
Towards Interactive Model Mining From Embedded Software

Wasim Said, Jochen Quante

Robert Bosch GmbH, Corporate Research
Renningen, Germany

{Wasim.Said, Jochen.Quante}@de.bosch.com

Abstract

The idea of model mining is the extraction of higher-
level models from code. For example, one could ex-
tract state machines that describe the behavior of a
program. Such models can be very helpful for soft-
ware maintenance tasks such as program understand-
ing. The major drawback of fully-automatic model
extraction is that, when applied on real world sys-
tems (e. g., software-intensive systems), the resulting
models are complex, difficult, and contain informa-
tion on a quite low level. Developers can hardly find
and understand the information they need. In this
paper, we present our ideas towards a framework that
solves this problem. The main idea is to let devel-
opers contribute to the process of model extraction.
The ultimate goal of the framework is to provide high
quality representative types of models on an adequate
level of abstraction and with low manual effort.

1 Introduction

The extraction of higher-level models can help de-
velopers in their task of understanding software sys-
tems. The latter is a time-consuming activity that
makes up for 40%-50% of total software life cycle ef-
fort according to studies [2] and practical experience
at Bosch. Model mining can also be a great support
for migrating towards model-based software develop-
ment, which is a trend in the automotive domain. The
manual extraction of necessary information from com-
plex software-intensive systems is a tedious and labo-
rious task. Therefore, automation of this process is
highly desired. However, fully-automatic model ex-
traction from real world systems results in information
on the wrong level: It is usually much too detailed and
complex. In the following, we propose an interactive
framework that includes expert knowledge and feed-
back, so that it is capable of extracting high quality
models with low manual effort. Our focus is on state
machine extraction for now.

2 State machines

State machines model the behavior of software sys-
tems through states and transitions between them.
They are extensively used in forward engineering in

different phases of the development process. In this
work, they will be used in reverse engineering to get
a good understanding and representation of software
system control logic. Most research in state machines
extraction has been done with respect to API proto-
cols, i. e., the allowed sequences of API calls [1]. De-
spite the importance of extracting state machines that
describe the behavior of an application, little work has
been done in this field. Furthermore, a majority of
approaches are based on dynamic analysis, which is
hardly applicable for real time systems.

Sen and Mall [6] have published an approach to
statically extract state machines from Java programs.
States are defined as a partition over field values and
transitions as the changes on them. This approach
comes closest to the objectives of our work. However,
it has only been applied on small Java systems, but
not on large real world C systems. We have adapted
and implemented this approach for C and tried it on
our systems. Our experiments show that it fails to ex-
tract useful models from these systems: They are too
complex and yet incomplete. Therefore, our goal is to
make this approach applicable and useful in practice.

3 Interaction with experts

The reason why automatically mined models are too
detailed and low-level is that code alone does not con-
tain all the necessary information that would be re-
quired. For example, there is no information about
which details are important and which are not. Also,
the tool is not capable of introducing abstractions that
a human would immediately come up with. In this
section, we introduce reflexion analysis [4, 3] as an
example to illustrate the idea of interaction with ex-
perts. Reflexion analysis allows the experts to take
part in the analysis process to reconstruct the archi-
tecture of the analyzed system. The expert starts by
providing a hypothetical model that represents impor-
tant components and expected dependencies between
them. This model is called the conceptual model. The
expert also provides a mapping between his concep-
tual model and implementation artefacts in system.
The reflexion analysis then examines automatically
which dependencies are present in the code and lifts
them to the conceptual model. It compares the spec-

24 Softwaretechnik-Trends 37:2, Mai 2017



ified dependencies from the expert with the existing
dependencies in the code, then it gives feedback to the
expert to refine his conceptual model or his mapping,
and the process starts over again.

This approach has been proven as being very use-
ful for extracting architectural models from software
systems [3]. The basic idea could therefore also be
applied to extract other models or information from
software systems.

4 Analysis

Figure 1 shows how the model could be interactively
extracted from legacy code. We have used different
colors to show that some steps are manual, semi-
automatic or automatic. For example, the engage-
ment of the user is a manual procedure, whereas the
tool extracts the states automatically. The final state
machine models will then be semi-automatically ex-
tracted.

Facts &
Findings

Legacy code / models

Concrete
query

Static analysis Additional
information

Expert in the
loop

automated
semi-autom.
manual

Statemachinemodels

Figure 1: The extraction of state machine models
through the interaction between tool and expert.

In the following, we will discuss different possible
scenarios for interacting with experts, which can make
this approach applicable on real-world software and
not only on simplistic examples, as is the case for
available approaches.

1. Bottom up: In this scenario, the expert has no
idea about specific states or modes, and he asks
for general information. The tool should extract
state candidates from code and display them to
the user, ideally sorted according to some rele-
vant criteria. The user then selects the states of
interest. This early interaction phase leads to a
reduced state space and thereby smaller models.
The process proceeds with iterations and interac-
tions with user. Consequently, the user can get
multiple small and easy to understand state ma-
chines instead of only large and complex one.

2. Top down: If the user has a hypothetical state
machine model in mind that he expects to be
present in the system, we can apply the idea of
reflexion analysis. The state space in this case is
only what the user model contains. Thus, the tool
can directly start collecting information about
the specific states and transitions from source

code. The user receives feedback about which
parts in the hypothetic model match the real sys-
tem and which parts do not. He can then refine
his model and iteratively obtain more informa-
tion about his hypothesis.

In both scenarios, the expert could be interested in
some more specific situations that the system could be
in. For example, he could define a specific invariant
such as speed=0. In this case, the tool should pro-
vide only states that the system has when speed=0.
All other information related to speed>0 or speed<0
should then be hidden. This step helps the expert to
get even more understandable results (models), be-
cause the state space becomes smaller and simpler –
and the expert can focus on the relevant information.

5 First Results

Based on the approach of Sen and before mentioned
bottom up scenario, an initial approach was imple-
mented to extract state machines interactively with
experts. The implementation is mainly based on the
SWAN Software Analysis Framework, which has been
developed at Bosch. It contains a generic model in-
terpreter [5] and tools for data and control flow anal-
ysis, model reduction and visualization. The first re-
sults are very promising. The approach performed
well by responding to user choices and by extracting
the reduced state machines. It also highlighted some
challenges in the process of extracting understandable
models from real world systems, such as the simplifi-
cation of transition conditions.

6 Outlook

We have presented the first steps towards extracting
understandable state machines interactively from em-
bedded software. We will next implement different
ideas for interactive model mining. After that, we will
empirically check whether the approach really sup-
ports program understanding.

References

[1] G. Ammons, R. Bod́ık, and J. R. Larus. Mining spec-
ifications. SIGPLAN Not., 37(1):4–16, Jan. 2002.

[2] R. K. Fjeldstad and W. T. Hamlen. Application pro-
gram maintenance study: Report to our respondents.
In Proc. GUIDE 48, Apr. 1984.

[3] R. Koschke and D. Simon. Hierarchical reflexion mod-
els. In Proc. of 10th Working Conference on Reverse
Engineering, WCRE ’03, pages 36–45, USA, 2003.

[4] G. C. Murphy, D. Notkin, and K. Sullivan. Software
reflexion models: Bridging the gap between source
and high-level models. SIGSOFT Softw. Eng. Notes,
20(4):18–28, Oct. 1995.

[5] J. Quante. A program interpreter for arbitrary ab-
stractions. 16th Int’l Working Conference on Source
Code Analysis and Manipulation, pages 91–96, 2016.

[6] T. Sen and R. Mall. Extracting finite state representa-
tion of java programs. Software & Systems Modeling,
15(2):497–511, 2016.

Softwaretechnik-Trends 37:2, Mai 2017 25




