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Abstraet: This paper introduces lexical graphs, which model dictionaries in
graph-theoretic terms. After briefly reviewing some basic fenets of graph
theory, lexical graphs are formally described along with techniques for (i)
inducing a topology on a dictionary, (i} measuring lexical stability in a
dictionary, and ({i{) distinguishing between core and peripheral inform-
ation concepls encoded 10 a dictionary. These are usclul results: the sorted
lopology of a diclionary provides a learning sequence {or the subject
matler compiled in 1, and lexical stability identifics the contrbution of a
parlicular lexical entry o the structural mtegrity of the diclionary as a
whole. Exploiting these and other propertics, it 1% possible (o identily a
lexical stability value for a single dictionary enlry, a subsct ol 1inier-
dependent dictionary clements, and the dicuonary as a whole. Hence,
lexical graphs can play a signilicant rele in the analysis ol dictionary
mlormation structure, thus beneliung natural language cnginecring
lechnologies of various kinds.

1 Graphs

A graph (15 an ordered pair (F, E), where V18 a [inite sel of vertices and £ 18 a binary
relation on V' composing a sct ol edges. An edge 15 a pair (x, v) with «, ve V. Il'edge
¢ {u, v} is in graph (7, then # and v are said to be the end vertices of e,

An edge 1s dirceted ' 1ls end vertices are an ordered pair. Supposce that ¢ 15 an oul-going
cdge ol # and an incoming cdge of v. A specialized cdge like ¢ s an arc, and 115
speciahized end vertices are nodes. A directed graph 1s a graph in which all edges arc
arcs. Il arcs e=(u, v) and ¢ '=(z, w) cxist in a directed graph, then ¢ and ¢’ are incident to
node #. The degree of node u, die), 15 the wotal number of arcs incident 1o ¢, Morcover,
the incoming degree ol w, o (u), 15 the total number of incoming arcs incident Lo &, and
the outgoing degree of w, o (1), is the Llotal number of outgoing arcs incident Lo u.

In a dirceted graph G=(F, E), a walk 1s a scquence belween end nodes ol one or more
arcs, and 4 path is a walk in which all nodes are distinct. Node v of (7' is reachable from
node # if v u or ¢ contains a path from x to v. ¢ is connected if there exists a path
between every pair of nodes in G; otherwise, ¢ is disconnected. A subgraph § of 7 has
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all its arcs and nodes 10 (. A directed subgraph S of & rooted at v is a dirccted graph
S=(V°, Eywhereve V, V'V, E’C £ and V7 1s the sct of nodes {rom which v 18 reach-
able. Finally, a eycle is a walk in which the first and last nodes are identical while all
others are distinct, and a directed acyclic graph is a directed graph without cycles.'

2 Lexical Graphs

Let £ be a dictionary, a [inite scl ol strings arranged as ordered pairs (¢, ¢) such that cach
o 18 said 1o deline 11s ¢ A lexical graph 1s a DAG L=(D, £) where cach pair in 215 a
node m L, and £ 1s a binary relation on £, Since the end nodes u, v of cach arc in £ are
also ordered pairs, a more precise nelation lor an are 1 a lexical graph 15 needed. For
convenience, let cach are in £ be annotated as e=((s, o), (#", d")) then whenevere € £ ol
£, the definition & can be said to depend on the term 1'%

2.1 Lexical Dependency

Applying the forcgoing description of lexical graph L, suppose lexical dependency
oblains between nodes 12 ), (¢, o) whenever £7 18 a substring of o 10 the arcs ol L’
Then the lexical dependency relation thus delined on L tmposcs a topology on its
dictionary. Each (¢ ) pair in £ of L identifies the information structure of a (crm under
defimition, and whenever an clement in D lexically depends on anether to ground ils
meaning, a corresponding arc cxists in £, Tenee, lexical dependency mtrinsically orders
D whenever e=({f, d), (t" d))e E ol L, it 15 clear that (¢, '} precedes (4 ) 1o the
topology of £, This observation permits the following induction: knowledge of the
meaning of an element in a dictionary topology cannot be guaranteed without prior
knowledge of the meaning of the preceding elements in that topology.

2.2 Lexical Siability

Intuitively, the stabilily properly of a particular node m a lexical graph is a discrele
measure of its conteibution w the siruclural integrity of that g—raph,4 In lexical graph L,
the stability of v, ve ), expresses the petential impact of any modification to v on the
configuration of £, To illustrate, consider (1) from Figure 1, a simple lexical graph of
three nodes v, ¥, =

" drgeted acvelic graphs are often called 1DAGs, For a thorough introduction to graph theory, trv [Wa72].

Y oThus dependency information in lexical graphs identifics the same informarion as thar caprured by
dependeney graphs, Tor ostanee, when wsed with atiobule grawvmars W validae, oplinnee, and  translale
vontputer prograns. The Dlerature mdos acea s eslensive; [ Kob® | eatablishes the paradign.

" The substing relation sullices [or expository purposes. 01 course, Texieul dependeney can be lormulawd o
termns of other relations as well,

' Robert Martin (persomal communicationy introduced me to the formal study of stable interdependencivs
amaong infarmation untts within the context of build dependencies in the programning languape C1 1L {Martin
dekiw ledees Bertrand Moeyver as the onsinaior ol the coneepry For detals ol dus problen and s treatownd,
soee hurlin s Sagrinesring Notebook columins ol The O+ fepord Lor the yoar 198990 The wory ol Texieal
graphs stens 1 pact vom s mspiration, although any crrors are nune alone.
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Figure 1. Four Stmple Lexical Graphs

Nodes x and v lexically depend on z, and 7 15 lexically independent. Clearly, the meaning
of v and v can change without affecting the meaning of z. Moreover, no change in x will
affect the meaning of v, and vice-versa. However, a change to z may reformulate the
meaning of both x and p, transforming the structure and content of L to an extent
measured by the stability of z. Alternatively, a potential side effect of change to nodes x
and y, which follow z in the dictionary topology, is that they may no longer follow z
afterward, depending on the nature of the modification to dictionary elements v and v.

2.2.1 Measuring Lexical Stabilily

Interdependencics belween nodes in a lexical graph determune the global information
structure ol the graph as well as the lecal information structure of cach node. Recall that
d(v), the degree of node v, is the total number of arcs incident to v, Likewise, (1), the
incoming degree of v, summarizes the incoming arcs of v. The lexical stability of node v,
S{v), is then the quotient of dividend & {v) and divisor &{v):

Definition 11 Let v, ve . be a node in lexical graph £ (D, £). Then S(v)=

Application of this measurement to lexical graph (1) of Figure 1 indicates S(z) 1, the
maximal value for lexical stability, while S(x) and S{3) both yield 0, the minimal value.
Ags lexical stability approaches the maximum, change to the information concept defined
in a dictionary node has more pervasive effects on the structural configuration of the
lexical graph. As a practical matter, a high stability value local to some node v implies
difficulty of change for the dictionary entry encoded at v, since it and each of the entries
encoded in the subgraph rooted at v must be reviewed for correctness subsequent to the
change. Conversely, a reduced burden of validation accompanics modilication of a node
wilh lower lexical stabihity. Hence, low stability implics case of change.

Consistent with this [ramework of evaluation, the lexical stability metric assigns
maximum and mimmurm stability values (o the root and leal nodes, respectively, ol a
lexical graph. This 15 an mtuilive result. By iat, orphans (i.e., 1solated lexical graph
nodes where d(v)=0) possess minimum stability.

Next consider lexical graph (2) from Tigure 1, which extends (1} such thal node w
depends on y. Again, the calculation of 5(v) identifies minimal stability for the leal
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nodes of the new conliguration. Node w depends on v and v dcpcndq on z, and the
calculation 1dentilics a higher lexical stability value lor 7 than y: 5{z)=1 and 8{3)=0.5.
Morcover, cach lexical dependency added o node v increments 8(1) approprialely,

although S(v) will never achieve the maximum value. [ence, S(z) will always cxceed
S(¥) in lexical stability, another mtuitively appropriale resull. Now consider lexical
graph (3}, which cxtends (2) such that z, the [ormer root node, has been made 1o depend
on i, a new root node. In this conliguration, S(z) 1s devalued te 0.66 and 5(x)=1. Nodes
¥, w, and x are the dictionary entries casicsl to change, and they retain (heir previous
lL\](,al stability values.

Finally consider lexical graph (4), which extends (3) by adding a dependent node ¢ to v
and making ¢ dependent on an additional node 5. The new s node, in turn, depends on a
third additional node v. As in lexical graphs (1}-(3), the two root nodes of (4) have
maximal stability, Nodes x and w remain leaf nodes, and thus retain minimum lexical
gtability. S{3) hag increased to 0.66, reflecting the additional lexical dependent . Node z
presents the same configuration as v, hence S(z) 0.66. Node s has identical incoming
and cutgoing degrees; hence, its lexical stability is 0.5, Figure 2 summarizes:

{n% c2) {3: @ |1 ?
)]

{gure 2. Lexical Stability in Four Simple Texical Graphs

2.2.2 Lexical Stability and Information Structure

Measurement of lexical stability is local to a node in a lexical graph. Should modifi-
cation of a node change its relationship to another node, the topology of the dictionary
may change. Not every change has structural consequences. A change in a leaf node or
an orphan may be trivial, as the minimum lexical stability value of such nodes attests.
On the other hand, some changes may have intricate consequences throughout the
dictionary. Modification of a node with high incoming degree positioned near a root, for
instance, may have a significant impact on the information structure of a dictionary.

Formally, modification of lexical graph /£ is accomplished by creating, updating, or
deleting one or more elements in £ of /. Suppose two nodes v (4, o) and w (£, ¢
exist, where v, we D and v lexically depends on w, Recall that whenever a node lexically
depends on another to ground its meaning, a corresponding arc e=((¢, ), (¢, 7)) appears
in £ of £, Should v change such that it no longer depends on w, the result is that e & £ of
L. Should v change such that 1t retains 1ts dependency on w and adds a new dependency
on p=(7 &, where ye D, then a new arc e=({z, d), (1. &) appears in £ ol L. Thus £
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containsg the exiension of a binary relation on £), and this relation expresses the intrisic
imnformation siructure of D.

Lexical stability and information siructure can be lactored independently i the

evaluation of a dictionary. Consider lexical graph (4) from Figures 1 and 2, presented
here 1n two views, onc with node labels and one with lexical stability measurements:

I

Figure 3. Two Views of a Simple Lexical Graph

Suppose that node z were changed such that it no longer depends on #. This modification
changes the lexical stability values of nodes w and z to 0 and 1, respectively. No other
stability values change, However, since z no longer depends on #, the transitive closure
of lexical dependencies by which x, v, w, and ¢ had previously related to # is disrupted.
Because of the change in z, these nodes no longer base their definienda in whole or in
patt on ., Clearly the information structures of x, v, w, and ¢ have changed, although
their lexical stability measurements remain fixed. Since information structure can change
independently Trom lexical stability, information structure and lexical stability must be
factored mndependently i lexical graphs.

Except for orphans in a lexical graph, the meaning ol a dictionary clement 18 partially
deiermined by its inlormation siructure. Thus a modification of v, ve D of lexical graph
£., entails the possibility of change in meaning for v as well as for any other node
where # is an element of the subgraph of £ rooted at v. This is true because the
information structure of # grounds its meaning in the information structure of v. Should v
be positioned strategically within the global information structure of /—for instance, as
the single root of /—then modification of v may transform the meaning of every term
under definition in the dictionary.”

3. Discriminating between Dictionary Elements
['or convenience, some device 15 required o express the foregoing notion of stralegic

positioning within a lexical graph. Given some node v, such a device will identify an
aggregate stability value for v and the sct of nodes in L scositive o the meaning ol v

T AN A practical mader, sinee Lois oo spectalication ol o DACG anv evelical delimiions i £3 ol Lomust have boen
winclonted prior w 1ls creation. This wealment pnores wermmnelogica] oyeles, which anse wlhen o coneepl s
duelined by diveet or indineet relerenee w itselll Fora Jormal treatment ol weomnological cyeles, see | No@ L.
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3.1 Aggregate Stability

Since lexical graph L=({f), £} 15 a spccialization of a DAG,  [ollows that the subgraph
of L rooled at v is a lexical graph L '=(D°, E7) whereve D), D' D, E’C E, and D15 the
set of nodes from which v is reachable. Node v of /. is reachable from node ¢ if v 1w or 1.
containg a path from w to v, Formally, v is reachable from ¢ if and only if v is identical to
u, v 18 adjacent to #, or there is some set of ares &7 ((w, &), v, X000, L (L VD, B'EE,
where x; and x; - 1 are distinet and adjacent for i=(0, ..., #). Thus for cachnode vin L, 1 18
possible Lo 1solate the contribution of the subgraph rooted at v 1o the global stability of L.
L.et this be known as S[v], the aggregate stability of v

Deflinition 2: Let L'=(D°, £7) be the subgraph of L rooted at v. Then SH: > S[x)
s

The aggregale stability properly of nedes 1n a lexical graph can serve as a crude compar-
ator discrimmimaling between nodes on the basis of the graph’s global stability and s sen-
sitivily to the mformation structure of cach node under comparison. Where S[v]=S[v'],
the global information structure ol L 15 more sensitive o modilication of v than v,

Multiple roots arc commaon in lexical graphs. Delinition 2 1solales a partially ordered set
(D, S]v]) that can scrve to 1dentify the aggregate stability of the root of some subgraph of
L. Turiher, 1t might be applicd as a comparator between subgraphs, thus identifying an
aggregale stability value for cach subgraph ol a muluply roeted lexical graph.

3.2 Glohal Stability
The global stability ol a lexical graph, (5(L), can be delined as the sum of all S(v) in L:

Deflinition 3: Let L=(D, E) be a lexical graph. Then GS{L) = ZS(v).

o D
(rlobal stability may, for instance, be ecmployed (o characterize lexical graphs on the
basis ol the inherent integration of inlormation concepls within their cespective
dictionarics. Where D of two lexical graphs 1s cquivalenl, GS(L; 15 greater lor the
lexical graph with the greater interdependency between dictionary definitions, A similar
compatator for arbitrarily selected lexical graphs is the relative global stability of each
graph £, GSpi{j. which expresses the relative integration of information concepts within
any lexical graph:

Definition 4: Let (:S(/.) be the global stability of £.. Then GS,(£.) Gs(L) .

Where GSp(7)=GSp(4. 7, the information structure of £ encodes a greater interdepend-
ence of information concepts than that of £°. As a practical matter, whenever (S,{/) is
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relatively high or low, dictionary D ol L will demonstrate a commensurately high or low
level of conceplual integration.”

3.3 Fractional Stability

Summarizing briclly, Delinition 2 demonstrates thatl lor cach nede v in L 1t 15 possible to
1soelate the conteibution of the subgraph rooted at v 1o the global stability ol £. Using this
lechnique, an aggregate stability value can be 1dentified for an arbitrary subgraph of L.
Definition 3, on the other hand, encapsulates in a single property the local lexical
stability values distributed in a lexical graph. When construed in concert, these values
can be used to express the fraction of a lexical graph’s global stability contributed by the
information structure of some discrete node. Let this property be known as the fractional
stability of node v, £5{v):

Definition 3: Let /.7 be the subgraph of £ rooted at v. Then if d(v} 0, F75(v) 0; otherwise,
Fswy= U]

GS(1)
Fractional stability provides an insightful discriminator for the information concepts
encoded in a dictionary. It imposes a weak partial order on the elements of £, identifying
for cach node a valuce in the interval between 0 and 1. For illustration, consider the two
views ol a lexical graph displayed in Iigure 4:

0.391310

.13043

figure 4: Fractional Stability in a Simple Lexical Graph

This 15 the graph [fom Igure 3 with [ractional stability valucs labeling its nodes. [ mdi-
cales how a greater F8(v) value lor a node correlates with a greater polential for trans-
formation of meaning of dictionary clements in the lexical graph.” In this case, the {rac-
tional stability relation delines a partially ordered set (D, FS(v)=1¢ w, x, 5, v 2, v, u).
Meaninglul change 1o a dictionary clement at the lower end of the scale has little or ne
ramification for the lexical graph or the mecaning of other dictionary clements,
Conversely, modification of a dictionary clement at the high end of the scale has

¢ Dictionarics with Tughly joterdependent lexis tend w be ogid, narowly domain-spectlie, and dillieall
menntim. lven so, merdependenee s necessary 11 a0 dictionary 15w be wselul and cohercnl, Thus some loems
ol dependeney may be desirable, and ocdhers undesarable.

T High precision in fractional stability metrics is often necessary, The author has personal sxperience with
mature data dictionarics from the acrospace and defense industrics that exhibit nodes with incoming degroe as
high as 175, or ourzoing depree as high as 14,
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polentially cxtensive conscequences lor the conliguration of the lexical graph and the
meaning ol other dictionary clements.

The fractional stability relation cxposcs this lexical graph properly to measurement,
cnabling a scalar distribulion of the inlormation concepts encoded 1 a diclionary.
Dictionary clements arranged at the lower end ol the scale have inlormation structures
with few or no dependents. Meaningful change to their semantics can be introduced
without effect on the remainder of the dictionary. In this sense, elements at the lower end
of the scale are peripheral information concepts with respect to the global information
structure of the dictionary. As for the information concepts arranged at the higher end of
the scale, meaningful change to their semantics will be broadly propagated throughout
the information structure of the dictionary, Hence, these elements encode the core
information concepts of the dictionary. The chart displayved here depicts the elements of
this partially ordered set for the simple lexical graph of Figure 4, along with the
aggregate and fractional stability properties of each term under definition in the diction-
ary of that lexical graph,

2.50-|
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Lexical Graph Node

OFS(x}
B5[x]

Figure 5 Some Properiies ol a Simple Lexical Graph

4.0 Conclusions

This paper has extended graph theory to encompass a new data configuration called
lexical graphs, The objective has been to sketch o mathematical model to support the
analysis of the form and content of lexicographic dependency information, whether it be
contained in a conventional dictionary, a data dictionary, the semantic repository of a
large business enterprise, or some other form of managed terminology.

[exical graphs provide an insightful formalism for modeling the information structure of
dictionaries. L.exical graph theory prescribes formal techniques for inducing a topology
on a dictionary, measuring its lexical stability lecally and globally, and distinguishing
between core and peripheral information concepts encoded within it. The sorted
lopology ol a dictionary 1s usclul becausce 1t provides a learning sequence lor the subject
mailer compiled in i, and lexical stability identifics the contribution of a particular
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lexical entry (o the structural miegrity of the dictionary as a whole. Exploiting these
propertics, 11 1s possible (o 1denlily a lexical stability valug [or a single dictionary entry, a
subset of mterdependent diclionary clemenis, and the dictionary as a whole. Since many
algorithms practiced in computational hnguistics resort 1o lexicographic daia of one lorm
or another, the theory of lexical graphs may benefil natural language cngincering
lechnologies of various kinds, (rom informaton-based approaches to frameworks [or
conventional natural language understanding.
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