysis is

conducted by excluding poor quality conditions from training the normalization network.

Implementations are based on Python 2.7 with Keras 1.1.1 and Theano 0.9.0.dev1, Mat-

lab 2016b, and the BOSARIS toolkit [Bd11]. The data used is the same as in [Na15]

of the I4U file list for NIST SRE’12 [Sa13]. The dataset consists of 55 different degra-

dations in duration and noise type and level, denoted here as degradation conditions, cf.
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Tab. 1. There are 680 reference i-vectors and 357269 probe i-vectors in the training dataset,

and 723 reference and 388278 probe i-vectors in the test set. The i-vectors are processed

dependent on the noise condition by performing linear discriminant analysis (LDA) to

200 dimensions, within class covariance normalization (WCCN), and length normaliza-

tion [GREW11]. Baseline scores are derived from our recent work [Na15, Na16].

As an application-independent performance metric, we use minimum cost of log-likeli-

hood ratio scores Cmin
llr [BdP08], i.e. the generalized empirical cross-entropy of genuine

and impostor scores, assuming well-calibrated systems in terms of Bayes decisions. The

upper bound of Cmin
llr is determined by the EER of the ROC’s convex hull [Bd11].

4.1 Experimental Analysis: Network Configuration

In order to examine network configurations, we investigate on L = 1,2,4 layers, where

all layers comprise the same amount of hidden units, i.e. U = 50,100,200 units. Tab. 2

compares the different networks on the test set: configuration (1, 50) yields the largest

condition-average Cmin
llr gain over a conventional i-vector / PLDA baseline system of 6.2%

with the lowest standard variation, i.e. with rather stable improvements among all condi-

tions. Configuration (2, 100) yields the second largest gains regarding average and devia-

tion in terms of Cmin
llr , but also regarding pooled-condition performance, where the (2, 50)

network yields the largest gains. Accounting for potential over-fitting, dropout is exam-

ined on (1, 50) and (2, 100) networks with a 20% dropout rate: on average, Cmin
llr grows,

which may occur due to a too high dropout rate. Further investigations are carried out on

the (1, 50) configuration, due its gains on pooled performance.

Tab. 2: Benchmark of relative Cmin
llr changes (in %) to PLDA baseline on the test set regarding

condition averaging (µ), standard deviation (σ ), and pooling (p), and dropout training (DO).
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DO

µ -6.2 1.4 -2.0 -2.1 -5.7 0.8 -2.9 -5.2 -0.9 1.3 4.9

σ 2.4 6.6 3.5 4.3 2.6 4.4 3.1 2.9 3.8 1.6 4.0

p -4.6 0.9 -0.2 -6.6 -6.4 0.4 -0.2 -3.4 0.0 -2.5 7.1

4.2 Robustness Analysis to unseen signal degradation and noise types

For the purpose of examining the robustness of the proposed normalization, training is

conducted with unseen test conditions, i.e. all conditions afflicted with SNR levels ≤ 5 dB

and with durations ≤ 10 s are excluded. Figs. 2a, 2b compare the effects to (1, 50) and

(2, 100) configurations, with and without employing dropout, regarding whether or not the

Cmin
llr performance is not exceeding a ±20% performance band with respect to each con-

dition’s Cmin
llr . In this analysis, the (1, 50) configuration outperforms the (2, 100) in terms
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of coherence stability. Also, employing dropouts sustain coherent and stable performance.

By placing focus on robustness towards noise type rather than low-SNRs, we exclude all

CROWD noise afflicted conditions from training instead: both configurations perform sta-

ble and coherent with slight benefits from conducting dropout training, see Figs. 2c, 2d.
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Fig. 2: Relative Cmin
llr change on test set (in %). Performance by duration and SNR regarding AC

(A) and CROWD (C) noise as well as whether dropout is conducted (DO). Green lines indicate the

conditions excluded from training. Crosses denote relative Cmin
llr changes above ±20%.

4.3 Summary and Discussion

Examining deeper architectures considering non-linear layers, gains compared to the base-

line PLDA performance are observed on average, though not further increasing the single

linear layer performance. Comparatively, the cohort normalization in [Na15] yields up to

8.2% relative gains in Cmin
llr on single conditions. In the robustness analysis, i.e. by exclud-

ing poor quality conditions and the more challenging noise type, the proposed approach

reveals to benefit on good quality conditions, the performance of the (1, 50) configuration

is preserved within a ±20% performance band on unseen poor quality conditions. Con-

trastively, on excluding overlapping speech (CROWD noise) conditions, either (1, 50) and

(2, 100) configurations perform comparatively stable. Thus, the proposed approach bene-

fits rather from training on a broad scale of SNR levels than on more noise types, posing a

challenging scenario due to overlapping biometric features of other subjects.

5 Conclusion

In this study, we introduced a neural network based normalization approach utilizing qual-

ity estimates, suitable for unconstrained environments under data privacy as well as lim-

ited resource concerns regarding the data of cohort speakers. As system operators trans-

mit trained networks to mobile devices instead of cohort data, data privacy is achieved

for cohort subjects, while sustaining comparative discrimination performance. Robustness

analyses show benefits of knowing levels of SNR levels and durations during training over

knowing different noise types of mid / high-SNR levls during training.
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Evaluation of CNN architectures for gait recognition based

on optical flow maps

F.M. Castroi , M.J. Mar1 ı́n-Jimenez i,´ 2 N. Guil ,aS. Lopez-Tapia ,1 ´ 3 N. Pérez de la Blanca 3

Abstract: This work targets people identification in video based on the way they walk (i.e.gait)
by using deep learning architectures. We explore the use of convolutional neural networks (CNN)
for learning high-level descriptors from low-level motion features (i.e.optical flow components). The
low number of training samples for each subject and the use of a test set containing subjects different
from the training ones makes the search of a good CNN architecture a challenging task. We carry out
a thorough experimental evaluation deploying and analyzing four distinct CNN models with different
depth but similar complexity. We show that even the simplest CNN models greatly improve the
results using shallow classifiers. All our experiments have been carried out on the challenging TUM-
GAID dataset, which contains people in different covariate scenarios (i.e.clothing, shoes, bags).

Keywords: Deep Neural Networks, Gait Recognition, Optical Flow, ResNet, 3D-CNN.

1 Introduction
The goal of gait recognition is to identify people by the way they walk. This type of

biometric approach is considered non-invasive, since it is performed at a distance, and

does not require the cooperation of the subject that has to be identified, in contrast to

other methods as iris- or fingerprint-based approaches. Gait recognition has application in

the context of video surveillance, ranging from control access in restricted areas to early

detection of persons of interest as, for example, v.i.p. customers in a bank office.

In last years, great effort has been put into the problem of people identification based on

gait patterns [Hu04]. However, previous approaches have mostly used hand-crafted fea-

tures for representing the human gait [BD09, HB06, Ca17], which do not easily adapt to

diverse datasets, due to the specificity of the hand-crafted descriptors obtained for each

dataset. Therefore, we propose an end-to-end approach based on convolutional neural net-

works that given low-level optical flow maps, directly extracted from video frames (see

Fig. 1), is able to learn and extract higher-level features suitable for representing human

gait: gait signature. In addition, we also present a fair comparative between four models

based on three of the most popular kinds of CNN architectures used in computer vision

tasks: LeNet [LB95], VGG [SZ14] and ResNet [He16]. The contribution of this paper is

twofold: (i) a set of CNN models for gait recognition using optical flow; and, (ii) a thor-

ough experimental study to validate the proposed models on the standard TUM-GAID

dataset for gait identification, obtaining state-of-the-art results.

The rest of the paper is organized as follows. We continue by reviewing the related work.

Then, Sec. 2 explains our four different models for learning gait signatures and identifying

1 University of Málaga, Department of Computer Architecture, Spain
2 University of Córdoba, Department of Computing and Numerical Analysis, Spain
3 University of Granada, Department of Computer Science and Artificial Intelligence, Spain



252 F.M. Castro, M.J. Marı́n-Jimenez, N. Guil, S. L´ ópez-Tapia, N. Pérez de la Blanca
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Fig. 1: Pipeline for gait recognition. a) The input is a sequence of RGB video frames. b) Optical

flow is computed along the sequence. c) Optical flow subsequences are passed through the CNN to

obtain gait signatures. e) Classification of the extracted gait signatures. Note: positive flows are in

pink and negative flows in blue. (Best viewed in colour).

people. Sec. 3 contains the experiments and results. Finally, we present the conclusions

and future work in Sec. 4.

1.1 Related work

Traditionally, deep learning approaches based on Convolutional Neural Networks (CNN)

have been used in image-based tasks with great success [KSH12]. In the last years, deep

architectures for video have appeared, specially focused on action recognition, where the

inputs of the CNN are subsequences of stacked frames. In [SZ14], Simonyan and Zisser-

man proposed to use as input to a CNN a volume obtained as the concatenation of frames

with two channels that contain the optical flow in the x-axis and y-axis respectively. To

normalize the size of the inputs, they split the original sequences into subsequences of

10 frames, considering each subsample independently. A natural modification is presented

by Ji et al. [Ji13], where a 3D convolutional network is developed to capture temporal

information from multiple frames. Then, Tran et al. [Tr15] propose a new 3D network

which uses raw videos as input, instead of preprocessed inputs. Recently, a new approach

has been developed by He et al. [He16]. They propose a new kind of CNN which has

a large number of layers and residual connections to avoid the vanishing gradient prob-

lem. Although several papers can be found for the task of human action recognition using

deep learning techniques, it is hard to find such type of approaches applied to the problem

of gait recognition. In [HC13], Hossain and Chetty propose the use of Restricted Boltz-

mann Machines to extract gait features from binary silhouettes, but a very small probe

set (i.e.only ten different subjects) was used for validating their approach. A more recent

work, [WHW15], uses a random set of binary silhouettes from a sequence to train a CNN

that accumulates the calculated features to achieve a global representation of the dataset.

In [AM15], raw 2D GEI are employed to train a simple CNN for gait recognition. A more

complex work is presented in [GB15] where GEI are used to train an ensemble of CNN and

This work has been funded under projects TIC-1692 (Junta de Andalucı́a) and TIN2016-75279-P (Spanish

Ministry of Science and Tech.). The GPU Titan X Pascal used for this research was donated by NVIDIA.
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Fig. 2: Proposed CNN models for gait signature extraction. a) 2D-CNN: linear CNN with four

2D convolutions, two fully connected layers and a softmax classifier. b) 3D-CNN: four 3D convo-

lutions, two fully connected layers and a softmax classifier. c) ResNet-A: residual CNN with a 2D

convolution, four residual blocks, an average pooling layer and a final softmax classifier. d) ResNet-

B: extended version of ResNet-A. Note that before the first block of each kind (ResB 1, 2, 3, 4),

there is an adapter convolution to resize the input image to the size of the next block.

a Multilayer Perceptron is employed as classifier. In [Wu17], given two GEI descriptors,

they learn a metric to decide whether both descriptors belong to the same subject or not.

All those previous CNN-based approaches propose precomputed GEI descriptors as input

features. In contrast, our approach builds a spatio-temporal volume of optical flow [SZ14]

as input to a CNN specially designed for gait recognition, what will allow the CNN to

learn characteristic gait patterns directly from the source, i.e.the motion.

2 Proposed approach
In this section we describe our proposed framework to address the problem of gait recog-

nition using CNN. The proposed pipeline is represented in Fig. 1: (i) compute optical flow

(OF) along the whole sequence; (ii) build up a data cuboid from consecutive OF maps; (iii)

feed the different CNNs with an OF cuboid to extract the gait signature; and, (iv) using the

gait signature, decide the subject identity.

2.1 Input data

The use of optical flow (OF) as input data for action representation in video with CNN

has already shown excellent results [SZ14]. Nevertheless human action is represented by

a wide, and usually well defined, set of local motions. In our case, the set of motions

differentiating one gait style from another is much more subtle and local.

Let Ft be an OF map computed at time t and, therefore, Ft(x,y,c) be the value of the OF

vector component c located at coordinates (x,y), where c can be either the horizontal or

vertical component of the corresponding OF vector. The input data IL for the CNN are

cuboids built by stacking L consecutive OF maps Ft , where IL(x,y,2k−1) and IL(x,y,2k)
corresponds to the value of the horizontal and vertical OF components located at spatial

position (x,y) and time k, respectively, ranging k in the interval [1,L].

Since original video sequences have different temporal length, and CNN requires a fixed

size input, we extract subsequences of L frames from the full-length sequences.

2.2 CNN architectures for gait signature extraction

We have selected three of the architectures that most frequently appear in the bibliography

and produce state-of-the-art results in different topics (e.g.action recognition, object detec-

tion, etc). The proposed architectures are: (i) the LeNet architecture [LB95], adapted to a
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model named (2D-CNN), which is the most common architecture; (ii) the VGG architec-

ture [SZ14], adapted to use 3D convolutions on optical flow inputs and named (3D-CNN),

which is specially designed to capture information in video sequences; and, (iii) two CNN

models with residual units (named ResNet [He16]), used to experiment with deeper mod-

els on this task, as the network depth has been recently pointed out as one the most relevant

factors to achieve the state of the art in many tasks [KSH12].

To carry out a fair comparison, three of the four models have been designed to have a

similar number of parameters, where the 2D-CNN model has been taken as a reference

(i.e.∼ 18.5M). This choice allows us to carry out a comparative study which is independent

of the network capacity. Due to the particular design of the fourth one, it has a different

number of parameters.

We describe below the four models compared in the experimental section (Sec. 3):

2D-CNN (16 layers): This CNN is composed of the sequence of layers shown in Fig. 2.a).

All convolutional layers use a ReLU function and all conv blocks contain a max-

pooling operation.

3D-CNN (16 layers): As optical flow has two components and the CNN uses temporal

kernels, the network is split into two branches: x-flow and y-flow. Therefore, each

branch contains half of the total filters. Then, this CNN is composed of the sequence

of layers shown in Fig. 2.b). Note that ‘concat’ layer concatenates both branches (x-

flow and y-flow) into a single one. All convolutional layers use a ReLU function and

all conv blocks contain max-pooling.

ResNet-A (167 layers): This CNN is composed of the sequence of layers and residual

blocks (a sequence of two convolutions of size 3×3 and a sum layer, as defined in

[He16]) shown in Fig. 2.c). As our model follows the indications defined in [He16],

we only describe the main blocks. Note that all convolutional layers use the rectifi-

cation (ReLU) activation function and batch normalization.

ResNet-B (268 layers): This CNN is an extended version of ResNet-A, composed of the

sequence of layers and residual blocks shown in Fig. 2.d). Note that all convolu-

tional layers use the parametric rectification (PReLU) [He15] activation function,

local response normalization (LRN) and batch normalization. The use of PReLU is

specially useful in our case as optical flow has negative components which contain

important information about motion. Therefore, the network uses more information

and the gradients are more powerful, avoiding the vanishing gradient problem.

2.3 Training details

For models 2D-CNN, 3D-CNN and ResNet-A, during training, the weights are learnt using

mini-batch stochastic descent algorithm with momentum equal to 0.9. We set weight decay

to 5 ·10−4 and dropout to 0.4 (2D-CNN and 3D-CNN). The learning rate is initially set to

10−2 and divided by 10 when the validation error gets stuck. At each epoch, a mini-batch

of 150 samples is constructed by random selection over a balanced training set (i.e.almost

same proportion of samples per class).

As ResNet-B has some peculiarities, training parameters must be adapted. In this case,

mini batches of size 64 are used. The learning rate policy follows a triangular scheme that
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consists of varying the learning rate between a minimum and a maximum value following a

triangular pattern with the training iterations. The triangular learning rate parameters range

from 0.003 to 0.015 during 4 epochs. The model was trained with a total of 24 epochs.

Finally, dropout is used before each fully connected layer with a value of 0.1. Also weight

decay regularization with value 0.0005 was imposed. Note that all hyperparameters have

been cross-validated and only the best ones are presented in this paper.

3 Experiments and results
3.1 Dataset
TUM-GAID [Ho14] contains 305 subjects walking on four different conditions: normal

walking (N), carrying a backpack (B), wearing coating shoes (S) and elapsed time (TN,

TB, TS). We follow the standard experimental protocol defined by the authors of the

dataset [Ho14]. Therefore, we use 100 subjects as training set, 50 different subjects as

validation set and 155 different subjects as test set – note that it is distinguished between

‘subject partitions’ and ‘sequence partitions’, i.e., for each subject, training, validation and

test sequences are available. As we have different subjects between training and testing, it

is needed to fine-tune the model with four training sequences of normal walking of the test

subject partition. Note that the sequences used for fine-tuning are not used during testing.

For testing, we use six sequences that have never been seen before by our model according

to the partitions defined in [Ho14].

3.2 Implementation details
All videos are resized to a common resolution of 80× 60 pixels, keeping the original as-

pect ratio of the video frames. Given the resized video sequences, we compute dense OF on

pairs of frames by using the method of Farneback [Fa03] implemented in OpenCV library.

In parallel, people are located in a rough manner along the video sequences by background

subtraction [KB02]. Then, we crop the video frames to remove part of the background, ob-

taining video frames of 60× 60 pixels (full height is kept) and to align the subsequences

(people are x-located in the middle of the central frame). Finally, from the cropped OF

maps, we build subsequences of 25 frames by stacking OF maps with an overlap of Θ%

frames. As this dataset is relatively small, we need to choose an intermediate overlapping

rate value that allows to obtain training samples with enough variability between them. In

our case, we empirically choose Θ = 80%, that is, to build a new subsequence, we use 20

frames of the previous subsequence and 5 new frames. For most state-of-the-start datasets,

25 frames cover almost one complete gait cycle, as stated by other authors [BD09]. There-

fore, each OF volume has size 60×60×50.

To increase the amount of training samples we add mirror sequences and apply spatial

displacements of ±5 pixels per axis, obtaining a total of 8 new samples from each original

one. Then, mirror sequences are computed, obtaining about 270k training samples. Note

that in Sec. 2.1, we split the whole video sequence into overlapping subsequences of a

fixed length, and those subsequences are classified independently. Therefore, in order to

derive a final identity for the whole sequence, we multiply the probabilities returned by

the Softmax layer for all subsequences of the same sequence. Before feeding each sample

into the CNN, the mean value of the whole training dataset is subtracted.

We ran our experiments on a PC with 32 cores at 2.2 GHz, 256 GB of RAM and a GPU

NVIDIA Titan X Pascal, with MatConvNet library [VL15] running on Matlab 2016a for

Ubuntu 14.04 and Caffe [Ji14] library for ResNet-B.
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Fig. 3: Model comparison in terms of identification accuracy. Results grouped per scenario: nor-

mal ‘N’, backpacks ‘B’, shoes ‘S’ and temporal cases ‘Tx’. Group ‘G.Avg’ corresponds to global

average on the six scenarios.

3.3 Experimental results

After splitting the training sequences (of the training subjects) into subsequences, we got

a training set composed of 269352 samples used for learning the filters; and a second

training set composed of 108522 samples for training the softmax layer from the subset of

test subjects. Test sequences are never used for training or validation of the model.

Fig. 3 offers a visual comparison of the results obtained with each of the four tested archi-

tectures grouped per scenario type. In terms of scenario type, note that the temporal ones

(Tx) are the most challenging, as there exists a large change in subject appearance with

regard to the non-temporal cases where the filters of the networks were trained.

To put our results in context, Tab. 1 contains the state-of-the-art and the comparison be-

tween the four different models (rows ‘2D-CNN’, ‘3D-CNN’, ‘ResNet-A’ and ‘ResNet-

B’). We have applied the PFM descriptor [Ca17] on resized videos of 80×60 to obtain a

fair comparison. Comparing the CNN results with the state-of-the-art , 2D-CNN achieves

on average the best results for the non-temporal scenarios. For the temporal cases, 3D-

CNN obtains the best results. On global average (column ‘G.Avg’), ResNet-B sets a new

state-of-the-art with an accuracy 0.2% better than the rest of CNNs and 6.1% better than

the best handcrafted method. Note that CNNs use an input 16 times lower than the rest of

the compared methods.

4 Discussion and Conclusions
The relevance of the complexity in CNN architectures, when applied to the gait recogni-

tion task, has been analysed through a comparative study of four models (from three deep

architectures) and its comparison to results from methods based on handcrafted features.

The first conclusion is that in this task, as in many others, the deep CNN architectures

overcome shallow and handcrafted methods. This fact points out the importance of the

architecture depth to extract relevant features. The second conclusion is that the four deep

models achieve similar results in the non-temporal scenario, but in the temporal one the

differences are more significant. The filters used by the 3D-CNN model make the differ-

ence in the temporal scenario. The standard convolutional architectures obtain the best

results on the non-temporal and temporal scenarios as its design is focused on the main
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Method N B S Avg TN TB TS Avg G. Avg

6
4
0
×

4
8
0

GEI [Ho14] 99.4 27.1 52.6 59.7 44.0 6.0 9.0 19.7 56.0

SEIM [WBR14] 99.0 18.4 96.1 71.2 15.6 3.1 28.1 15.6 66.6

GVI [WBR14] 99.0 47.7 94.5 80.4 62.5 15.6 62.5 46.9 77.3

SVIM [WBR14] 98.4 64.2 91.6 84.7 65.6 31.3 50.0 49.0 81.4

RSM [GL13] 100 79.0 97.0 92.0 58.0 38.0 57.0 51.3 88.2

8
0
×

6
0

PFM [Ca17] 75.8 70.3 32.3 59.5 50.0 40.6 25.0 38.5 57.5

2D-CNN 99.4 97.7 96.1 97.7 56.3 43.8 59.4 53.2 93.5

3D-CNN 98.7 97.1 94.5 96.7 71.9 68.9 65.6 68.8 94.1

ResNet-A 98.4 92.6 91.6 94.2 59.4 56.3 62.5 59.4 90.9

ResNet-B 99.0 95.5 97.4 97.3 65.6 62.5 68.8 65.6 94.3

Tab. 1: State-of-the-art on TUM GAID. Percentage of correct recognition on TUM-GAID for

diverse methods published in the literature. Bottom rows correspond to our proposal, where instead

of using video frames at 640× 480, a resolution of 80× 60 is used. Each column corresponds to

either a different scenario or average on scenarios (i.e.Avg, G.Avg ). Best results are marked in bold.

variations of the signal, spatial in 2D-CNN and temporal in 3D-CNN. Regarding the two

ResNet models there are many differences between them in terms of design (see Fig.2)

and training parameters. The ResNet-B model is a much more deeper architecture need-

ing of PReLU activations and adaptive learning rate to obtain a good optimum. A final

fully connected layer with dropout was added as well. Nevertheless and despite all these

improvements, an increment of only 3.4 points in score is obtained w.r.t. ResNet-A. This

result shows that the addition of residual layers although allows to fit deeper models, needs

of a good learning rate policy to obtain a good optimum. The ResNet architecture achieves

the overall best results when it is properly fitted. Our results reinforce, for the gait recogni-

tion task, the empirical finding of other works that indicates that architectures with enough

depth are needed in order to obtain high classification accuracy. In addition, the use of ap-

propriate activation functions has also shown to be a very relevant choice on this task. Fo-

cusing on the training speed, independently of the number of parameters, 3D-CNN needs

more training time, followed by 2D-CNN and ResNet which is the fastest one.

As future work, we plan to extend our study to identify the kind of architectures more

suitable to combine motion with appearance (i.e.RGB data), applying them to more gait

datasets in which optical flow can be computed – this would allow us to perform transfer

learning between networks trained on different data.
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How Random is a Classifier given its Area under Curve?

Chris Zeinstraa,a1 Raymond Veldhuisa,a1 Luuk Spreeuwers1

Abstract: When the performance of a classifier is empirically evaluated, the Area Under Curve
(AUC) is commonly used as a one dimensional performance measure. In general, the focus is on
good performance (AUC towards 1). In this paper, we study the other side of the performance spec-
trum (AUC towards 0.50) as we are interested to which extend a classifier is random given its AUC.
We present the exact probability distribution of the AUC of a truely random classifier, given a fi-
nite number of distinct genuine and imposter scores. It quantifies the “randomness” of the measured
AUC. The distribution involves the restricted partition function, a well studied function in number
theory. Although other work exists that considers confidence bounds on the AUC, the novelty is that
we do not assume any underlying parametric or non-parametric model or specify an error rate. Also,
in cases in which a limited number of scores is available, for example in forensic case work, the ex-
act distribution can deviate from these models. For completeness, we also present an approximation
using a normal distribution and confidence bounds on the AUC.

Keywords: Random Classifier, AUC, Exact Distribution, Approximation.

1 Introduction

The trade off between the False Match Rate (FMR) and True Match Rate (TMR) of a

classifier while varying the decision threshold is commonly reported in a receiver oper-

ating characteristic (ROC) curve [Fa06]. There exist several one dimensional classifier

performance measures that can be derived from its ROC curve, for example, the Equal

Error Rate and the Area under Curve [HM82]. In this study, we consider the Area Under

Curve (AUC) measure. An ideal classifier has AUC=1, whereas a random classifier has

AUC=0.50. The AUC is equal to the probability that a randomly chosen genuine score is

larger than a randomly chosen imposter score [HT01]. Also, the AUC can be interpreted as

the Wilcoxon-Mann-Whitney statistic [MW47] when ordering the genuine and imposter

scores produced by the classifier [HM82], [MG02].

In any empirical performance evaluation, only a finite number of genuine and imposter

scores is available. Under the assumption that genuine and imposter scores are drawn

from unknown probability densities, ultimately the AUC is also a random variable, having

a probability distribution on its own. If we could replicate the experiment having the exact

same number of genuine and imposter scores, we most likely would have obtained a differ-

ent ROC curve and AUC. In particular, this implies that the performance evaluation might

yield an AUC value that is not identified as being produced by a random classifier. This

could occur in the case of a subject anchored approach to evidence evaluation in which the

available number of scores is limited, see [Me06] for a general framework.

1 University of Twente, Faculty of EEMCS, SCS Group, P.O.Box 217, 7500 AE Enschede, The Netherlands,

{c.g.zeinstra,r.n.j.veldhuis,l.j.spreeuwers}@utwente.nl
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The probability distribution of the AUC of a random classifier is easily derived for trivial

cases. More precisely, we assume that (a) this classifier draws genuine and imposter scores

randomly from the same probability distribution and (b) the drawn scores are distinct. The

last condition is a necessary technicality; if we for example assume that scores come from

a continuous interval, this condition is typically met. Suppose we construct a ROC curve

based on 1 genuine score g and n imposter scores ik, k = 1, . . . ,n. We have n+1 possible

orderings of the scores:

g < i1 < .. . < in−1 < in to i1 < i2 < .. . < in < g. (1)

Since g and ik come from the same distribution, each sequence in (1) has equal probability
1

n+1
. If l (l = 1, . . . ,n+1) is the position of g in any sequence in (1), then its AUC is equal

to l−1
n

. Hence, each possible AUC has equal probability. The one-to-one mapping in this

trivial 1 genuine/n imposter case between sequences and the AUC does not hold in general.

For example, both i1,g1,g2, i2 and g1, i1, i2,g2 yield AUC=0.50, and the situation becomes

rapidly complex when m and n attain values found in practice.

The contribution of this paper is the exact probability distribution of the AUC of the ran-

dom classifier for any finite number of genuine and imposter scores. Also, we present an

approximation. This work can be used in the situation when we want to determine the

probability that a random classifier produces the measured AUC; this is of interest when

the measured AUC is low or the total number of scores is limited.

The remainder of this article is structured as follows. In Section 2, we present related

work. Since the general approach involves the restricted partition function, we present

its definition in Section 3. In Section 4, we present two theorems regarding respectively

the probability distribution of the AUC and an approximation. Section 5 presents some

examples of the exact and an application of the approximation. In Section 6, we discuss

the two theorems. Finally, in Section 7 we present our conclusion.

2 Related Work

As indicated before, this work fits in a larger framework that studies whether two AUC’s

are significantly different by constructing confidence intervals. This is not only of impor-

tance in decision theory, but also for clinical medicine and psychology studies in which

treatments are compared. We present some of these studies here.

For example, the work of [CM04] analytically derives exact and estimated confidence

intervals based on a statistical and combinatorical analysis, using a fixed error rate and

the number of genuine and imposter scores. Our work only uses the number of genuine

and imposter scores, assuming that they are drawn from the same probability distribution.

Another approach is the use of parametric models to construct confidence intervals. For

example score distributions have been modeled as normal [HSZ09], binormal [MHS98],

exponential [To77], and Gamma [PA95], from which expressions for the confidence inter-

vals can be derived. Their main issue is the influence of the parametric assumption on the
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estimation of confidence intervals. To cater for that situation, several non-parametric meth-

ods have been explored, including Wilcoxon-Mann-Whitney and De-Long non-parametric

interval [DDCP88]. The work of [QH08] compares nine non-parametric approaches in dif-

ferent simulation scenarios (moderate to good AUC and different combinations of genuine

and imposter scores). They found that their own empirical likelihood approach [QZ06]

has a good coverage in different scenarios. Several studies have shown that methods can

be negatively influenced by the number of considered scores. For example, [OL98] found

that asymptotic methods are less accurate in this situation; the study of [Ha10] shows how

estimates for the AUC can differ significantly from the true value.

In summary, these studies emphasise on one hand the restriction of our work (random clas-

sifier) and on the other hand its uniqueness (exact distribution, depending on the number

of genuine and imposter scores).

3 Partition functions

The partition function is an essential function in number theory, a branch of mathematics

that studies properties of integers [An98]. A partition of a positive integer k is a decom-

position of k as a sum of positive integers. The partition function p counts the number of

different partitions of a positive integer, disregarding any permutations in the order of the

terms. For example p(5) = 7, since

5 = 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1. (2)

It is customary to order the terms in a partition from the largest to the lowest value. This

can be written more formally as k1+ . . .+kr = k, and k1 ≥ k2 ≥ ·· ·kr. Also, by convention,

the domain of p is extended by including p(0) = 1 and p(k) = 0 for k < 0.

There exist different “restricted” versions of the partition function. In particular, one can

limit the number and value of the terms of a partition. Let p(n,m;k) be the number of

partitions of k which have at most m terms, each having maximum value n. In the sequel,

we refer to this function as “the” restricted partition function. For example, p(4,2;5) = 2,

since the maximum value is 4 and the maximum number of terms is 2:

5 = 4+1 = 3+2. (3)

The restricted partition function has a generating function:

nm

∑
k=0

p(n,m;k)qk =

(
m+n

m

)
q

, (4)

in which (
m+n

m

)
q

=
∏m+n

j=1 (1−q j)

∏m
j=1(1−q j)∏n

j=1(1−q j)
(5)

is the Gaussian binomial coefficient [An74]. It generalises the binomial coefficient as for

limqր1, (5) reverts to the standard binomial coefficient
(

k+l
l

)
. As an example, we expand
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p(4,2;k) for k = 0, · · · ,8:

8

∑
k=0

p(n,m;k)qk =

(
6

2

)
q

=
∏6

j=1(1−q j)

∏2
j=1(1−q j)∏4

j=1(1−q j)
=

(1−q5)(1−q6)

(1−q)(1−q2)
. (6)

It is straightforward to verify that (6) is equal to 1+ q+ 2q2 + 2q3 + 3q4 + 2q5 + 2q6 +
q7 + q8. In particular, we observe that p(4,2;5) = 2 (the factor of q5), a result that was

also demonstrated by (3).

4 Exact and Approximative Distribution

We have the following theorem on the distribution of AUC.

Theorem 1. Given m genuine and n imposter scores, all distinct, the possible values for

AUC are

{
k

mn
|k ∈ {0, . . . ,mn}}. (7)

Moreover, if the genuine and imposter scores are drawn from the same score distribution,

then the probability distribution of the AUC is given by

p

(
AUC =

k

mn

)
=

p(n,m;k)(
n+m

n

) , (8)

where p(n,m;k) is the restricted version of the partition function.

Proof. Having m genuine and n imposter scores, this divides the TMR (resp. FMR) space

into m+ 1 (resp. n+ 1) points with distance 1
m

(resp. 1
n
). Since we have distinct scores,

whenever the threshold increases and passes a score, the corresponding operating point

in ROC space will either move to the left with a step size 1
n

or down with a step size 1
m

.

Hence, the AUC can be seen as a sum of blocks of equal area of 1
mn

, showing that (7)

holds.

Given the set of ROC curves for which the number of blocks under the curve is k, we

can assign to each ROC curve a sequence k1,k2, . . . ,kr where k1 is the number of blocks

between T MR = 0 and T MR = 1
m

, until kr, being the number of blocks between T MR =
r−1
m

and T MR = r
m

. By construction, (a) k1 + . . .+ kr = k, (b) the size of ki is restricted to

n, (c) r is limited to m, and (d) k1 ≥ k2 ≥ ·· ·kr.

The reverse relation also holds: given a sequence k1,k2, . . . ,kr with properties (a)-(d), we

can construct the corresponding ROC curve uniquely as follows. Place k1 blocks to the

right between T MR = 0 and T MR = 1
m

, until kr blocks to the right between T MR = r−1
m

and T MR = r
m

.

The properties (a)-(d) of a sequence k1,k2, . . . ,kr make it a restricted partition of k. Since

there is a one-to-one correspondence between a ROC curve and a restricted partition, we

conclude that the number of ROC curves with AUC = k
mn

is equal to p(n,m;k).
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Given that the total number of ROC curves is
(

n+m
n

)
, all being equiprobable due to the

same score distribution assumption, we conclude that (8) holds.

We can also approximate (8) with the normal distribution.

Theorem 2. Given m genuine and n imposter scores, the distribution of the AUC has an

asymptotic normal distribution if m → ∞ and n → ∞, in particular

lim
m→∞
n→∞

p(AUC ≥ x) = 1−Φ

(
(x− 1

2
)mn

σmn

)
. (9)

Here Φ is the cumulative standard normal distribution and

σmn =

√
mn(m+n+1)

12
. (10)

Proof. According to Theorem 4 of [Ta86], we have, using our notation

lim
m→∞
n→∞

p

(
k− 1

2
mn

σmn

≤ t

)
= Φ(t) , (11)

with k related to AUC as AUC = k
mn

. Using this relation in (11) we observe that

lim
m→∞
n→∞

p

(
(AUC− 1

2
)mn

σmn

≤ t

)
= Φ(t) , (12)

defining x = 1
2
+ tσmn

mn
and reversing the inequality in (12) we conclude that (9) holds.

5 Examples

In this section, we provide three examples of the exact distribution and one application

that uses the approximation.

5.1 The 1 genuine/n imposter case

It is straightforward to show that p(n,1;k) = (1−q)···(1−qn+1)
(1−q)···(1−qn)(1−q) =

1−qn+1

1−q
=∑n

k=0 qk. Hence,

p(n,1;k) = 1 for k = 0, . . . ,n. Moreover, p(AUC = k
mn

) = 1

(n+1
n )

= 1
n+1

. This is in accor-

dance with the example discussed in the Introduction.
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Fig. 1: a) p(AUC) for m = 1, · · · ,15 genuine and n = 100 imposter scores. Graphs are scaled such

that they can be interpreted as continuous probability distributions. b) The upper limit of 95% and

99% confidence intervals as a function of equal number of genuine and imposter scores. c) p(AUC)

for m= 5,10,15 genuine and n= 100 imposter scores in blue, together with the approximation given

by (9) in red.

5.2 The 2 genuine/Even n imposter case

Suppose n is even, then it can be shown that (5) can be written as

p(n,2;k) = (1+q+q2 + · · ·+qn)(1+q2 +q4 + · · ·+qn). (13)

A straightforward calculation gives a staircase like shape:

p(2,n;2k) = p(2,n;2k+1) = k+1 if 2k ≤ n−1,

p(2,n,k) = n
2
+1 if k = n,

p(2,n;k) = p(2,n;2n− k) if k ≥ n+1.

(14)

5.3 The 1-15 genuine/100 imposter case

In this example, we plot p(AUC) for m = 1, · · · ,15 genuine and n = 100 imposter scores in

Figure 1a. In particular, we see respectively the uniform and staircase like shapes appearing

for m = 1 and m = 2.

5.4 Confidence bounds

Theorem 2 can be used to construct a two sided 1−α confidence interval [ 1
2
− xα ,

1
2
+ xα ]

around the AUC of a random classifier that depends on the number of genuine and imposter

scores. Rewriting (9) shows that xα is given by xα = zα

√
m+n+1

12mn
, with zα defined implicitly

as Φ(zα) = 1− α

2
.

In Figure 1b we have chosen m = n, respectively α = 5% (zα = 1.96) and α = 1%

(zα = 2.33) and plotted the upper limit of confidence intervals as a function of the number

of genuine and imposter scores. This illustrates the asymptotic behaviour of the approxi-

mation; for smaller numbers of scores, the AUC of a random system can still deviate much

from AUC=0.50.
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6 Discussion

Figure 1a visualises the dependency of p(AUC) on the number of scores. Especially, we

observe that for a lower number of scores, the probability that a random system has an

AUC that differs significantly from 0.50 is non trivial. This is of relevance in, for example,

the case of a subject anchored approach to evidence evaluation.

Although Theorem 1 provides an exact result, it can be challenging to calculate the value of

the restricted partition function. One needs to resort to data structures to accommodate for

values that are larger than those can fit into an IEEE-754 64 bit integer representation. This

may result in an increased calculation time due to the lack of an efficient mapping from

primitive operators to single machine instructions. Moreover, if we would be interested in

the cumulative probability p(AUC ≥ x), then a repeated calculation is not optimal as one

could better use its generating function (4) for the simultaneous calculation of p(n,m;k)
over a range of values of k.

The result of Theorem 2 is an approximative result, and it is instructive to see how well

it approximates the true probability distribution for finite values of m and n. We show the

exact and the approximation for three cases: m = 5, 10, 15, and n = 100 in Figure 1c.

Even for moderate values of m and n the approximation seems satisfactory. Furthermore,

if the number of genuine and imposter scores are equal (k) and k → ∞, the distribution

becomes centered around AUC=0.50.

Although our work only considered approximative confidence bounds, we can also con-

struct exact confidence bounds, especially when the number of scores is low.

7 Conclusion

In this paper, we have presented an exact formula for the probability distribution of the

AUC of a random classifier, given a finite number of distinct genuine and imposter scores.

This work can be used in the situation when we want to determine the probability that a

random classifier produces the measured AUC; this is of interest when the measured AUC

is low or the total number of scores is limited, masking the true nature of the classifier. The

exact probability distribution involves the restricted partition function and can be approxi-

mated by a normal distribution. We used this approximation to derive confidence intervals

for the AUC as a function of the number of genuine and imposter scores.
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Fingerprint Damage Localizer and Detector of Skin

Diseases from Fingerprint Images

Stepanka Barotova1, Martin Drahansky1

Abstract: This article describes a novel approach for detection and classification of skin diseases in
fingerprints using three methods - Block Orientation Field, Histogram Analysis and Flood Fill. The
combination of these methods brings a surprising results and using a rule descriptor for selected skin
diseases, we are able to classify the disease into a group or concrete name.

Keywords: Fingerprint recognition, skin diseases, image processing, image quality.

1 Introduction

Fingerprint-based systems are the most widely used biometric technology, which is very

well accepted by users. Some people might use it literally on a daily basis, others only

for civil identification or access systems. However, there is a significant number of people

whose fingertip skin is affected of some kind of skin disease. Therefore, they cannot use

fingerprint systems since skin diseases cause damages in ridge patterns.

The challenge now is to recognize the presence of skin diseases in fingerprint images and,

if possible, eliminate their influence on the fingerprint recognition process, so that people

suffering from skin diseases would be able to use fingerprint devices, at least to some

extent.

Algorithms developed in our research are now able to locate the damage in the fingerprint

image. Moreover, our classifier is able to estimate the possible disease present in the fin-

gerprint image. This can have a great usage in forensic or medical applications, as well as

security.

In this text, the methods used for localizing the damage and determining its type are going

to be introduced, as well as the classification procedure and results.

2 The Triple-Method Damage Localization

There are three major methods that are used for the damage localization: Block Orientation

Field, Histogram Analysis and Flood Fill. What makes the resulting concept so interest-

ing, however, is their combination that provide valuable information about the quality and

character of the possible disease.

1 Faculty of Information Technology at Brno University of Technology, Department of Intelligent Systems,

Bozetechova 2, 612 00 Brno, Czech Republic, xbarot00@stud.fit.vutbr.cz, drahan@fit.vutbr.cz
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The classification is then based on the features extracted from the image by the Flood Fill

algorithm, and their properties.

2.1 Ridge Inconsistence Detection from a Block Orientation Field

The computation of block orientation field is commonly used in the fingerprint recognition

process for the purposes of estimating the ridges direction and classifying the fingerprint

image into one of the several fingerprint classes [Ma09] [JFR08]. Because a typical fin-

gerprint pattern consists of alternating dark and white lines, this information can be easily

processed by a gradient operator that estimates the image gradient for each pixel. This low-

level information is gathered and averaged for each w×w block in the image [HWJ98].

The transformation can result in a relatively smooth and continual image of the ridges

direction estimates - for a healthy fingerprint of course - see Figure 1 on the left.

Fig. 1: Examples of block orientation images (left: healthy fingerprint, middle: fingerprint affected

by a skin disease, right: detected damaged areas).

If we try to compute the block orientation field for a damaged or a partially damaged

fingerprint however, the orientation field in damaged areas will be discontinuous, as dis-

played in Figure 1 in the middle. Exceptions to this are the peripheral areas and deltas

and cores. These discontinuities can be detected by scanning the field for differences in

direction angles.

The steps of the gradient-based method of block orientation field computation are as fol-

lows [HWJ98]:

1. Compute the gradients ∂x and ∂y for each pixel at (i, j) using a gradient operator. In

this case a simple Sobel operator was used.

2. Divide the original image into w×w blocks.

3. Compute the estimation θ(i, j) of the ridge orientation for every image block cen-

tered at (i, j) using the Equations 1, 2 and 3:

vx =
u=i+w

2

∑
u=i−w

2

v= j+w
2

∑
v= j−w

2

2∂x(u,v)∂y(u,v) (1)
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vy =
u=i+w

2

∑
u=i−w

2

v= j+w
2

∑
v= j−w

2

∂ 2
x (u,v)∂

2
y (u,v) (2)

θ(i, j) =
1

2
tan−1(

vy(i, j)

vx(i, j)
) (3)

The resulting block orientation field is afterwards analyzed for any discontinuities that

may occur. The analysis is done using a row-wise and column-wise scanning approach

that reveals areas of possible damage in the fingerprint. Neighboring blocks’ directions

are compared and a block is marked as a discontinuity if |θ(i, j)− θ(i, j + 1)| > 45 ◦,

where both estimations θ(i, j) and θ(i, j+1) have a value between 0 ◦ and 180◦. Example

detection is shown in Figure 1.

The advantage of this method is that it is already a part of the standard fingerprint recog-

nition pipeline, so the algorithm can be easily implemented into existing methods. Also, it

provides a fairly accurate estimate of the fingerprint damage in the sample.

2.2 Fingerprint Damage Detection using Histogram Analysis

This experimental method is based on the presumption that a quality fingerprint image

consists of equally distributed ridges and valleys. If we assume that ridges are roughly the

same dark color while valleys are light-colored, a histogram computed from each subfield

of the fingerprint’s area should ideally have a bimodal shape: it should have two peaks of

approximately the same height and one valley between them, as displayed in Figure 2 on

the left.

On the other hand, the intensity distribution in a fingerprint image part that belongs to a

damaged area is not always as equal as in the quality one. Experiments showed that the

majority of histograms computed from damaged subfields break the rules of the bimodal

histogram. The lower the quality, the less the histogram resembles the ideal one. A non-

bimodal histogram always implies a damaged or low-quality area, whereas a damaged

subfield does not necessarily imply a non-bimodal histogram because a histogram is a

measure for the distribution of intensities only and it does not take into account the pattern

or neighborhoods of pixels. Figure 2 shows examples of non-bimodal histograms.

Fig. 2: Left: ideal bimodal histogram, others are examples of histograms computed from damaged

areas.

The steps of the algorithm are as follows:
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1. Divide the image into w×w blocks (ROIs = regions of interest), according to the

desired resolution.

2. For each ROI, compute a histogram.

3. Check if the histogram is consistent with the bimodal characteristics generally found

when finger ridges are healthy.

a) Find all peaks and valleys of the histogram.

b) If peaks == 2 and valleys == 1, histogram is bimodal, so continue with 3c.

Otherwise quit: the histogram is non-bimodal.

c) Check the heights and distances of the peaks and valleys. If the histogram

passes these validity tests, it is bimodal, otherwise it is non-bimodal.

Fig. 3: Histogram Analysis result with details of particular histograms. Red background implies an

invalid histogram, green means valid and blue stands for background.

Histogram Analysis is able to detect many areas the Block Orientation Field method might

have omitted, therefore it is extremely valuable for the final determination of healthy areas.

Since the Histogram Analysis method is an experimental one, its results are not always

accurate. Its drawback is the inability to cope with low-quality, especially dark, images.

By implementing appropriate preprocessing steps, the method’s performance and accuracy

can be improved.

2.3 Features Extraction Based on the Flood Fill Algorithm

Flood Fill is a well known algorithm used for graphical purposes [GG08] and is especially

handy for detecting and filling connected single-colored areas of an image. We have used
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this characteristics to find local features of damaged fingerprints, such as straight lines or

spots. These features are later used for the classification process.

In order to use the Flood Fill algorithm, the sample first needs to be preprocessed to obtain

a black and white image. The preprocessing steps heavily depend on the image quality,

as well as the type of sensor used for the acquisition. Therefore, for each database, they

might differ. We have tailored the algorithm for our internal fingerprint database.

There are four types of features the Flood Fill algorithm is programmed to detect: large

white spots, thick white lines, small dark spots and oblong dark lines (papillary lines dis-

ruptions). This is done using filtering the extracted areas according to specific parameters,

such as the area’s size or shape.

Fig. 4: Extraction of straight white lines.

2.4 Connection of the Methods

Connecting all three of the above-described methods together results in a surprisingly

accurate description of the extent of damage in an entire area of a fingerprint image. They

complement well as each of them detects a different kind of damage in the image.

At the end of each of the three detection methods, every image pixel is assigned a value 0

(healthy area), or a positive value up to 1 (damaged area). The greater the value, the more

damaged the area to which the pixel belongs. Moreover, for the purpose of distinguish-

ing fingerprint area from background, background was extracted separately according to

[DH10] and the resulting information was stored in a fourth array with values -1 for (back-

ground) and 1 (fingerprint area).

The challenge was to connect these four output matrices together into a so-called Status

Map which would give a good overview of the damage state every w×w block of pixels.

This is the description of the Status Map merging process:

1. Choose the resolution of the resulting Status Map.
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2. Get the three output matrices and a background matrix.

3. For each matrix, compute a generalized block matrix (Status Map) that will store

the average pixel values from w×w blocks: m1,m2,m3 and bckgr.

4. Assign a weight to each method, according to the desired output and input image

quality: w1,w2,w3. Default values are: Orientation Field 2, Histogram Analysis 1

and Flood Fill 3.

5. For each block, compute its damage index. Damage index is a weighted mean of

m1,m2 and m3, masked by the value of the bckgr matrix.

damageIndex(i, j) = bckgr(i, j)∗ w1∗m1(i, j)+w2∗m2(i, j)+w3∗m3(i, j)
w1+w2+w3

6. damageIndex now represents the extent of damage in each image block. The result-

ing Status Map gives an excellent overview of the damage.

Fig. 5: Example of the pipeline of Status Maps and the final distribution of damage in the image

(atopic eczema). Green color marks the healthy areas, blue color highlights the background and for

the damaged areas a scale from yellow to red is used. Yellow stands for minor damage, whereas red

implies extremely damaged places.

3 The Classification Process

The Classifier decides based on features extracted by the Flood Fill method and classifies

the fingerprint image, according to the features’ numbers and types. We have trained our

classifier for 4 diseases: acrodermatitis, atopic eczema, psoriasis and verruca vulgaris

[Ha09].

The decision rules have been determined with the help of statistics obtained from running

the detector on our database of approximately 600 samples - see Table 1.

Tab. 1: Statistics of features extracted from each disease.

acrodermatitis atopic eczema psoriasis verruca vulgaris

med. std.dev. med. std.dev. med. std.dev. med. std.dev.

white spots 5 3.97 5 4.31 8 5.35 1 3.02

white lines 2 1.84 3 3.06 4 2.65 1 1.63

dark spots 47 42.70 29 17.50 21 19.61 18 10.90

dark lines 7 8.37 17 19.80 8 9.22 15 39.76

Also, each disease has been given minimal value for some features (for example, verruca

vulgaris logically has to have at least one white spot). All these characteristics are used in
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order to compute an estimated likelihood that a certain set of features belong to a particular

disease. The classifier chooses the disease with the highest likelihood.

4 Results

Thanks to the connection of the detection methods, very satisfactory results have been

achieved for locating the damaged areas - as an example, see Figure 6. The classifier

accuracy reached interesting values as well, as described below.

Fig. 6: Example of a final Status Map.

4.1 Classifier Accuracy

The classifier itself relies on the detection results. So far, the following accuracy measures

have been computed for each disease class: FAR (False Accept Rate) and FRR (False Re-

ject Rate) [Po11], ACC (total accuracy) - see Table 2. In this context, to accept means to

classify a fingerprint into the disease class for which the measurements are being com-

puted, whereas to reject means to classify a fingerprint into a different disease class. For

the computation we used numbers of TP (True Positives), FN (False Negatives), FP (False

Positives) and TN (True Negatives).

611 fingerprint images from dactyloscopic cards from the database were used for testing.

The images had already been classified into disease classes by medical specialists. Table

2 shows the numbers of fingerprint images for each disease that were correctly/incorrectly

classified by the algorithm.

Tab. 2: Classifier accuracy measures.

TP FN FP TN FAR FRR ACC

Acrodermatitis 10 20 81 500 0.1394 0.6667 0.8347

Atopic eczema 126 297 37 151 0.1968 0.7021 0.4533

Psoriasis 31 87 168 325 0.3408 0.7373 0.5827

Verruca vulgaris 20 20 133 438 0.2329 0.5000 0.7496
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The classification accuracy reached high values for for acrodermatitis (83.5%) and ver-

ruca vulgaris recognition (75.0%), whereas it was lower for atopic eczema (45.3% ) and

psoriasis (58.3%). The Classifier itself is ready to be further extended and improved.

5 Conclusion

We have developed algorithms that reach great quality in describing the overall extent of

damage in a fingerprint image. The following methods were implemented: detection from

block orientation field, Histogram Analysis method and an extended Flood Fill method.

The best results were achieved by connecting the methods together using a Status Map.

Along with the localizer, a classifier of four skin diseases was developed. It reached an

accuracy of 83.5% for acrodermatitis, 45.3% for atopic eczema, 58.3% for psoriasis and

75.0% for verruca vulgaris.

There is a great potential for improvements and enhancements, and it is assumed that the

research will continue. There are opportunities for the results of this research to be used

in real-life applications in the future, such as medical applications or programs for police

and security purposes.
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Abstract: The performance of a biometric system gets affected by various types of errors such as
systematic errors, random errors, etc. These kinds of errors usually occur due to the natural variations
in the biometric traits of subjects, different testing, and comparison methodologies. Neither of these
errors can be easily quantifiable by mathematical formulas. This behavior introduces an uncertainty
in the biometric verification or identification scores. The combination of comparison scores from
different comparators or combination of multiple biometric modalities could be a better approach
for improving the overall recognition performance of a biometric system. In this paper, we propose a
method for combining such scores from multiple comparators using Subjective Logic (SL), as it takes
uncertainty into account while performing to biometric fusion. This paper proposes a framework for
a smartphone based gait recognition system with application of SL for biometric data fusion.

Keywords: subjective logic, biometric score fusion, gait recognition, smartphone biometrics, user

verification, pattern recognition

1 Introduction

Gait, the walking manner of a person, can be used to distinguish between individuals. By

placing an accelerometer sensor on the body of a person, the recorded signal can be used to

identify that person. Commercial mobile phones nowadays have accelerometer sensors in-

cluded as a standard feature and can be easily used for gait recognition. Hence, this makes

gait recognition a viable alternative to other traditional means such as password or lock

patterns for validating a user for phone’s ownership or any other high security demanding

applications such as online banking, etc. The password or lock patterns, typically have to

be remembered by the user and given manually upon prompting of the phone. The gait, on

the other hand, can be observed unobtrusively while the phone is inside the trouser pocket.

It cannot be lost or forgotten, due to it being a behavioral characteristic of an individual.

The technical report ISO/IEC 19795-1 describes the performance of a biometric system

and errors related to them. It explains how a biometric system performance is affected by

systematic and random errors. These types of errors can occur due to the natural varia-

tions in the biometric traits of subjects, different testing and comparison methodologies

and this brings an uncertainty in the biometric recognition[IS06]. One of the reasonable

approaches to deal with such errors is Biometric fusion. The biometric fusion can happen

at different levels, and one of such methods is score-level fusion which is combining the

comparison scores of various comparators to improve the biometric performance[Ul06].

In recent years, researchers have proposed several fusion strategies. But none of them take
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the uncertainty of biometric systems into account, which leads to ignorance towards the

performance characteristics of the biometric system under consideration. The systematic

and random errors aren’t quantifiable easily, yet we need to estimate an uncertainty of the

system. The technical report ISO/IEC 19795-1 [IS06] provides some methods to esti-

mate it.

In this paper, we propose a fusion method based on SL which takes into account an un-

certainty of the system. Hence, limitations of the biometric performance can also be con-

sidered while performing the score level fusion. Further, the remaining paper is mainly

divided into Related Work, Proposed Method, Experiments & Evaluation followed by

Conclusions.

2 Related Work

One of the earliest studies into gait recognition using wearable accelerometers was pub-

lished by Mantyjarvi in 2005 [Ma05]. The author proposed a technique based on distances

between two extracted steps using matching pattern techniques. Further advances were

made by Gafurov [GSB07] and Derawi [DBH10] proposing optimizations for cycle detec-

tion. Derawi and Bours and Shrestha [BS] also improved methods to calculate the distance

between two cycles. Further, Nickel [Ni11] [NWB12] and Watanabe [WS] proposed meth-

ods using fix-length segments instead of extracted cycles. [ZD14] [ZDM15] focus their

work on creating a gait recognition system which is not dependent on the subjects walking

pace and the orientation of the accelerometer sensor. [MPM16] proposes a normalization

procedure for cross-device gait recognition.

Subjective Logic was first introduced by Jøsang[Jø97] as an extension of probability cal-

culus and binary logic. It operates on subjective beliefs to serve an opinion about whether

the world is true or false. The term opinion represents the subjective belief. Subjective logic

operates on these opinions and also contains standard and non-standard logical operators[Jø].

Further, Jøsang[Jø] described opinions could be interpreted as a probability measure pro-

viding secondary uncertainty. The application of subjective logic in the domain of biomet-

rics was recently introduced by Jøsang et al. in [JMM14] where authors have described

the use of various Subjective Logic Fusion (SLF) operators in biometric fusion via belief

fusion to produce a new opinion by fusing opinions from different sources.

In this paper, we are fusing comparison score opinions from different comparators using

three SLF operators i.e. averaging, cumulative and consensus. These types of fusion oper-

ators are the common choice for situations like consistent and inconsistent score opinions.

Here, in this case, it is very much possible as three classifiers will have different scores

based on their recognition performance and also consist of uncertainty in the output scores.

3 Proposed Fusion Scheme

Here, we first describe the various terms involved in the proposed scheme related to the

subjective logic. As per best of our knowledge, this is the first work which is trying to

simplify and check the feasibility of the models proposed in [JMM14] for real world ap-

plication and evaluation of these methods to verify the applicability and usability of SLF

in biometrics. The subsequent sections describe each term in details as follows:
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3.1 Subjective Logic

The primary objective of SL is to enhance probabilistic logic by including uncertainty

about input probabilities and introducing subjective belief in these probabilities [Jø11]. It

combines the probabilistic logic, uncertainty, and subjectivity to form a firm opinion. ”Ar-

guments in subjective logic are called subjective opinions, or opinions for short. An opin-

ion can contain uncertainty mass in the sense of uncertainty about probabilities[Jø11]”.

The biometric similarity scores i.e. whether the user is a genuine or impostor can simply

be expressed as a binomial opinion. Consider binary domain X = {x, x̄} where x is a bi-

nary variable representing an user being genuine and x̄ is the compliment of x i.e. subject

is not a genuine user. Furthermore, binomial subjective opinion about a person being gen-

uine user can be represented by quadruple ωX = (bci
x ,d

ci
x ,u

ci
x ,a

ci
x ) where, bx,dx,ux and ax

are classifier ci’s belief, disbelief, uncertainty about probability of x and base rate or prior

probability of X respectively. Here, i = 1,2...n, where n is the number of classifiers. For

any given subjective opinion ω = (b,d,u,a), Belief Subjective Additivity theorem is al-

ways true[Jø11] and is expressed by Eq. 1:

bc
x +dc

x +uc
x = 1 (1)

For binomial opinions, the projected probability of x can be expressed as defined by Eq. 2

ω(x) = bx +uxax (2)

We adopt this knowledge to formulate the proposed scheme for biometric score fusion by

transforming the biometric similarity scores into the subjective opinions. These subjective

opinions are later used in subjective logic fusion. From here onwards, we assume the com-

parison scores as belief(b), the prior probability of the subject being genuine or impostor

as base rate(a) and V̂ ( p̂) as an uncertainty(u) which is described in the biometric standards

ISO/IEC 19795 Part-1 [IS06] and given by Eq. 3

V̂ ( p̂) =

n

∑
i=1

a2
i −2p̂

n

∑
i=1

aimi + p̂2 +
n

∑
i=1

m2
i

n−1
n

n

∑
i=1

mi

, where p̂ =

n

∑
i=1

ai

n

∑
i=1

mi

(3)

where, n is the number of enrolled test subjects, mi is the number of attempts by ith subject,

ai is the number of false-non matches for ith subject. Therefore, for every comparison score

Si we will have a subjective opinion ωi which is defined by a quadruple (bi,di,ui,ai).

3.2 Proposed Scheme

This section describes an overview of the proposed fusion scheme using subjective logic.

Figure 1 illustrates the overview of the proposed scheme in details. This study considers

three well-known classifiers as comparators for obtaining the similarity scores. For analy-

sis, we have used Extremely Randomized Trees (ERT), Multi-layer Perceptron (MLP) and

Random Forest Classifier (RFC) as our baseline comparators. ERT and RFC have a maxi-

mum 100 random trees in the forest while MLP has two hidden layers with 10 and 5 nodes,

along with the length of the feature vector as the number of input nodes and 2 output nodes.
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Figure 1: Proposed fusion scheme

All of the classifiers produce an output between [0,1] where the maximum score represents

100% genuine subject and minimum score as 100% impostor. From the Figure 1 we can

briefly understand the steps involved in the fusion process. Firstly, we pass the input data

to baseline comparators i.e to ERT, MLP and RFC, their output is then processed to gen-

erate corresponding subjective opinions. These subjective opinions are fused using three

SLF operators which are 1. Subjective Average 2. Consensus and 3. Cumulative Fusion.

In the last step, fused genuine and impostor opinions are used to obtain the corresponding

scores through Equation 2.

Following subsections describe the fusion operators in detail

1. Averaging Fusion: Averaging opinion fusion is used when dependence between ar-

guments from different observers are assumed as they will represent better observation

together [JMM14]. Let ωA and ωB be the subjective opinions from source A and source

B, then the fused opinion is ωA⋄B = ωA⊕ωB, such that :{
bA⋄B = bAuB+bBuA

uA+uB ∀ uA 4= 0 and uB 4= 0

uA⋄B = 2uAuB

uA+uB

(4)

{
bA⋄B(xi) = γAbA(xi)+ γBbB(xi) ∀ uA = 0 and uB = 0

uA⋄B = 0
(5)

where, γA = lim
uA→0

uB→0

uB

uA+uB , γB = lim
uA→0

uB→0

uB

uA+uB

2. Consensus Fusion: Consensus opinion fusion assumes that the input opinions are inde-

pendent and combining them would reduce the uncertainty among them. Let ωA and ωB

be the subjective opinions from source A and source B, then the fused opinion is ωA,B =
ωA ⊗ωB, such that : 

bA⋄B = bAuB+bBuA

uA+uB−uAuB

uA⋄B = uAuB

uA+uB−uAuB

aA⋄B = aAuB+aBuA−(aAaB)uAuB

uA+uB−uAuB

(6)
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3. Cumulative Fusion: Cumulative opinion fusion is used when we can increase the

amount of evidence by including more arguments and the certainty increases with an in-

crease amounting to evidence. Let ωA and ωB be the subjective opinions from source A

and source B, then the fused opinion is ωA,B = ωA ⊕ωB, such that :{
bA⋄B = bAuB+bBuA

uA+uB−uAuB

uA⋄B = uAuB

uA+uB−uAuB

(7)

{
bA⋄B(xi) = γAbA(xi)+ γBbB(xi) ∀ uA = 0 and uB = 0

uA⋄B = 0
(8)

where, γA = lim
uA→0

uB→0

uB

uA+uB , γB = lim
uA→0

uB→0

uB

uA+uB

In the above equations, the variables bA⋄B,uA⋄B and aA⋄B represent the fused belief, uncer-

tainty and base rates satisfying Equation 1.

4 Database, Experiments and Evaluation

This section describes statistics of the database evaluated, the experiments carried out and

obtained results in detail.

4.1 Database

The database which we used for evaluation is the previously collected database by Nickel

[Ni12]. This database consists of 48 subjects, each with 2 walking sessions. The data was

recorded using a smart-phone which was put inside a pouch fastened on the right side of

the hip of the subject. The route was divided into 9 points to simulate realistic scenarios

and data between start-point and end-point is considered as one whole walk. Three such

walks were recorded per subjects. Thus, the database contains 27 samples from 9 different

points along with two enrollment samples, and it consists of 2784 samples in total. In the

evaluation three training strategies were formed i.e. set1, set2 and set3. In each of these

settings 9 samples (for example walk 1) are used as training samples, while samples of the

remaining two walks (18 samples) are used for testing strategy 1. This setting is used for

the remaining two strategies with corresponding changes. Hence, for each training set, we

have 432 training samples from 48 subjects and 2160 testing samples (864 and 1296 of

Session 1 and 2 respectively).

4.2 Experiments

We first do preprocessing and feature extraction. The steps involved are based on the work

[Ni12]. As a first step the walk files were cleaned, if necessary, so that the data only in-

cluded walking periods. As a second step, interpolation, potential irregular time intervals

between the signals were corrected for a pre-defined frequency. Lastly, we normalize the

data around zero to compensate for calibration irregularities of the accelerometer sensor.

Next, we segment the walk data with Fix-length segmentation, which is achieved by divid-

ing the data into equal parts of fixed length with an overlapping factor of 50%. The features
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considered are statistical (ST), the histogram of the distribution (BIN), Mel-frequency cep-

stral coefficients (MF) and Bark-frequency cepstral coefficients (BF1 and BF2). For the

classification, we used the best-performing features of all accelerometer axes data. When

we concatenate all of these features together, the best results were achieved (See Table 1).
∗∗.
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Figure 2: DET Curves for Session 1 data∗∗

4.3 Evaluation

For the evaluation, we first identify the best performing feature set by executing various

tests as discussed earlier. Table 1 represents the details of EERs for each feature extraction

technique for all classifiers and training sets. The combination of features gives a better

performance than if we use them separately (Ref. Table 1). Further, MLP classifier with

set1 training data gives the lowest EER of 1.77%. Next, we generate the comparison scores

using ERT, MLP, and RFC. These scores are further processed to obtain the fused scores

for testing data from Session 1 and 2. Table 2 presents the details of EER for both sessions.

The presented results compare the proposed fusion scheme against the baseline and basic

fusion strategies such as average, weighted sum, and product rule. From Table 2 we can

observe, EER range differs a lot between Session 1 and 2. One of the possible reasons

could be a change in the characteristics of the testing data due to the time gap between

two session item. The proposed method outperforms all of the basic fusion techniques. We

achieved an EER of 1.31% and 9.96% for Session 1 and 2 respectively using the proposed

scheme. In both of the sessions, the SLF cumulative fusion has consistent performance

i.e. it has the lowest EER for all tests except for set3 and Session 1 testing data. The

performance of SL averaging and cumulative fusion is nearly equal which signifies that

increasing the evidence increased the performance of the system.

Furthermore, we analyze the Detection Error Trade-off (DET) curves to understand the

operating characteristics of the proposed scheme. DET often plots False Rejection Rate

(FRR) on the y-axis and False Acceptance Rate (FAR) on the x-axis in a logarithmic scale.

As y-axis represents the number of match error, the curve close to the origin corresponds

∗∗ For simplicity, in the Figure 2, the SL-Fusion curve represents only the best performing fusion operation, which

is found as the SL-Cumulative Fusion operator
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Features
Set1 Set2 Set3

ERT MLP RFC ERT MLP RFC ERT MLP RFC

BF1BF2 2.75 2.73 3.62 3.40 3.38 4.14 3.24 2.31 4.09

BF1BIN5ST 2.87 3.49 3.49 3.36 3.60 4.20 3.15 3.38 3.88

BF2BIN5ST 3.35 3.53 3.64 3.68 3.95 4.20 3.42 3.20 4.02

MFBF1 3.09 2.90 3.64 3.43 2.92 4.24 3.29 2.72 4.01

MFBF2 3.19 3.36 3.89 3.60 3.52 4.21 3.56 3.46 4.34

MFBIN5ST 3.20 3.74 3.82 3.99 4.54 4.30 3.42 3.89 4.35

ALL 2.40 1.77 2.94 2.98 2.32 3.57 2.99 2.93 3.51

Table 1: EER for different feature sets

Comparators
Session 1 Session 2

set1 set2 set3 set1 set2 set3

ERT 2.40 2.98 2.99 11.64 10.01 11.56

MPL 1.77 2.32 2.93 16.44 13.11 15.64

RFC 2.94 3.57 3.51 13.71 13.09 12.68

SL average 1.34 1.76 2.00 10.97 9.99 11.02

SL cumulative 1.31 1.71 2.25 10.66 9.96 10.91

SL consensus 1.53 2.17 2.75 13.99 12.23 13.05

Average 1.34 1.79 2.18 10.73 10.01 10.95

Weighted Sum 1.38 1.85 2.05 10.88 10.01 10.92

Product 2.25 2.58 2.39 14.27 12.88 12.24

Table 2: EERs for Nikel’s database[NWB12] and all features combined together

to the best performance. Due to the page limitation, we have presented the DET curves for

Session 1 data with strategies set1 and set2 (See Figure 2). Therefore, from Figure 2 we

can see, the performance of the proposed scheme is higher than the individual classifiers.

For the proposed scheme we achieved an FRR of 8.18% at FAR 1/100 with an EER of

1.31% for the testing data from Session 1. Further, we have obtained an average FRR of

64% approximately at FAR 1/100 and the lowest average EER of 10.5% across all training

sets using the proposed scheme for Session 2 data.

5 Conclusion

We observed that the performance of baseline classifiers is worse than all of the SLF op-

erators. For this challenging database, we have achieved an EER of 1.31% which is much

less than the reported EER of 6.13% by Nickel[Ni12]. The proposed fusion scheme using

subjective logic considers the errors of the biometric system when performing the fusion

while other mentioned general biometric fusion methods ignore them. We have achieved

the best results for SL cumulative fusion operator in terms of EER. We obtained lower

EERs compared to the performance of the individual classifiers for SLF operators such as

average and consensus. In conclusion, this paper successfully models biometric fusion to

the Subjective Logic Fusion and proposes a simplified methodology for using it. For the fu-
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ture work, different experiments & techniques could be explored to model the uncertainty

and errors in the system to improvise fusion strategies to achieve higher performance.
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(Eds.): IT-Incident Mangament & IT-
Forensics – IMF 2006
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P-98 Hans Brandt-Pook, Werner Simonsmeier 
und Thorsten Spitta (Hrsg.): Beratung 
in der Softwareentwicklung – Modelle, 
Methoden, Best Practices

P-99 Andreas Schwill, Carsten Schulte, Marco 
Thomas (Hrsg.): Didaktik der Informatik

P-100 Peter Forbrig, Günter Siegel, Markus 
Schneider (Hrsg.): HDI 2006: Hochschul-
didaktik der Informatik

P-101 Stefan Böttinger, Ludwig Theuvsen,  
Susanne Rank, Marlies Morgenstern (Hrsg.): 
Agrarinformatik im Spannungsfeld 
zwischen Regionalisierung und globalen 
Wertschöpfungsketten

P-102 Otto Spaniol (Eds.): Mobile Services and 
Personalized Environments

P-103 Alfons Kemper, Harald Schöning, Thomas 
Rose, Matthias Jarke, Thomas Seidl, 
Christoph Quix, Christoph Brochhaus 
(Hrsg.): Datenbanksysteme in Business, 
Technologie und Web (BTW 2007)

P-104 Birgitta König-Ries, Franz  Lehner, 
Rainer Malaka, Can Türker (Hrsg.) 
MMS 2007: Mobilität und mobile 
Informationssysteme

P-105 Wolf-Gideon Bleek, Jörg Raasch,  
Heinz Züllighoven (Hrsg.) 
Software Engineering 2007

P-106 Wolf-Gideon Bleek, Henning Schwentner,  
Heinz Züllighoven (Hrsg.) 
Software Engineering 2007 –  
Beiträge zu den Workshops

P-107 Heinrich C. Mayr, 
Dimitris Karagiannis (eds.) 
Information Systems 
Technology and its Applications

P-108 Arslan Brömme, Christoph Busch, 
Detlef Hühnlein (eds.) 
BIOSIG 2007: 
Biometrics and 
Electronic Signatures

P-109 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.) 
INFORMATIK 2007 
Informatik trifft Logistik 
Band 1

P-110 Rainer Koschke, Otthein Herzog, Karl-
Heinz Rödiger, Marc Ronthaler (Hrsg.) 
INFORMATIK 2007 
Informatik trifft Logistik 
Band 2

P-111 Christian Eibl, Johannes Magenheim, 
Sigrid Schubert, Martin Wessner (Hrsg.) 
DeLFI 2007: 
5. e-Learning Fachtagung 
Informatik

P-112 Sigrid Schubert (Hrsg.) 
Didaktik der Informatik in  
Theorie und Praxis

P-113 Sören Auer, Christian Bizer, Claudia 
Müller, Anna V. Zhdanova (Eds.) 
The Social Semantic Web 2007  
Proceedings of the 1st Conference on 
Social Semantic Web (CSSW)

P-114 Sandra Frings, Oliver Göbel, Detlef Günther, 
Hardo G. Hase, Jens Nedon, Dirk Schadt, 
Arslan Brömme (Eds.) 
IMF2007 IT-incident 
management & IT-forensics 
Proceedings of the 3rd International 
Conference on IT-Incident Management 
& IT-Forensics

P-115 Claudia Falter, Alexander Schliep, 
Joachim Selbig, Martin Vingron and  
Dirk Walther (Eds.) 
German conference on bioinformatics 
GCB 2007

P-116 Witold Abramowicz, Leszek Maciszek 
(Eds.) 
Business Process and Services Computing 
1st International Working Conference on 
Business Process and Services Computing 
BPSC 2007

P-117 Ryszard Kowalczyk (Ed.) 
Grid service engineering and manegement 
The 4th International Conference on Grid 
Service Engineering and Management 
GSEM 2007

P-118 Andreas Hein, Wilfried Thoben, Hans-
Jürgen Appelrath, Peter Jensch (Eds.) 
European Conference on ehealth 2007

P-119 Manfred Reichert, Stefan Strecker, Klaus 
Turowski (Eds.) 
Enterprise Modelling and Information 
Systems Architectures 
Concepts and Applications

P-120 Adam Pawlak, Kurt Sandkuhl,  
Wojciech Cholewa,  
Leandro Soares Indrusiak (Eds.) 
Coordination of Collaborative 
Engineering - State of the Art and Future 
Challenges 

P-121 Korbinian Herrmann, Bernd Bruegge (Hrsg.)  
Software Engineering 2008 
Fachtagung des GI-Fachbereichs 
Softwaretechnik 

P-122 Walid Maalej, Bernd Bruegge (Hrsg.) 
Software Engineering 2008 - 
Workshopband 
Fachtagung des GI-Fachbereichs 
Softwaretechnik
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P-123 Michael H. Breitner, Martin Breunig, Elgar 
Fleisch, Ley Pousttchi, Klaus Turowski 
(Hrsg.)  
Mobile und Ubiquitäre 
Informationssysteme – Technologien, 
Prozesse, Marktfähigkeit 
Proceedings zur 3. Konferenz Mobile und 
Ubiquitäre Informationssysteme  
(MMS 2008) 

P-124 Wolfgang E. Nagel, Rolf Hoffmann,  
Andreas Koch (Eds.)  
9th Workshop on Parallel Systems and 
Algorithms (PASA) 
Workshop  of the GI/ITG Speciel Interest 
Groups PARS and PARVA 

P-125 Rolf A.E. Müller, Hans-H. Sundermeier,  
Ludwig Theuvsen, Stephanie Schütze,  
Marlies Morgenstern (Hrsg.)  
Unternehmens-IT: 
Führungsinstrument oder 
Verwaltungsbürde 
Referate der 28. GIL Jahrestagung  

P-126 Rainer Gimnich, Uwe Kaiser, Jochen 
Quante, Andreas Winter (Hrsg.)  
10th Workshop Software Reengineering 
(WSR 2008)

P-127 Thomas Kühne, Wolfgang Reisig, 
Friedrich Steimann (Hrsg.)  
Modellierung 2008

P-128 Ammar Alkassar, Jörg Siekmann (Hrsg.) 
Sicherheit 2008 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 4. Jahrestagung des 
Fachbereichs Sicherheit der Gesellschaft 
für Informatik e.V. (GI) 
2.-4. April 2008 
Saarbrücken, Germany

P-129 Wolfgang Hesse, Andreas Oberweis (Eds.) 
Sigsand-Europe 2008 
Proceedings of the Third AIS SIGSAND 
European Symposium on Analysis, 
Design, Use and Societal Impact of 
Information Systems

P-130 Paul Müller, Bernhard Neumair, 
Gabi Dreo Rodosek (Hrsg.)  
1. DFN-Forum Kommunikations-
technologien Beiträge der Fachtagung

P-131 Robert Krimmer, Rüdiger Grimm (Eds.)  
3rd International Conference on Electronic 
Voting 2008 
Co-organized by Council of Europe, 
Gesellschaft für Informatik and E-Voting.
CC

P-132 Silke Seehusen, Ulrike Lucke,  
Stefan Fischer (Hrsg.)  
DeLFI 2008: 
Die 6. e-Learning Fachtagung Informatik

P-133 Heinz-Gerd Hegering, Axel Lehmann, 
Hans Jürgen Ohlbach, Christian 
Scheideler (Hrsg.)  
INFORMATIK 2008 
Beherrschbare Systeme – dank Informatik 
Band 1

P-134 Heinz-Gerd Hegering, Axel Lehmann, 
Hans Jürgen Ohlbach, Christian 
Scheideler (Hrsg.)  
INFORMATIK 2008 
Beherrschbare Systeme – dank Informatik 
Band 2

P-135 Torsten Brinda, Michael Fothe, 
Peter Hubwieser, Kirsten Schlüter (Hrsg.) 
Didaktik der Informatik – 
Aktuelle Forschungsergebnisse

P-136 Andreas Beyer, Michael Schroeder (Eds.)  
German Conference on Bioinformatics 
GCB 2008

P-137 Arslan Brömme, Christoph Busch, Detlef 
Hühnlein (Eds.) 
BIOSIG 2008: Biometrics and Electronic 
Signatures

P-138 Barbara Dinter, Robert Winter, Peter 
Chamoni, Norbert Gronau, Klaus 
Turowski (Hrsg.) 
Synergien durch Integration und 
Informationslogistik 
Proceedings zur DW2008

P-139 Georg Herzwurm, Martin Mikusz (Hrsg.) 
Industrialisierung des Software-
Managements 
Fachtagung des GI-Fachausschusses 
Management der Anwendungs entwick-
lung und -wartung im Fachbereich 
Wirtschaftsinformatik

P-140 Oliver Göbel, Sandra Frings, Detlef 
Günther, Jens Nedon, Dirk Schadt (Eds.) 
IMF 2008 - IT Incident Management & 
IT Forensics

P-141 Peter Loos, Markus Nüttgens,  
Klaus Turowski, Dirk Werth (Hrsg.) 
Modellierung betrieblicher Informations-
systeme (MobIS 2008) 
Modellierung zwischen SOA und 
Compliance Management

P-142 R. Bill, P. Korduan,  L. Theuvsen,  
M. Morgenstern (Hrsg.) 
Anforderungen an die Agrarinformatik 
durch Globalisierung und 
Klimaveränderung

P-143 Peter Liggesmeyer, Gregor Engels,  
Jürgen Münch, Jörg Dörr,  
Norman Riegel  (Hrsg.) 
Software Engineering 2009 
Fachtagung des GI-Fachbereichs 
Softwaretechnik
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P-144 Johann-Christoph Freytag, Thomas Ruf, 
Wolfgang Lehner, Gottfried Vossen  
(Hrsg.) 
Datenbanksysteme in Business, 
Technologie und Web (BTW)

P-145 Knut Hinkelmann, Holger Wache (Eds.) 
WM2009: 5th Conference on Professional 
Knowledge Management

P-146 Markus Bick, Martin Breunig, 
Hagen Höpfner (Hrsg.) 
Mobile und Ubiquitäre 
Informationssysteme – Entwicklung, 
Implementierung und Anwendung 
4. Konferenz Mobile und Ubiquitäre 
Informationssysteme (MMS 2009)

P-147 Witold Abramowicz, Leszek Maciaszek, 
Ryszard Kowalczyk, Andreas Speck (Eds.)  
Business Process, Services Computing 
and Intelligent Service Management 
BPSC 2009 · ISM 2009 · YRW-MBP 
2009

P-148 Christian Erfurth, Gerald Eichler, 
Volkmar Schau (Eds.) 
9th International Conference on Innovative 
Internet Community Systems 
I2CS 2009

P-149 Paul Müller, Bernhard Neumair,  
Gabi Dreo Rodosek (Hrsg.) 
2. DFN-Forum 
Kommunikationstechnologien  
Beiträge der Fachtagung

P-150 Jürgen Münch, Peter Liggesmeyer (Hrsg.) 
Software Engineering  
2009 - Workshopband

P-151 Armin Heinzl, Peter Dadam, Stefan Kirn,  
Peter Lockemann (Eds.) 
PRIMIUM  
Process Innovation for  
Enterprise Software

P-152 Jan Mendling, Stefanie Rinderle-Ma, 
 Werner Esswein (Eds.)
 Enterprise Modelling and Information 

Systems Architectures
 Proceedings of the 3rd Int‘l Workshop 

EMISA 2009

P-153 Andreas Schwill,  
Nicolas Apostolopoulos (Hrsg.) 
Lernen im Digitalen Zeitalter  
DeLFI 2009 – Die 7. E-Learning 
Fachtagung Informatik

P-154 Stefan Fischer, Erik Maehle  
Rüdiger Reischuk (Hrsg.) 
INFORMATIK 2009 
Im Focus das Leben

P-155 Arslan Brömme, Christoph Busch, 
Detlef Hühnlein (Eds.)  
BIOSIG 2009:  
Biometrics and Electronic Signatures 
Proceedings of the Special Interest Group 
on Biometrics and Electronic Signatures

P-156 Bernhard Koerber (Hrsg.) 
Zukunft braucht Herkunft  
25 Jahre »INFOS – Informatik und 
Schule«

P-157 Ivo Grosse, Steffen Neumann,  
Stefan Posch, Falk Schreiber,  
Peter Stadler (Eds.) 
German Conference on Bioinformatics 
2009

P-158 W. Claupein, L. Theuvsen, A. Kämpf, 
M. Morgenstern (Hrsg.) 
Precision Agriculture 
Reloaded – Informationsgestützte 
Landwirtschaft

P-159 Gregor Engels, Markus Luckey, 
Wilhelm Schäfer (Hrsg.) 
Software Engineering 2010

P-160 Gregor Engels, Markus Luckey, 
Alexander Pretschner, Ralf Reussner 
(Hrsg.) 
Software Engineering 2010 – 
Workshopband 
(inkl. Doktorandensymposium)

P-161 Gregor Engels, Dimitris Karagiannis 
Heinrich C. Mayr (Hrsg.) 
Modellierung 2010

P-162 Maria A. Wimmer, Uwe Brinkhoff, 
Siegfried Kaiser, Dagmar Lück-
Schneider, Erich Schweighofer,  
Andreas Wiebe (Hrsg.) 
Vernetzte IT für einen effektiven Staat 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und  
Fachtagung Rechtsinformatik (FTRI) 2010

P-163 Markus Bick, Stefan Eulgem,  
Elgar Fleisch, J. Felix Hampe,  
Birgitta König-Ries, Franz Lehner,  
Key Pousttchi, Kai Rannenberg (Hrsg.) 
Mobile und Ubiquitäre 
Informationssysteme 
Technologien, Anwendungen und 
Dienste zur Unterstützung von mobiler 
Kollaboration

P-164 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2010: Biometrics and Electronic 
Signatures Proceedings of the Special 
Interest Group on Biometrics and 
Electronic Signatures
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P-165 Gerald Eichler, Peter Kropf,  
Ulrike Lechner, Phayung Meesad,  
Herwig Unger (Eds.) 
10th International Conference on 
Innovative Internet Community Systems 
(I2CS) – Jubilee Edition 2010 –

P-166 Paul Müller, Bernhard Neumair,  
Gabi Dreo Rodosek (Hrsg.) 
3. DFN-Forum Kommunikationstechnologien 
Beiträge der Fachtagung

P-167 Robert Krimmer, Rüdiger Grimm (Eds.) 
4th International Conference on  
Electronic Voting 2010 
co-organized by the Council of Europe,  
Gesellschaft für Informatik and  
E-Voting.CC

P-168 Ira Diethelm, Christina Dörge, 
Claudia Hildebrandt,  
Carsten Schulte (Hrsg.) 
Didaktik der Informatik 
Möglichkeiten empirischer 
Forschungsmethoden und Perspektiven 
der Fachdidaktik

P-169 Michael Kerres, Nadine Ojstersek 
Ulrik Schroeder, Ulrich Hoppe (Hrsg.) 
DeLFI 2010 - 8. Tagung  
der Fachgruppe E-Learning  
der Gesellschaft für Informatik e.V.

P-170 Felix C. Freiling (Hrsg.) 
Sicherheit 2010 
Sicherheit, Schutz und Zuverlässigkeit

P-171 Werner Esswein, Klaus Turowski,  
Martin Juhrisch (Hrsg.) 
Modellierung betrieblicher 
Informationssysteme (MobIS 2010) 
Modellgestütztes Management

P-172 Stefan Klink, Agnes Koschmider 
Marco Mevius, Andreas Oberweis (Hrsg.) 
EMISA 2010 
Einflussfaktoren auf die Entwicklung 
flexibler, integrierter Informationssysteme 
Beiträge des Workshops 
der GI-Fachgruppe EMISA 
(Entwicklungsmethoden für Infor- 
mationssysteme und deren Anwendung) 

P-173 Dietmar Schomburg,  
Andreas Grote (Eds.) 
German Conference on Bioinformatics 
2010

P-174 Arslan Brömme, Torsten Eymann, 
Detlef Hühnlein,  Heiko Roßnagel, 
Paul Schmücker (Hrsg.) 
perspeGKtive 2010  
Workshop „Innovative und sichere 
Informationstechnologie für das 
Gesundheitswesen von morgen“

P-175 Klaus-Peter Fähnrich,  
Bogdan Franczyk (Hrsg.) 
INFORMATIK  2010 
Service Science – Neue Perspektiven für 
die Informatik  
Band 1

P-176 Klaus-Peter Fähnrich,  
Bogdan Franczyk (Hrsg.) 
INFORMATIK  2010 
Service Science – Neue Perspektiven für 
die Informatik  
Band 2

P-177 Witold Abramowicz, Rainer Alt,  
Klaus-Peter Fähnrich, Bogdan Franczyk, 
Leszek A. Maciaszek (Eds.) 
INFORMATIK  2010 
Business Process and Service Science – 
Proceedings of ISSS and BPSC

P-178 Wolfram Pietsch, Benedikt Krams (Hrsg.)
 Vom Projekt zum Produkt
 Fachtagung des GI-

Fachausschusses Management der 
Anwendungsentwicklung und -wartung 
im Fachbereich Wirtschafts-informatik 
(WI-MAW), Aachen, 2010

P-179 Stefan Gruner, Bernhard Rumpe (Eds.) 
FM+AM`2010 
Second International Workshop on 
Formal Methods and Agile Methods

P-180 Theo Härder, Wolfgang Lehner,  
Bernhard Mitschang, Harald Schöning,  
Holger Schwarz (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 
14. Fachtagung des GI-Fachbereichs 
„Datenbanken und Informationssysteme“ 
(DBIS)

P-181 Michael Clasen, Otto Schätzel,  
Brigitte Theuvsen (Hrsg.) 
Qualität und Effizienz durch 
informationsgestützte Landwirtschaft,  
Fokus: Moderne Weinwirtschaft

P-182 Ronald Maier (Hrsg.) 
6th Conference on Professional 
Knowledge Management 
From Knowledge to Action

P-183 Ralf Reussner, Matthias Grund, Andreas 
Oberweis, Walter Tichy (Hrsg.) 
Software Engineering 2011  
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-184 Ralf Reussner, Alexander Pretschner, 
Stefan Jähnichen (Hrsg.) 
Software Engineering 2011 
Workshopband 
(inkl. Doktorandensymposium)
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P-185 Hagen Höpfner, Günther Specht, 
Thomas Ritz, Christian Bunse (Hrsg.) 
MMS 2011: Mobile und ubiquitäre 
Informationssysteme Proceedings zur  
6. Konferenz Mobile und Ubiquitäre 
Informationssysteme (MMS 2011) 

P-186 Gerald Eichler, Axel Küpper,  
Volkmar Schau, Hacène Fouchal,  
Herwig Unger (Eds.) 
11th International Conference on 
Innovative Internet Community Systems 
(I2CS)

P-187 Paul Müller, Bernhard Neumair, 
Gabi Dreo Rodosek (Hrsg.) 
4. DFN-Forum Kommunikations- 
technologien, Beiträge der Fachtagung 
20. Juni bis 21. Juni 2011 Bonn

P-188 Holger Rohland, Andrea Kienle, 
Steffen Friedrich (Hrsg.) 
DeLFI 2011 – Die 9. e-Learning 
Fachtagung Informatik 
der Gesellschaft für Informatik e.V. 
5.–8. September 2011, Dresden

P-189 Thomas, Marco (Hrsg.) 
Informatik in Bildung und Beruf 
INFOS 2011 
14. GI-Fachtagung Informatik und Schule

P-190 Markus Nüttgens, Oliver Thomas,  
Barbara Weber (Eds.) 
Enterprise Modelling and Information 
Systems Architectures (EMISA 2011)

P-191 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2011  
International Conference of the 
Biometrics Special Interest Group

P-192 Hans-Ulrich Heiß, Peter Pepper, Holger 
Schlingloff, Jörg Schneider (Hrsg.) 
INFORMATIK 2011 
Informatik schafft Communities

P-193 Wolfgang Lehner, Gunther Piller (Hrsg.) 
IMDM 2011

P-194 M. Clasen, G. Fröhlich, H. Bernhardt,  
K. Hildebrand, B. Theuvsen (Hrsg.) 
Informationstechnologie für eine 
nachhaltige Landbewirtschaftung 
Fokus Forstwirtschaft

P-195 Neeraj Suri, Michael Waidner (Hrsg.) 
Sicherheit 2012 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 6. Jahrestagung des 
Fachbereichs Sicherheit der  
Gesellschaft für Informatik e.V. (GI)

P-196 Arslan Brömme, Christoph Busch (Eds.)
BIOSIG 2012 
Proceedings of the 11th International 
Conference of the Biometrics Special 
Interest Group

P-197 Jörn von Lucke, Christian P. Geiger, 
Siegfried Kaiser, Erich Schweighofer, 
Maria A. Wimmer (Hrsg.) 
Auf dem Weg zu einer offenen, smarten 
und vernetzten Verwaltungskultur 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und 
Fachtagung Rechtsinformatik (FTRI) 
2012

P-198 Stefan Jähnichen, Axel Küpper,  
Sahin Albayrak (Hrsg.) 
Software Engineering 2012 
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-199 Stefan Jähnichen, Bernhard Rumpe,  
Holger Schlingloff (Hrsg.) 
Software Engineering 2012 
Workshopband

P-200 Gero Mühl, Jan Richling, Andreas 
Herkersdorf (Hrsg.) 
ARCS 2012 Workshops

P-201 Elmar J. Sinz Andy Schürr (Hrsg.) 
Modellierung 2012

P-202 Andrea Back, Markus Bick,  
Martin Breunig, Key Pousttchi,  
Frédéric Thiesse (Hrsg.) 
MMS 2012:Mobile und Ubiquitäre 
Informationssysteme

P-203 Paul Müller, Bernhard Neumair, 
Helmut Reiser, Gabi Dreo Rodosek (Hrsg.) 
5. DFN-Forum Kommunikations-
technologien 
Beiträge der Fachtagung

P-204 Gerald Eichler, Leendert W. M. 
Wienhofen, Anders Kofod-Petersen, 
Herwig Unger (Eds.) 
12th International Conference on 
Innovative Internet Community Systems 
(I2CS 2012)

P-205 Manuel J. Kripp, Melanie Volkamer, 
Rüdiger Grimm (Eds.) 
5th International Conference on Electronic 
Voting 2012 (EVOTE2012) 
Co-organized by the Council of Europe, 
Gesellschaft für Informatik and E-Voting.CC

P-206 Stefanie Rinderle-Ma,  
Mathias Weske (Hrsg.) 
EMISA 2012  
Der Mensch im Zentrum der Modellierung

P-207 Jörg Desel, Jörg M. Haake,  
Christian Spannagel (Hrsg.) 
DeLFI 2012: Die 10. e-Learning 
Fachtagung Informatik der Gesellschaft 
für Informatik e.V. 
24.–26. September 2012
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P-208 Ursula Goltz, Marcus Magnor, 
Hans-Jürgen Appelrath, Herbert Matthies, 
Wolf-Tilo Balke, Lars Wolf (Hrsg.) 
INFORMATIK 2012

P-209 Hans Brandt-Pook, André Fleer, Thorsten 
Spitta, Malte Wattenberg (Hrsg.) 
Nachhaltiges Software Management

P-210 Erhard Plödereder, Peter Dencker, 
Herbert Klenk, Hubert B. Keller,  
Silke Spitzer (Hrsg.) 
Automotive – Safety & Security 2012 
Sicherheit und Zuverlässigkeit für 
automobile Informationstechnik

P-211 M. Clasen, K. C. Kersebaum, A. 
Meyer-Aurich, B. Theuvsen (Hrsg.)
Massendatenmanagement in der  
Agrar- und Ernährungswirtschaft 
Erhebung - Verarbeitung - Nutzung 
Referate der 33. GIL-Jahrestagung 
20. – 21. Februar 2013, Potsdam

P-212 Arslan Brömme, Christoph Busch (Eds.) 
BIOSIG 2013 
Proceedings of the 12th International 
Conference of the Biometrics                   
Special Interest Group 
04.–06. September 2013 
Darmstadt, Germany

P-213 Stefan Kowalewski, 
Bernhard Rumpe (Hrsg.) 
Software Engineering 2013 
Fachtagung des GI-Fachbereichs 
Softwaretechnik

P-214 Volker Markl, Gunter Saake, Kai-Uwe 
Sattler, Gregor Hackenbroich, Bernhard Mit  
schang, Theo Härder, Veit Köppen (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 2013 
13. – 15. März 2013, Magdeburg

P-215 Stefan Wagner, Horst Lichter (Hrsg.)
Software Engineering 2013 
Workshopband 
(inkl. Doktorandensymposium) 
26. Februar – 1. März 2013, Aachen

P-216 Gunter Saake, Andreas Henrich, 
Wolfgang Lehner, Thomas Neumann, 
Veit Köppen (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW) 2013 –
Workshopband 
11. – 12. März 2013, Magdeburg

P-217 Paul Müller, Bernhard Neumair, Helmut 
Reiser, Gabi Dreo Rodosek (Hrsg.) 
6. DFN-Forum Kommunikations- 
technologien 
Beiträge der Fachtagung 
03.–04. Juni 2013, Erlangen

P-218 Andreas Breiter, Christoph Rensing (Hrsg.) 
DeLFI 2013: Die 11 e-Learning 
Fachtagung Informatik der Gesellschaft 
für Informatik e.V. (GI) 
8. – 11. September 2013, Bremen

P-219 Norbert Breier, Peer Stechert,  
Thomas Wilke (Hrsg.) 
Informatik erweitert Horizonte 
INFOS 2013 
15. GI-Fachtagung Informatik und Schule 
26. – 28. September 2013

P-220 Matthias Horbach (Hrsg.) 
INFORMATIK 2013 
Informatik angepasst an Mensch, 
Organisation und Umwelt 
16. – 20. September 2013, Koblenz

P-221 Maria A. Wimmer, Marijn Janssen, 
Ann Macintosh, Hans Jochen Scholl,  
Efthimios Tambouris (Eds.) 
Electronic Government and  
Electronic Participation 
Joint Proceedings of Ongoing Research of 
IFIP EGOV and IFIP ePart 2013 
16. – 19. September 2013, Koblenz

P-222 Reinhard Jung, Manfred Reichert (Eds.)
 Enterprise Modelling 

and Information Systems Architectures  
(EMISA 2013)

 St. Gallen, Switzerland  
September 5. – 6. 2013

P-223 Detlef Hühnlein, Heiko Roßnagel (Hrsg.) 
Open Identity Summit 2013 
10. – 11. September 2013 
Kloster Banz, Germany

P-224 Eckhart Hanser, Martin Mikusz, Masud 
Fazal-Baqaie (Hrsg.) 
Vorgehensmodelle 2013 
Vorgehensmodelle – Anspruch und 
Wirklichkeit 
20. Tagung der Fachgruppe 
Vorgehensmodelle im Fachgebiet 
Wirtschaftsinformatik (WI-VM) der 
Gesellschaft für Informatik e.V.  
Lörrach, 2013

P-225 Hans-Georg Fill, Dimitris Karagiannis, 
Ulrich Reimer (Hrsg.) 
Modellierung 2014 
19. – 21. März 2014, Wien

P-226 M. Clasen, M. Hamer, S. Lehnert,  
B. Petersen, B. Theuvsen (Hrsg.) 
IT-Standards in der Agrar- und 
Ernährungswirtschaft Fokus: Risiko- und 
Krisenmanagement 
Referate der 34. GIL-Jahrestagung 
24. – 25. Februar 2014, Bonn
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P-227 Wilhelm Hasselbring, 
Nils Christian Ehmke (Hrsg.) 
Software Engineering 2014 
Fachtagung des GI-Fachbereichs 
Softwaretechnik 
25. – 28. Februar 2014 
Kiel, Deutschland

P-228 Stefan Katzenbeisser, Volkmar Lotz,  
Edgar Weippl (Hrsg.) 
Sicherheit 2014 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 7. Jahrestagung des 
Fachbereichs Sicherheit der 
Gesellschaft für Informatik e.V. (GI) 
19. – 21. März 2014, Wien

P-229 Dagmar Lück-Schneider, Thomas 
Gordon, Siegfried Kaiser, Jörn von 
Lucke,Erich Schweighofer, Maria 
A.Wimmer, Martin G. Löhe (Hrsg.) 
Gemeinsam Electronic Government 
ziel(gruppen)gerecht gestalten und 
organisieren 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und 
Fachtagung Rechtsinformatik (FTRI) 
2014, 20.-21. März 2014 in Berlin

P-230 Arslan Brömme, Christoph Busch (Eds.)
 BIOSIG 2014
 Proceedings of the 13th International 

Conference of the Biometrics Special 
Interest Group

 10. – 12. September 2014 in
 Darmstadt, Germany

P-231 Paul Müller, Bernhard Neumair, 
Helmut Reiser, Gabi Dreo Rodosek 
(Hrsg.) 
7. DFN-Forum  
Kommunikationstechnologien 
16. – 17. Juni 2014 
Fulda

P-232 E. Plödereder, L. Grunske, E. Schneider,  
D. Ull (Hrsg.)

 INFORMATIK 2014
 Big Data – Komplexität meistern
 22. – 26. September 2014
 Stuttgart

P-233 Stephan Trahasch, Rolf Plötzner, Gerhard 
Schneider, Claudia Gayer, Daniel Sassiat, 
Nicole Wöhrle (Hrsg.)

 DeLFI 2014 – Die 12. e-Learning
 Fachtagung Informatik
 der Gesellschaft für Informatik e.V.
 15. – 17. September 2014
 Freiburg

P-234 Fernand Feltz, Bela Mutschler, Benoît 
Otjacques (Eds.)

 Enterprise Modelling and Information 
Systems Architectures

 (EMISA 2014)
 Luxembourg, September 25-26, 2014

P-235 Robert Giegerich,  
Ralf Hofestädt, 

 Tim W. Nattkemper (Eds.)
 German Conference on
 Bioinformatics 2014
 September 28 – October 1
 Bielefeld, Germany

P-236 Martin Engstler, Eckhart Hanser, 
Martin Mikusz, Georg Herzwurm (Hrsg.)

 Projektmanagement und 
Vorgehensmodelle 2014 

 Soziale Aspekte und Standardisierung
 Gemeinsame Tagung der Fachgruppen 

Projektmanagement (WI-PM) und 
Vorgehensmodelle (WI-VM) im 
Fachgebiet Wirtschaftsinformatik der 
Gesellschaft für Informatik e.V., Stuttgart 
2014

P-237 Detlef Hühnlein, Heiko Roßnagel (Hrsg.)
 Open Identity Summit 2014
 4.–6. November 2014
 Stuttgart, Germany

P-238 Arno Ruckelshausen, Hans-Peter 
Schwarz, Brigitte Theuvsen (Hrsg.) 
Informatik in der Land-, Forst- und 
Ernährungswirtschaft 
Referate der 35. GIL-Jahrestagung 
23. – 24. Februar 2015, Geisenheim

P-239 Uwe Aßmann, Birgit Demuth, Thorsten 
Spitta, Georg Püschel, Ronny Kaiser 
(Hrsg.)  
Software Engineering & Management 
2015 
17.-20. März 2015, Dresden

P-240 Herbert Klenk, Hubert B. Keller, Erhard 
Plödereder, Peter Dencker (Hrsg.) 
Automotive – Safety & Security 2015 
Sicherheit und Zuverlässigkeit für 
automobile Informationstechnik 
21.–22. April 2015, Stuttgart

P-241 Thomas Seidl, Norbert Ritter,  
Harald Schöning, Kai-Uwe Sattler, 
Theo Härder, Steffen Friedrich,  
Wolfram Wingerath (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW 2015) 
04. – 06. März 2015, Hamburg
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P-242 Norbert Ritter, Andreas Henrich,  
Wolfgang Lehner, Andreas Thor, 
Steffen Friedrich, Wolfram Wingerath 
(Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW 2015) –  
Workshopband  
02. – 03. März 2015, Hamburg

P-243 Paul Müller, Bernhard Neumair, Helmut 
Reiser, Gabi Dreo Rodosek (Hrsg.)

 8. DFN-Forum 
Kommunikationstechnologien  
06.–09. Juni 2015, Lübeck

P-244 Alfred Zimmermann,  
Alexander Rossmann (Eds.) 
Digital Enterprise Computing  
(DEC 2015) 
Böblingen, Germany June 25-26, 2015

P-245 Arslan Brömme, Christoph Busch ,            
Christian Rathgeb, Andreas Uhl (Eds.) 
BIOSIG 2015 
Proceedings of the 14th International 
Conference of the Biometrics Special 
Interest Group 
09.–11. September 2015 
Darmstadt, Germany

P-246 Douglas W. Cunningham, Petra Hofstedt, 
Klaus Meer, Ingo Schmitt (Hrsg.) 
INFORMATIK 2015 
28.9.-2.10. 2015, Cottbus

P-247 Hans Pongratz, Reinhard Keil (Hrsg.) 
DeLFI 2015 – Die 13. E-Learning 
Fachtagung Informatik der Gesellschaft 
für Informatik e.V. (GI) 
1.–4. September 2015 
München

P-248 Jens Kolb, Henrik Leopold, Jan Mendling 
(Eds.) 
Enterprise Modelling and Information 
Systems Architectures 
Proceedings of the 6th Int. Workshop on 
Enterprise Modelling and Information 
Systems Architectures, Innsbruck, Austria 
September 3-4, 2015

P-249 Jens Gallenbacher (Hrsg.) 
Informatik  
allgemeinbildend begreifen 
INFOS 2015 16. GI-Fachtagung 
Informatik und Schule 
20.–23. September 2015

P-250 Martin Engstler, Masud Fazal-Baqaie, 
Eckhart Hanser, Martin Mikusz, 
Alexander Volland (Hrsg.) 
Projektmanagement und 
Vorgehensmodelle 2015 
Hybride Projektstrukturen erfolgreich 
umsetzen 
Gemeinsame Tagung der Fachgruppen 
Projektmanagement (WI-PM) und 
Vorgehensmodelle (WI-VM) im 
Fachgebiet Wirtschaftsinformatik 
der Gesellschaft für Informatik e.V., 
Elmshorn 2015

P-251 Detlef Hühnlein, Heiko Roßnagel,  
Raik Kuhlisch, Jan Ziesing (Eds.) 
Open Identity Summit 2015 
10.–11. November 2015 
Berlin, Germany

P-252 Jens Knoop, Uwe Zdun (Hrsg.) 
Software Engineering 2016 
Fachtagung des GI-Fachbereichs 
Softwaretechnik 
23.–26. Februar 2016, Wien

P-253 A. Ruckelshausen, A. Meyer-Aurich,  
T. Rath, G. Recke, B. Theuvsen (Hrsg.) 
Informatik in der Land-, Forst- und 
Ernährungswirtschaft 
Fokus: Intelligente Systeme – Stand der 
Technik und neue Möglichkeiten 
Referate der 36. GIL-Jahrestagung 
22.-23. Februar 2016, Osnabrück

P-254 Andreas Oberweis, Ralf Reussner (Hrsg.) 
Modellierung 2016 
2.–4. März 2016, Karlsruhe

P-255 Stefanie Betz, Ulrich Reimer (Hrsg.) 
Modellierung 2016 Workshopband 
2.–4. März 2016, Karlsruhe

P-256 Michael Meier, Delphine Reinhardt, 
Steffen Wendzel (Hrsg.) 
Sicherheit 2016 
Sicherheit, Schutz und Zuverlässigkeit 
Beiträge der 8. Jahrestagung des 
Fachbereichs Sicherheit der 
Gesellschaft für Informatik e.V. (GI) 
5.–7. April 2016, Bonn

P-257 Paul Müller, Bernhard Neumair, Helmut 
Reiser, Gabi Dreo Rodosek (Hrsg.) 
9. DFN-Forum 
Kommunikationstechnologien 
31. Mai – 01. Juni 2016, Rostock
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P-258 Dieter Hertweck, Christian Decker (Eds.) 
Digital Enterprise Computing (DEC 2016) 
14.–15. Juni 2016, Böblingen

P-259 Heinrich C. Mayr, Martin Pinzger (Hrsg.) 
INFORMATIK 2016 
26.–30. September 2016, Klagenfurt

P-260 Arslan Brömme, Christoph Busch, 
Christian Rathgeb, Andreas Uhl (Eds.) 
BIOSIG 2016 
Proceedings of the 15th International 
Conference of the Biometrics Special 
Interest Group 
21.–23. September 2016, Darmstadt

P-261 Detlef Rätz, Michael Breidung, Dagmar 
Lück-Schneider, Siegfried Kaiser, Erich 
Schweighofer (Hrsg.) 
Digitale Transformation: Methoden, 
Kompetenzen und Technologien für die 
Verwaltung 
Gemeinsame Fachtagung 
Verwaltungsinformatik (FTVI) und 
Fachtagung Rechtsinformatik (FTRI) 2016 
22.–23. September 2016, Dresden

P-262 Ulrike Lucke, Andreas Schwill,  
Raphael Zender (Hrsg.) 
DeLFI 2016 – Die 14. E-Learning 
Fachtagung Informatik  
der Gesellschaft für Informatik e.V. (GI) 
11.–14. September 2016, Potsdam

P-263 Martin Engstler, Masud Fazal-Baqaie, 
Eckhart Hanser, Oliver Linssen, Martin 
Mikusz, Alexander Volland (Hrsg.) 
Projektmanagement und 
Vorgehensmodelle 2016 
Arbeiten in hybriden Projekten: Das 
Sowohl-als-auch von Stabilität und 
Dynamik 
Gemeinsame Tagung der Fachgruppen 
Projektmanagement (WI-PM) und 
Vorgehensmodelle (WI-VM) im 
Fachgebiet Wirtschaftsinformatik 
der Gesellschaft für Informatik e.V., 
Paderborn 2016

P-264 Detlef Hühnlein, Heiko Roßnagel,  
Christian H. Schunck, Maurizio Talamo 
(Eds.) 
Open Identity Summit 2016 
der Gesellschaft für Informatik e.V. (GI) 
13.–14. October 2016, Rome, Italy

P-265 Bernhard Mitschang, Daniela 
Nicklas,Frank Leymann, Harald 
Schöning, Melanie Herschel, Jens 
Teubner, Theo Härder, Oliver Kopp, 
Matthias Wieland (Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW 2017) 
6.–10. März 2017, Stuttgart

P-266 Bernhard Mitschang, Norbert Ritter, 
Holger Schwarz, Meike Klettke, Andreas 
Thor, Oliver Kopp, Matthias Wieland  
(Hrsg.) 
Datenbanksysteme für Business, 
Technologie und Web (BTW 2017) 
Workshopband 
6.–7. März 2017, Stuttgart

P-267 Jan Jürjens, Kurt Schneider (Hrsg.) 
Software Engineering 2017 
21.–24. Februar 2017, Hannover 

P-268 A. Ruckelshausen, A. Meyer-Aurich, 
W. Lentz, B. Theuvsen (Hrsg.) 
Informatik in der Land-, Forst- und 
Ernährungswirtschaft 
Fokus: Digitale Transformation – 
Wege in eine zukunftsfähige 
Landwirtschaft 
Referate der 37. GIL-Jahrestagung 
06.–07. März 2017, Dresden

P-269 Peter Dencker, Herbert Klenk, Hubert 
Keller, Erhard Plödereder (Hrsg.) 
Automotive – Safety & Security 2017 
30.–31. Mai 2017, Stuttgart

P-270 Arslan Brömme, Christoph Busch,  
Antitza Dantcheva, Christian Rathgeb,  
Andreas Uhl (Eds.) 
BIOSIG 2017 
20.–22. September 2017, Darmstadt

P-271 Paul Müller, Bernhard Neumair, Helmut 
Reiser, Gabi Dreo Rodosek (Hrsg.) 
10. DFN-Forum Kommunikations- 
technologien 
30. – 31. Mai 2017, Berlin

P-272 Alexander Rossmann, Alfred 
Zimmermann (eds.) 
Digital Enterprise Computing  
(DEC 2017) 
11.–12. Juli 2017, Böblingen
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P-273 Christoph Igel, Carsten Ullrich,  
Martin Wessner (Hrsg.) 
BILDUNGSRÄUME  
DeLFI 2017 
Die 15. e-Learning Fachtagung Informatik 
der Gesellschaft für Informatik e.V. (GI) 
5. bis 8. September 2017, Chemnitz

P-274 Ira Diethelm (Hrsg.) 
Informatische Bildung zum Verstehen 
und Gestalten der digitalen Welt 
13.–15. September 2017, Oldenburg

P-275 Maximilian Eibl, Martin Gaedke (Hrsg.) 
INFORMATIK 2017 
25.–29. September 2017, Chemnitz

P-277 Lothar Fritsch, Heiko Roßnagel,  
Detlef Hühnlein (Hrsg.) 
Open Identity Summit 2017 
5.– 6. October 2017, Karlstad, Sweden
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